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EFFECTIVE MODELS OF GROUP SCHEMES

MATTHIEU ROMAGNY

Abstract

Let R be a discrete valuation ring with fraction field K and let X be a
flat R-scheme. Given a faithful action of a K-group scheme Gk over the
generic fibre X, we study models G of G acting on X. In various
situations, we prove that if such a model G exists, then there exists
another model G’ that acts faithfully on X. This model is the schematic
closure of G inside the fppf sheaf Autg(X); the major difficulty is to
prove that it is representable by a scheme. For example, this holds if
X is locally of finite type, separated, flat and pure and G is finite flat.
Pure schemes (a notion recalled in the text) have many nice properties:
in particular, we prove that they are the amalgamated sum of their
generic fibre and the family of their finite flat closed subschemes. We
also provide versions of our results in the setting of formal schemes.
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1. Introduction

The present paper is interested in the reduction of algebraic varieties with
group action. Let us fix a discrete valuation ring R with fraction field K and
residue field k. Algebraic and arithmetic geometers study all kinds of varieties,
or varieties with additional structures, defined over K. In various situations,
these objects have a unique model over R or over a finite extension; this is
the case each time that one has a proper moduli space for the objects, but
not only. Let us mention a few of these well-known models: stable models of
curves (Deligne and Mumford [DM]), Néron models of abelian varieties (Néron
[N]), semiabelic pairs as models of principally polarized varieties (Alexeev
[Al]), stable maps as models of morphisms from a curve to a fixed variety
(Abramovich and Vistoli [AV]). If a group G acts faithfully on the K-variety
and the model satisfies some unicity property, the action extends to it.

Our concern is, in fact, exclusively in the reduction of the group action.
The point is that even though most of the time the action of G extends as
just indicated, in general the action on the special fibre is not faithful, and
one wishes to consider other models of G whose action is better-behaved in
reduction. For typical examples, assume that R has unequal characteristics
(0,p) and G is a finite p-group. If A is an abelian scheme over R, or the Néron
model of an abelian variety Ag of dimension g, such that the p-torsion A p]
is rational, then G = Z/p?97Z acts by translations. This action extends to A
and, for lack of p-torsion points in characteristic p, the action has a nontrivial
kernel on the special fibre. For another example, consider a smooth pointed
curve (Ck,xk) endowed with a faithful action of G leaving zx fixed, and
assume that (Ck,zk) has a stable pointed model (C,z) over R. We wish to
understand the reduction of the action, especially around the reduction xy.
We are led to focus on the orbit Z C C} of the irreducible component of .
After throwing away all components of Cj not in Z, we get an open R-curve,
and we are asking for the best model for the induced action of G.

In the example above of an abelian scheme A, the R-group scheme of p-
torsion G’ = Al[p] is the obvious choice of a good model. We can recover it
as follows: to the action of G is associated a morphism of R-group schemes
Gr — Autg(A), where G is the constant R-group scheme defined by G.
Then G’ is the schematic image of this morphism; the special properties of
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schematic images and closures over a discrete valuation ring ensure that G’
is flat over R. In the examples of a Néron model or an open curve, we would
like to do the same thing. But there comes a problem: these schemes are not
proper, and the automorphism functor is not representable by a scheme or
an algebraic space. Still, it is a sheaf for the fppf topology, and Raynaud has
given a definition of schematic closures in this setting; but representability
of these closures is by no means obvious, and indeed, it does not happen in
general. The main theorems of this article prove that these schematic images
are often representable by flat group schemes when we consider actions on
pure schemes, the notion of purity being a (very) weak version of properness.
For example, faithfully flat R-schemes with geometrically irreducible fibres
without embedded components are pure. Here are some of our most striking
results:

Theorem A. (i) Let X be an R-scheme locally of finite type, separated, flat
and pure. Let G be a proper flat R-group scheme acting on X, faithfully on
the generic fibre. Let N denote the kernel of the action. Then the schematic
image of G in Autr(X) is representable by a flat group scheme of finite type
G’ if and only if Ny, is finite. Moreover, in this case G’ is proper.

(ii) Let X be an affine R-scheme, equal to the spectrum of a ring A such
that the map A — ILA/I\ to the product of the finite flat quotients of A is
universally injective. Let G be an R-group scheme locally of finite type, flat
and pure, acting on X, faithfully on the gemeric fibre. Then the schematic
image of G in Autr(X) is representable by a flat R-group scheme G'. If G is
quasi-compact, or affine, or finite, then G’ has the same property.

When it is representable, we call the schematic image the effective model
of G for its action on X. We also have versions of these results in the setting
of formal schemes.

The affine version in case (ii) is interesting because it applies not only to
rings of finite type, flat and pure (by Theorem B below), but also, for example,
to rings arising from the completion of smooth R-schemes along a section, and
also because the assumptions made on the group G are very light. Let us now
focus on case (i). As it turns out, this result does not have much to do with
groups. The crucial facts that govern the proof are the good properties of R-
schemes locally of finite type and pure. Such a scheme X is the amalgamated
sum of its generic fibre X and the family of all its closed subschemes finite
flat over R, the latter family being schematically dense in a very strong sense.
In fact, we prove the following theorem.

Theorem B. Assume that R is Henselian. Let X be an R-scheme locally
of finite type, flat and pure. Then, the family of all closed subschemes Z) C X
finite flat over R is R-universally schematically dense, and for all separated
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R-schemes Y and all diagrams in solid arrows

OZy\ xk — Xk

there exists a unique morphism X — Y making the full diagram commutative.

Here also, there is an analogue for formal schemes. Using Theorem B,
we prove representability results for schematic images of schemes or formal
schemes inside functors of the type Homp(X,Y"). Theorem A above is essen-
tially an application of the particular case X =Y.

