Sous-groupe engendré par les matrices diagonalisables

Soit $G = GL_n(k)$ où k est un corps et $n \ge 1$ un entier. On note H le sous-groupe engendré par les matrices diagonalisables. On veut démontrer qu'on a l'alternative suivante :

$$H = \begin{cases} \operatorname{GL}_n(k) & \text{si } k \neq \mathbb{F}_2, \\ \{1\} & \text{si } k = \mathbb{F}_2. \end{cases}$$

- (1) On suppose que $k = \mathbb{F}_2$. Démontrez que $H = \{1\}$.
- (2) On suppose que $k \neq \mathbb{F}_2$.
 - (a) On suppose que $\operatorname{card}(k) \ge n+1$. Démontrez que $H = \operatorname{GL}_n(k)$.
- (b) Utilisant le résultat de (a) pour n=2, démontrez que les transvections appartiennent à H (Indication : on rappelle que les transvections sont toutes conjuguées dans G).
 - (c) Concluez que H = G.

On propose de donner une nouvelle démonstration du fait que H = G lorsque $k \neq \mathbb{F}_2$, en utilisant le résultat suivant : mis à part le cas de $GL_2(\mathbb{F}_3)$, les sous-groupes distingués de $GL_n(k)$ se répartissent en deux familles : les sous-groupes inclus dans le centre, et les sous-groupes qui contiennent $SL_n(k)$. On se place donc désormais dans le cas $k \neq \mathbb{F}_2$, et on écarte le cas où n = 2, $k = \mathbb{F}_3$.

- (3) Démontrez que H est un sous-groupe distingué de $\mathrm{GL}_n(k)$.
- (4) Démontrez que H contient strictement le centre.
- (5) Concluez avec le résultat cité ci-dessus.