The effective models defined in the present article have been studied in
full detail, for the cyclic group of order p? in unequal characteristics, in the
recent Ph.D. thesis of D. Tossici (see [Tol] and [To2]). His results provide
more examples of effective models, and show some of their general features.
Also, related to this work is the note [Ab] of Abramovich. There, some group
schemes over stable curves are considered. They are not unrelated with our
effective models, and we plan to compare the two approaches more precisely in
the near future. This will hopefully lead to some new insights on the reduction
of the moduli space of admissible Galois covers of stable curves (see [BR]).
The latter question is open at the moment, and it was the most important
motivation for the present work.

1.1. Overview of the article. Here is a short description of the con-
tents of the article, together with precise references to the statements of the
main results. In section 2] we recall some results on purity and provide some
complements. We prove openness results for some properties of the fibres of
morphisms of finite presentation, flat and pure, that have some independent
interest (Theorem Z2.T)). In section Blwe study schematically dominant fami-
lies of morphisms from flat schemes to a fixed scheme X. We prove the density
of finite flat closed subschemes (Theorem [B.2.4]) as well as the amalgam prop-
erty (Propositions B0 B2Z5] and B.2.6]) which together give the statement of
Theorem B. In the beginning of section ] we introduce schematic images and
we prove some useful general results on kernels for scheme or group scheme
actions. Then the stage is set to prove representability of schematic images
in various situations: we start with images of schemes inside Hom functors
and then we prove representability of images of groups in the scheme case
(Theorems [£.3.4] and E3.5) and in the formal scheme case (Theorems [£.4.4]
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and L4H). Theorem A is the combination of these results. We also give
some properties enjoyed by the effective model of a finite flat group scheme
(Proposition £3.9). Finally, in section Bl we give some examples. Notably, we
compute explicitly the schematic image in two different cases of degeneration
of torsors under the cyclic group of order p? in equal characteristic p > 0
(see 52). We observe in particular that for a normal subgroup H C G, the
effective model of G/H acting on X/H may be different from G'/H’.

1.2. Notation and conventions. Everywhere in the paper, we abbrevi-
ate the notation of a discrete valuation ring R with fraction field K, residue
field k, and chosen uniformizer 7, by the tuple (R, K, k, 7). In general, the
residue characteristic is denoted p > 0. For schemes or morphisms defined
over R, we use subscripts (-)x and (+); to denote the restrictions to the generic
and the special fibre.

When R is complete, we also consider formal R-schemes. A formal scheme
X may be identified with a direct system of ordinary schemes X, over the
ring R, = R/(n™). We refer to [BLI1] for basic facts on formal and rigid
geometry, and, in particular, for the notion of admissible formal blowing-
up. Admissible formal schemes in [BLI] are flat formal schemes locally of
finite type. Raynaud’s theorem (see [BL1], Theorem 4.1) asserts that there
is an equivalence between the category of quasi-compact admissible formal
R-schemes, localised by admissible formal blowing-ups, and the category of
quasi-compact and quasi-separated rigid K-spaces. The K-space associated
to a formal scheme X is called its generic fibre and denoted X,i,.

2. Complements on purity

2.1. Purity, projectivity and adic topologies. We first recall some
definitions from Raynaud-Gruson [RGI.

2.1.1. Definition. Let X — S be a morphism of schemes and M be a
quasi-coherent O x-module.

(i) The relative assassin of M over S, denoted Ass(M/S) is the union
over all s € S of the associated points € X ® k(s) of M ® k(s). If
M = Ox, we set Ass(X/S) = Ass(M/S).

(ii) Assume that X — S is locally of finite type and M is of finite type.
For each s € S, let (S,5) be a Henselization of (S,s). We say that M
is pure along X @ k(s) if the closure of any point € Ass(M x g 5/S)
meets X ® k(5). We say that M is S-pure if it is pure along X ® k(s)
for all s € S. Finally, we say simply that X is S-pure if Ox is S-pure.
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2.1.2. Examples. (1) If X — S is proper, then it is pure.

(2) If X — S is faithfully flat with geometrically irreducible fibres without
embedded components, then it is pure.

(3) Let R be a Henselian discrete valuation ring and X; =
Spec(R|[e,x]/(e%,ex)). Let X be the complement in X; of the closed point
defined by the ideal (7, e, x). Then X is not pure over R.

Here is one of the main results of [RG] (théoréme 3.3.5 in part I of loc.
cit.):

2.1.3. Theorem (Raynaud and Gruson). Let A be a ring, B an A-algebra
of finite presentation, M a B-module of finite presentation, flat over A. Then
M is a projective A-module if and only if it is pure over A.

In what follows, we shall provide some complements on the notion of purity.
In particular, given an S-scheme X, we will explain the relation between purity
of X and the property that X may have an open covering by affine schemes
with function rings separated for some adic topologies coming from S (in
particular, when S is a local scheme, the maximal-adic topology). We also
give some applications.

2.1.4. Lemma. Let S be a scheme and X,Y be S-schemes locally of finite
type. Let f: X — Y be an fopf morphism over S. Then'Y is S-pure if X is
S-pure. If furthermore f is pure, then the converse holds.

Proof. We may assume that S is a local Henselian scheme and since the
locus of the base where a map is pure is open (JRG], 1.3.3.8), it is enough to
test purity at the closed point s € S. Now let y € Ass(Y/S). Choose some
associated point « € X, so « € Ass(X/S). Then there exists a € X, meeting
the closure of z, so f(a) meets the closure of y. So Y is S-pure.

Conversely, assume that f is pure and let € Ass(X/S) and y = f(x).
Thus z € Ass(X/Y) and y € Ass(Y/S) (see [RGI, 1.3.2.4). Since Y is S-pure,
the closure of y meets Yy at some point b. Let (Y,b) be a Henselization of
(Y,b), let X = X xy Y, and = (2,b) € X so that # € Ass(X/Y) by
[RG], 1.3.2.3. Thus the closure of # inside X meets )?5 at a point a. The
image of @ in X lies in the closure of x and above Z, thus in Xg. Therefore,
X is S-pure. O

2.1.5. Definition. Let n > 1 be an integer. We say that a morphism of
schemes X — S is of type (FA), if every set of n points of X whose images lie
in an affine open set of S lie in an affine open set of X. We say that X — S
is of type (FA) if it is of type (FA), for all n > 1.

2.1.6. Lemma. Assume that S is affine. Let X — S be of finite presen-
tation and of type (FA),,. Then there exists a scheme Sy of finite type over
Z and a morphism S — Sy, an So-scheme Xg of finite presentation of type
(FA),,, such that X ~ Xy xg, S.
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Proof. Since S = Spec(A) is affine and X — S is quasicompact, to say
that X — S is of type (FA),, means that there exists a finite cover by open
affine schemes U; (1 < i < m) such that I1(U;)" — X™ is surjective. Thus,
writing A as the inductive limit of its subrings finitely generated over Z and
using [EGA], IV.8.10.5(iii)—(vi), we see that there exists a scheme Sy of finite
type over Z, an Sp-scheme X of finite presentation, and an open cover Uy ; of
Xo such that U; ~ Up; xg, S for all i, X ~ Xg xg, S, and II(U; o)™ — (Xo)"
is surjective. |

In the next lemma, we relate the notion of purity for a scheme over a
Noetherian Henselian local ring (R, m) with the property of separation of the
function rings with respect to the m-adic topology. We will say that an R-
algebra A is strongly separated for the m-adic topology if and only if for all
prime ideals ¢ C m, the ring A/qA is separated for the m/g-adic topology.

2.1.7. Lemma. Let R be a Noetherian Henselian local ring with mazimal
ideal m. Let X be a scheme locally of finite type and flat over R. Consider
the following conditions:

(i) X is R-pure.
(ii) X has an open covering by affine schemes whose function algebras are
free R-modules.
(iii) X has an open covering by affine schemes whose function algebras are
strongly m-adically separated.

Then, we have (ii) = (iii) = (i). Assume, moreover, that R is a discrete
valuation ring and X is of type (FA),4+1, where n is the number of associated
points of the generic fibre. Then all three conditions (i), (i), and (iii) are
equivalent. Furthermore, we may choose an open covering {U;} as in (ii)—(iii)
so that all intersections U; NU; are R-pure again. Finally, if moreover, X is
quasicompact, then the R-module H°(X,0x) is free.

Proof. The fact that (ii) implies (iii) is clear since any free R-module is
strongly separated for the m-adic topology. Let us check that (iii) implies (i).
Let z € Ass(X/R) and U = Spec(A) be an open affine containing z, with A
strongly m-adically separated. Let p C A (resp. ¢ C R) be the prime ideal
corresponding to = (resp. the image of z in S) and let k(¢) = R,/qR, be the
residue field of g. If the closure of z in U does not meet the special fibre,
there exist u € p and v € mA such that 1 = v+ v. But by assumption, there
is a € A such that the image of p in A® k(q) is the annihilator Annsgy(g)(a).
Hence there exists s € R\ ¢ such that sua € gA. In the ring A/qA, we get
sa = sav = sav™ for all n > 1; hence, sa lies in (1, >, (m/q)"(A/qA). The
latter intersection is zero by assumption; hence, sa = 0 in A /qA and a = 0 in
A ® k(q). This is impossible. By contrapositive, X is pure.
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We now prove that under the additional assumptions, we have (i) = (ii).
Call z1,...,x, the associated points of the generic fibre of X. By purity, for
each ¢ the closure of x; meets the closed fibre in at least one point z}. Since
it is assumed that X — Spec(R) is of type (FA),+1, for each z € X we may
find an open affine U, = Spec(A) containing z,z},...,z,. Obviously U, is
R-pure, so it follows from [Z1.3] that A is a projective R-module, i.e. a free
R-module since R is a principal ideal domain. Since X is quasicompact, we
can extract from {U,} a finite open cover, and since each of them contains
xi,...,z,, the intersections U; N U; are R-pure.

Finally, we prove that H°(X,Ox) is free. Let U; = Spec(4;) be an open
covering by affine schemes whose function algebras are free R-modules. Since
X is quasi-compact, finitely many of the U; are sufficient. Since a submodule
of a free R-module is free, the injection H°(X,0x) — I H°(U;,Oy,) gives
the desired result. ]

2.1.8. Remark. The special case where X is affine of finite type and flat
over a discrete valuation ring will be useful later in the paper. In this case, the
proof above shows that X is pure if and only if T'(X, Ox) is a free R-module,
if and only if I'(X, Ox) is separated for the m-adic topology.

We now point out some features of pure schemes over a discrete valuation
ring, and in particular a relation between purity and the topology of the
neighbourhoods of the special fibre. Note that the notions of schematic density
and schematic dominance will receive a more complete treatment in section [3}
we refer to it for more details.

2.1.9. Lemma. Let (R, K, k, ) be a discrete valuation ring. The following
properties hold.

(1) Let f : Z — X be a morphism of R-schemes with X flat over R.
Then f is schematically dominant if and only if fx is schematically
dominant.

(2) Let X be an R-scheme locally of finite type and pure. Then any open
neighbourhood of the closed fibre Xy is schematically dense in X. If,
moreover, X is flat over R, then such a neighbourhood is R-universally
schematically dense.

(3) Let X,Y be R-schemes of finite type with X pure and Y separated.
Let E, )?, Y be the w-adic formal completions of R, X, Y. Then, the
completion map

o~

Hompg(X,Y) — Homﬁ()A(,)A/), fe=f

18 injective.
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Proof. (1) This is clear, since Xk is schematically dense in X.

(2) Let U be an open neighbourhood of the closed fibre Xj. To prove that
U is schematically dense, we may replace R by its Henselization and hence
assume that R is Henselian. Then it is enough to prove that Ass(X) Cc U. If
x € Ass(X), then by [EGA], IV.3.3.1, it is an associated point in its fibre X,
where s is the image of z in Spec(R). Since X is pure, the closure of = meets
X4, hence it meets U, so x € U and we are done. If, moreover, X is flat over
R, then using point (1) we see that Uy is schematically dense in Xg. Since
Ui = X}, is schematically dense in X and U is flat over R, it is R-universally
schematically dense by [EGA] IV, 11.10.9.

(3) Let f,g: X = Y be such that f=3. By [EGA], 1.10.9.4, there is an
open neighbourhood U C X of X}, where f and g are equal. It follows from
(2) that U is schematically dense in X. Since f = g on a schematically dense
open subscheme of X, we get f =g on X. |

2.1.10. Remark. Point (2) of this lemma allows us to compare pure
schemes with other schemes by looking at “how close” a scheme is to its
special fibre. If we arrange R-schemes by increasing distance to their special
fibre, we have k-schemes, then formal R-schemes, then pure R-schemes, then
general R-schemes.

2.1.11. Lemma. Let X — S be a morphism of schemes. Assume that
X s locally oetherian and S is affine. Let s € S and let p C I'(S, Og) be the
corresponding ideal. Then there is an open neighbourhood of the fibre X, that
is covered by affine schemes whose function ring is separated for the p-adic
topology.

Proof. Let x € X and let U; = Spec(A;) be an affine neighbourhood
with A; Noetherian. Let m C A; be the prime ideal corresponding to z,
so pA; C m. Let I} = (,5o P"A1. Since Ox, is local Noetherian, it is
separated for the p-adic topol?)gy7 hence I lies in the kernel of the localization
morphism A; — Ox . Since I is finitely generated, there is s; € A1 \ m
such that s1I; = 0. In other words, if we set Ay = A;[1/s1], then I} maps
to 0 under A; — A,. By induction, after we have defined A,., we let I, =
MNy>o P"Ar, we argue that there is s, € A, \ m such that s,.I, = 0, and we
define A,11 = A.[1/s,]. Because A; is Noetherian, the increasing sequence of
ideals K, = ker(A; — A,) must stabilise at some p. One checks that I, = 0,
that is, A, is separated for the p-adic topology. a

2.2. Application to the fibres of morphisms. We now mention an
application of these results to the study of the fibres of morphisms of schemes.
Namely, one can weaken the assumptions in some theorems of [EGA] IV, §12.2
by requiring purity instead of properness.
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2.2.1. Theorem. Let f: X — S be of finite presentation, flat and pure,
and let n > 1 be an integer. Then the following sets are open in S:

(i) The locus of points s € S such that the fibre X is geometrically
reduced.
(ii) The locus of points s € S such that the geometric fibre X5 is reduced
with less than n connected components.
(iii) The locus of points s € S such that the geometric fibre Xz is reduced
and has less than n irreducible components.

Proof. The assertions to be proven are local on S so we may assume S =
Spec(R) affine. By limit arguments using [RG], corollaire 3.3.10, and other
usual results of [EGA] IV, §88-11, we reduce to the case where R is Noetherian.

Let P be one of the properties reduced, reduced with less than n connected
components, or reduced with less than n irreducible components. The loci we
are interested in are constructible so it is enough to prove that they are stable
under generization. By [EGA], I1.7.1.7, one reduces to R = (R, K, k, ) equal
to a discrete valuation ring, which we may assume is Henselian. Then we
assume that the closed fibre has the geometric property P, and we have to
prove that the generic fibre has it also. For this it is enough to prove that for
all finite field extensions L/K, the scheme X ® L has property P. Replacing
R by its integral closure in L we reduce to K = L. We now consider the three
cases separately.

(i) By Lemma[ZTTT] there is an open neighbourhood U of the special fibre
of X that is covered by open affine subschemes with function ring separated
for the m-adic topology, i.e. pure. By Lemma [Z.1.9] this U is universally
schematically dense so if U has reduced generic fibre, then X is also. There-
fore, we may replace X by U and hence assume that X is covered by pure
open affine subschemes. Let V' = Spec(A) be such an open affine, it is enough
to prove that A is reduced. Since A is separated for the m-adic topology and
has no w-torsion, if x is a nonzero nilpotent we may assume that © ¢ 7wA.
But then we have a contradiction with the fact that Ay is reduced. So A is
reduced.

(ii) From (i) we know that X is reduced. Then we may as in (i) reduce
to the case where X is covered by pure open affine subschemes. We shall
prove that the number of connected components of Xy is less than that of
Xj. Let B = H°(X,0x). From the injection By — H°(X,Ox,) we learn
that By is reduced. This, together with an easy calculation, proves that the
idempotents of B and those of B are the same. So X and X have the same
number of connected components; call it u. Then B splits as a product of
rings By X --+ X By, with B; #20 for ¢ = 1,...,u. Since B is a free R-module



EFFECTIVE MODELS OF GROUP SCHEMES 11

(Lemma [ZT77), each of the B; is free, and hence B; ;, # 0. Hence, By, has at
least 2“ idempotents, so X has at least u connected components.

(iii) From (i) we know that Xy is reduced. It is enough to prove that for
any irreducible component W of X, there is a unique irreducible component
Z of X whose closure in X contains W. For this, we may remove from X all
irreducible components W’ # W of X and all irreducible components Y of
X that do not contain W (they are closures in X of irreducible components of
Xk). Hence, we may assume that X}, is integral, and we have to prove that
Xk is integral also. We may as in (i) reduce to the case where X is covered
by pure open affine subschemes. It is then enough to prove that all such open
affines V' = Spec(A) are integral. But if zy = 0 in A, and x, y are nonzero, we
may as in (i) assume that they do not belong to mwA. Then this contradicts
the fact that Ay is integral. d

2.2.2. Counter-examples. Obviously, the corollary does not extend to
all properties listed in [EGA], IV, §12.2. We give counter-examples for some
of them. Let (R, K, k, ) be a discrete valuation ring.

(1) Geometrically connected. Let A = R[t]/(t> — 7t) and X = Spec(A).
Then X}, is geometrically connected, but X i has two connected com-
ponents.

(2) Geometrically pointwise integral. Let A = Rle,z,y]/I where I is the
ideal generated by the four elements zy, ¢ — e+ 7, (1 — e)z — 7z,
ey — my. Let X = Spec(A4). Then Xj is geometrically pointwise
integral (with two connected components), but Xy is not, for it is
geometrically connected and Ay has zero divisors z, y.

(3) Smooth, geometrically normal, etc. Let X be a flat finite type R-
scheme with geometrically integral fibres without embedded compo-
nents. Let U be the complement in X of the singular locus of Xj.
Then U is again pure over R, with smooth special fibre, but the generic
fibre can be chosen to have arbitrary singularities.

3. Reconstructing a scheme from flat closed subschemes

In this section, we consider two types of situations:

(I) Ordinary: a discrete valuation ring (R, K, k,n) and an R-scheme X
with a family of morphisms of R-schemes Z, — X indexed by a
set L.
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(IT) Formal: a complete discrete valuation ring (R, K, k,7) and a formal
R-scheme X with a family of morphisms of formal R-schemes Z, — X
indexed by a set L.

Most of the time, we write this family as a single morphism f: 12, — X.
After some generalities in subsection B.I] we specialise in subsection 3.2 to the
case where f is the family of all (formal) closed subschemes of X finite flat
over R. The general theme is to find some conditions under which X is the
amalgamated sum of its generic fibre Xx and the subschemes Z, along the
subschemes Z g (in the formal case, the generic fibres are the rigid analytic
spaces X,z and Zy 4ig). As a matter of notation, when no confusion seems
possible, we will allow ourselves a slight abuse by maintaining the letter f to
denote the restriction Z, — LI Z)y — X, for a given \g € L. For example,
we will write f.Oz, instead of (f|z,)«0z,.

3.1. Schematically dominant morphisms. We will need various no-
tions of dominant morphisms; see also [EGA], IV.11.10.

3.1.1. Definitions. Let f: 112y — X, A € L, be a family of morphisms
of R-schemes.

(1) If X is affine, f is called affinely dominant if the intersection of the
kernels of the maps I'(X,0x) — I'(Z),0z,) is 0. If X is arbitrary,
f is called weakly schematically dominant if there exists a covering of
X by open affine subschemes U; such that f=1(U;) — U, is affinely
dominant for all 7.

(2) The map f is called schematically dominant if the intersection of the
kernels of the maps of sheaves Ox — (f)«0z, is 0, or equivalently,
if for all open affine subschemes U C X, the map f~1(U) — U is
affinely dominant.

If one of these properties is true after any base change R — R/, we say that
it is true universally.

The family of maps II,,>9 Spec(R/n™) — Spec(R) is affinely dominant,
hence weakly schematically dominant, but not schematically dominant.

If X is affine, it is equivalent to say that f is affinely dominant or that for
any two morphisms u,v: X — X' to an affine R-scheme X', uo f =wvo f
implies v = v. If X is arbitrary, it is equivalent to say that f is schematically
dominant or that for any open set U C X, and any two morphisms u,v: U —
X' to a separated R-scheme X', if the compositions of « and v with the
restriction f~1(U) — U are equal, then u = v. In the case where each
fiz, is an immersion, this gives the notion of a schematically dense family of
subschemes.
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If we consider a family of morphisms of formal R-schemes f : 117, — X,
A € L, the same definitions and remarks apply word for word.

In the sequel, we will meet one particular case where weakly schematically
dominant are schematically dominant. In order to explain this, we recall the
following standard notation: if I, J are ideals in a ring A, we write (I : J)4
or simply (I : J) for the ideal of elements a € A such that aJ C I, and we
write (I : J°°) for the increasing union of the ideals (I : J™). The following
definition applies in the case of schemes or formal schemes.

3.1.2. Definition. We say that the torsion in f.Oz, is bounded uniformly
in A if and only if for all U C X open, for all ¢ € Ox(U), there exists an
integer ¢ > 1 such that for all A € L, we have (0 : ¢t>*°) = (0 : t°) as ideals of
(fe0z,)(U).

3.1.3. Lemma. Let f: 11 Zy = X, A € L, be a family of morphisms of R-
schemes or formal R-schemes. Assume that either L is finite, or the torsion
in f.Oz, is bounded uniformly in X\. Then f is schematically dominant if and
only if it is weakly schematically dominant.

Proof. Only the if part needs a proof. Let U = Spec(A) in the scheme
case, resp. U = Spf(A) in the formal scheme case, be an open affine such that
f71(U) = U is affinely dominant. Let By = (f.O0z,)(U), px : A — B, the
map corresponding to fy, and Iy = ker(yy). The intersection of the ideals I
is zero and we have to prove that for all ¢ € A, the intersection of the kernels
of the maps @x[1/t] : A[1/t] — Ba[1/t] is zero. Let a be in this intersection.
Clearly it is enough to take a € A. For all A there is an integer ¢y > 0 such
that t“>¢y(a) = 0. If the torsion in f,Oz, is bounded uniformly in A, there is
an integer ¢ such that for all A we have t°py(a) = 0. If L is finite, this is also
true with ¢ = sup{cy, A € L}. It follows that t°a is in the intersection of the
I, hence zero by assumption. Thus ¢ = 0 in A[1/¢]. O

3.1.4. Remark. We will also use this lemma in the case where the base
ring R is a field (cf. proof of Theorem B.2)), and it is clear that it holds true
also in this context.

We now use more specifically the properties of flat modules over the discrete
valuation ring R. The first lemma below is stated as a useful observation to
keep in mind. Then we continue with some properties of schemes dominated
by flat families.

3.1.5. Lemma. For a morphism of R-modules v : M — N with N flat,
the following conditions are equivalent:

(1) u is universally injective.
(2) u is injective and uy, is injective.
(3) w is injective and coker(u) is flat.
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If N is a direct product of flat modules Ny, X € L, and we denote by Iy the
kernel of M — Ny, these conditions are also equivalent to:
4 In=0and N Iy, =0.
@ N =0and 0 L
Proof. See for instance [EGA], Orrr.10.2, notably [EGA], Orr.10.2.4. O

The main point of the following result is to say that X satisfies the property
of the amalgamated sum of Xx and the Z, along their respective generic
fibres, for morphisms to affine R-schemes Y.

3.1.6. Proposition. Let f : 1 Zy — X be a family of morphisms of R-
schemes with Zy flat over R, for all X € L. Assume, moreover, that we are
in one of the following cases.

(i) X has a covering by open affine schemes U; whose function alge-
bras are w-adically separated and the restriction of fi. to f=1(U;)y is
affinely dominant.

(ii) X is locally Noetherian and fy is schematically dominant.

Then the following properties hold:

(1) X is flat over R.

(2) f, equivalently fr, is weakly schematically dominant (in case (ii) one
needs to assume also that X is locally of finite type and pure).

(3) For all affine R-schemes Y and all diagrams in solid arrows,

1 Zy 5 — X

there exists a unique morphism X — Y making the full diagram com-
mutative.

Note that the equivalence in point (2) between the fact that one of the
two morphisms f or fx is weakly schematically dominant is granted by
Lemma (although that lemma is not stated for weakly schematically
dominant morphisms, it is clear that it holds for these morphisms, with the
same proof).

Proof. Observe that after we have proven that X is flat, in order to prove
the amalgamated sum property to affine schemes, since X is flat and Y is
separated, the map g: X — Y is unique if it exists. Thus we may define it
locally on X and glue. It follows that all assertions to be established are local.
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In case (i) we are immediately reduced to the situation where X = Spec(A)
with A separated for the m-adic topology. We keep the notation of the proof
of Lemma BT.3 and we also set B =TI B,, ¢ = 1y and I = ker(p). From
the injection A/I — B it follows that A/I has no w-torsion hence is flat
over R. If a € I, then since ¢y is injective, there exists a; € A such that
a = may. Since A/I has no w-torsion, a; himself lies in I, and by induction
we obtain a € (7™ A. So a = 0 by the assumption on A. This proves that
A is torsion-free, hence flat over R, and also that f is weakly schematically
dominant. Now we have a diagram with all morphisms injective:

B%BK

b

A—>AK

Obviously, in order to prove the amalgamated sum property for maps to affine
schemes, it is enough to show that A is isomorphic to the fibred product
Axg XpB, B. Since A is separated for the m-adic topology, a nonzero element
in BN Ax may be written a/7? with @ € A and d € Z minimal, such that
there exists b € B with a = 7% in B. If d > 1, reducing modulo 7 we find
that the image of a vanishes in By. Since Ay — By, is injective, it follows that
a € A, and this contradicts the minimality of d. Hence d < 0, so a/7% € A
and we are done.

In case (ii), in order to prove flatness it is enough to look at points of the
special fibre Xj. By Lemma [ZT.11] such a point has an affine neighbourhood
Spec(A) with A separated for the m-adic topology. From case (i) it follows
that X is flat. Also, in this way we have found a neighbourhood U of the
special fibre which is covered by open affine schemes whose function algebras
are m-adically separated. From case (i) it follows that the restriction of f to
f~Y(U) is weakly schematically dominant. So, if X is locally of finite type and
pure, U is schematically dense in X by Lemma 2T.9 hence, f itself is weakly
schematically dominant. Finally, to prove the amalgamated sum property,
it is enough to define g in a neighbourhood of all closed points € X;. By
Lemma 2. TTT] we may choose a neighbourhood Spec(A) where A is m-adically
separated. Then we are reduced to case (i). O

It is possible to formulate an analogue of the amalgamated sum property
for formal schemes finite type, using the definition of the generic fibre as a
rigid analytic K-space as in [BLI]. Since we have to impose the assumption
of finite type, the direct formal analogue of the affine version is not
relevant. Hence we will content ourselves with a statement of the properties
needed in order to prove
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3.1.7. Proposition. Assume that R is complete. Let f : 11 Zy — X be a
family of morphisms of formal R-schemes locally of finite type, with Z) flat
over R for all X\ € L, such that fy, is schematically dominant. Then,

(1) X is flat over R.
(2) f (equivalently fx ) is weakly schematically dominant.

Proof. (1) We may restrict to an open affine formal subscheme Spf(A).
Then A is m-adically separated and the arguments of the proof of point (1) in
Proposition carry on.

(2) The arguments are the same as in point (2) in Proposition O

In the sequel of the paper, we will be mainly interested in the case where
L is infinite. Concerning the case where L is finite (this is essentially the case
where L has just one element, for, one may consider Z = I Z), the following
property is still worth recording;:

3.1.8. Proposition. Let S be a scheme and let f: Z — X be a morphism
of flat S-schemes of finite presentation. Assume that X is pure. Let Sg C S
be the locus of points s € S such that fs is schematically dominant, Xo =
X X5 S0, Zo = Z xXs So. Then Sy is open in S an fiz,: Zo — Xo s So-
universally schematically dominant.

Proof. As in the proof of Theorem [2.2.1] one reduces to the case where S
is the spectrum of a Henselian discrete valuation ring R with uniformizer 7,
and f;, is schematically dominant. By Lemma 2.I.11] there is an open neigh-
bourhood U of the special fibre of X that is covered by open affine schemes
whose function algebras are m-adically separated. By BiLGY(2) and BI3] the
restriction of f to U is schematically dominant. Since U is schematically
dense in X by Lemma 2 T.9] then f is schematically dominant. The fact that
f1zo+ 2o — Xo is Sp-universally schematically dominant is a consequence of
[EGA] 1V, 11.10.9. 0

3.2. Gluing along the finite flat subschemes. We continue with the
ordinary (I) and formal (II) situations presented at the beginning of section 3
From now on, the family Z, will always be the family of all closed subschemes
of X in case (I), resp. closed formal subschemes of X in case (II), that are
finite and flat over R. We denote this family by F(X). Under some mild
conditions, we will prove that this family is R-universally schematically dense
in X and we will improve Proposition by extending the amalgamated
sum property to morphisms to arbitrary separated (formal) schemes Y.

We keep the notation f: II Zy — X for the canonical morphism induced
by the inclusions Z) C X. Note that F(X) is naturally an inductive system,
if we consider it together with the closed immersions Z) < Z,,. Moreover, we
can define the union of two finite flat closed subschemes by the intersection
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of the defining ideals; this is again a finite flat closed subscheme. In this way,
we see that F(X) is filtering.

Let us start our program. We start with a well-known property.

3.2.1. Lemma. Consider one of the two situations:

(I) X is an R-scheme locally of finite type. Assume that X is flat over
R, or more generally that X,eq is flat over R.
(I1) R is complete and X is a flat formal R-scheme locally of finite type.

Then F(X) attains all the closed points of Xi. In case (I) the converse is
true: if F(X) attains all the closed points of Xy, then X,eq is flat over R.

Proof. In case (I), first note that X,eq is flat if and only if no irreducible
component of X is included in the special fibre. Hence if X,.q is flat, for each
closed point z € Xj, there is an irreducible component W C X at z that
is not contained in Xj. Then the claim follows from Proposition 10.1.36 of
[Liu] applied to W. Conversely, if X,.q is not flat, then there is an irreducible
component included in the special fibre, and it is clear that this component
contains at least one point not lying on any Z € F(X). In case (II) this is
just [BL1], Proposition 3.5. O

For the sequel, a crucial ingredient is a theorem of Eisenbud and Hochster
(see [EH]) which we recall for convenience:

3.2.2. Theorem (Eisenbud and Hochster). Let A be a ring, and let P be
a prime ideal of A. Let N be a set of mazximal ideals m such that Ay, /Py, is
a regular local Ting, and such that

ﬂ m = P.

meN

If M is a finitely generated P-coprimary module annihilated by P€, then

ﬂ méM = 0.
meN
As a preparation for the proof of Theorem [3.2.4] below, we first establish

a lemma. We refer to Bruns-Herzog [BH] for more details on the following
notions. Let (A,m) be a Noetherian local ring of dimension r, and write
lg 4 (M) or simply lg(M) for the length of an A-module M. For an arbitrary
ideal of definition ¢ C A, one defines the Hilbert-Samuel multiplicity e(q) as
the coefficient of i"/r! in the polynomial-like function i + lg,(A/q"). The
Hilbert-Samuel multiplicity of A itself is defined to be e(m). If A is Cohen-
Macaulay and ¢ is a parameter ideal (that is, an ideal generated by a system
of parameters), we have e(q) = lg(A/q). If, moreover, the residue field is
infinite, there exists a parameter ideal g such that e(q) = e(m) (see exercise
4.5.14 in [BH]).
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3.2.3. Lemma. Let k be a separably closed field and X = Spec(A) an
affine scheme of finite type over k. Then there exists an integer ¢ > 1, a
set of Cohen-Macaulay closed points M C X, and for all points x € M a
parameter ideal g C Ox 5 satisfying dimy(Ox 5/q.) < ¢, such that

N ¢.=0

zeM
where ¢, is the preimage of g, in A.

Proof. Let 0 = I1N---NI, be a primary decomposition of the sub-A-module

0 C A, where I; is a Pj-primary ideal, P; = \/E For each 1 < j <, let ¢;
be such that (P;)% C I;. The closed subscheme Z; defined by the ideal P;
is a variety, in particular it is reduced. On one hand, by classical properties
of schemes of finite type over a field, there is a dense open set U; C Z; of
points that are regular in Z; and Cohen-Macaulay in X. On the other hand,
let k* be an algebraic closure of k, and let S; be the smooth locus of the
reduced subscheme of Z; ®; k*. It is defined over a finite purely inseparable
extension ¢; /k, whose degree we call y;. Hence there is a smooth ¢;-scheme V;
whose pullback to k* is S;. Since ¢; is separably closed, the set of ¢;-rational
points of Vj is dense. Therefore, the set M; = U; NV;(¢;) is dense in Z;. By
Theorem applied with N =M; and M = A/I;, we have

ﬂ m%“AC I
€M

where m denotes the maximal ideal of A corresponding to the point z. We
call e = max(e;), M = |J M;, v = max(y;). Then, for all z € M, we have
[k(x) : k] <+, and

(] mA c nin---nl,=0.

zeM
We now choose suitable parameter ideals ¢,. For x € X we let ¢(z) denote
the Hilbert-Samuel multiplicity of the local ring at x. This is an upper-
semicontinuous function, hence it is bounded on X by some constant a. By
the remarks preceding the lemma, for each Cohen-Macaulay closed point x €
X, we can find a parameter ideal ¢ = (rq,...,rs) with e(q) = e(z), where
s = dim(Ox,) < n = dim(X). Now ¢, = ((r1)%...,(rs)°) is again a
parameter ideal, with g, C m®. It follows from the above that if ¢/, denotes
the preimage of ¢, in A, then

M ¢ =0

zeM

Furthermore, one sees readily that if 3 = s(e — 1) + 1, then ¢” C ¢,. Thus,
lg(OX,z/Qz) = e(qz) < e(qB) = BSQ(Q) < Bsa .
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Finally, since the degree of the residue fields of points x € M is bounded by

v, we have

dimg(Ox »/qz) = [k(z) : k] 18(Ox »/q) < vB8°a < y(n(e —1) +1)"«.
If we set ¢ := v(n(e — 1) + 1)™«a, we have proven all the assertions of the
lemma. |

3.2.4. Theorem. Consider one of the two situations:

(I) R is Henselian and X is an R-scheme locally of finite type, flat and
pure.
(IT) R is complete and X is a flat formal R-scheme locally of finite type.

Then the family F(X) of all closed (formal) subschemes Zx C X finite flat
over R is R-universally schematically dense.

Proof. We start with case (I). We first assume that R is strictly Henselian.
By Lemma [ZT.T1] there is an open neighbourhood U of the special fibre of X
that is covered by open affine subschemes with function ring separated for the
m-adic topology. Lemma implies that U is R-universally schematically
dense in X. Therefore we may replace X by U and hence assume that X is
covered by open affine subschemes with function ring separated for the m-adic
topology. Since the result is local on X we may finally assume that X is affine,
with function ring A of finite type over R, separated for the m-adic topology
(and in fact free, by Remark 2.1.8]).

By Lemma [B.2.3] there exists a constant ¢ > 1, a set of Cohen-Macaulay
closed points M C X, and parameter ideals ¢, C Ox, , satisfying
dimg(Ox, +/¢:) < ¢ and such that the ideals ¢, = ¢, N Ay have zero in-
tersection. We let {Z{}, A € L¢, denote the family of all closed subschemes
of X, finite flat over R, of degree less than ¢, and we write f¢: I Z§ — X for
the canonical morphism.

The ideal ¢, is generated by a regular sequence r = (rq,...,rs), where
s = dim(Ox, ). Let ¥ be a sequence obtained by lifting the r; in Ox , and
let Y = Spec(Ox /(7). As r is a regular sequence, it follows that Y is flat
over R. Furthermore, Y}, is Artinian, hence Y is quasi-finite over R. Since R is
Henselian, Y is in fact finite over R. Thus Y — X is a proper monomorphism,
hence a closed immersion. So Y is one of the schemes Z§.

Since the k-algebras of functions of Zf ; are free of rank less than ¢, the
Cayley-Hamilton theorem implies that in the terminology of Definition B.1.2]
the torsion in (f£).Oz; , is bounded uniformly in A (in a strong form, since the
bound c is independent of the local sections ). As the intersection of the ideals
¢l = ¢z N Ay, is zero, Lemma 313 applies and proves that ff is schematically
dominant. Moreover, the R-algebras of functions of Z5 are free of rank less
than ¢, so the argument used above works again and by Proposition we



20 MATTHIEU ROMAGNY

get that f¢ and f§ are schematically dominant. Applying [EGA] IV, 11.10.9,
it follows that f¢ is R-universally schematically dominant. A fortiori, the
family F(X) is R-universally schematically dense.

It remains to treat the case of a general Henselian discrete valuation ring
R. Let R*" be a strict Henselization, and X" = X @z R*". By the preceding
discussion we know that F(X*!) is universally schematically dense in X*I.
Since R®" is an integral extension of R, the canonical morphism j: X" — X
is integral. Thus the schematic image of any finite R*"-flat closed subscheme
Zsh c X®M is an R-flat closed subscheme Z of X, integral over R, hence a
finite flat R-scheme. This proves that the family {j~1(2)}, with Z € F(X),
is a cofinal subfamily of F(X*"), thus it is universally schematically dense in
X By faithfully flat descent (see [EGA], IV.11.10.5), so is F(X) in X.

In case (II), we follow the same strategy of proof. We start with the case
where R is strictly Henselian. We reduce to the formal affine case X =
Spf(A), with A topologically of finite type over R. Such an A is automatically
separated for the m-adic topology. Then we consider the family {Z5} of all
closed formal subschemes of X, finite flat over R, of degree less than ¢. We
apply Lemma[B.2.3lagain, and as before, for each Cohen-Macaulay closed point
x in M C Xy, we can realize the subscheme defined by the parameter ideal
¢z C Ox, » as the special fibre of some Z§. Then we use Proposition B.I.7 to
get that f¢ and fj, are schematically dense. It makes no difficulty to adapt
[EGA], TV, 11.10.9, to formal schemes and conclude that f¢ and a fortiori
F(X) is R-universally schematically dense. Also, the argument from [EGA]
to descend from the strict Henselization to R is easily adapted. O

3.2.5. Proposition. Let X be an R-scheme locally of finite type and flat.
Let {Zy} be a family of closed subschemes of X finite flat over R, and assume
that the family {Zx 1} is schematically dense in Xy and attains all closed
points (e.g. R is Henselian, X is pure and {Z\} is the family of all closed
subschemes of X finite flat over R, by Lemma B2 and Theorem B.24).
Then for all separated R-schemes Y and all diagrams in solid arrows,

UZy\ x — Xk

there exists a unique morphism g : X — Y making the full diagram commu-
tative.
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Proof. In fact, the flatness of X follows from the other assumptions, by
Proposition BI.6l Let f : 172y, - X, a: 1I1Z, - Y and 8 : X = Y
be the maps in the diagram. By the same argument, as in the proof of
Proposition B.1.6, the map g : X — Y is unique if it exists. Thus we may
define it locally on X and glue. It is enough to define g in a neighbourhood of
all closed points x € Xj,. By assumption f is surjective on closed points of the
special fibre, so the given point x is equal to f(z) for some A and z € Z,. Let
y = a(x), let V = Spec(C') be an open affine neighbourhood of y in Y, and
let U be an open subscheme of X containing z. We will prove that = does not
belong to the closure in X of Xx \ A71(V). Indeed, otherwise there is a point
ne Xk \ BN (V) such that 2 € W := {5}. Thanks to Lemma B2 applied
to W, we may replace i by a closed point of W and hence we assume that
7 is closed in Xk . In this case W is one of the Z), so it makes sense to speak
about the images of z and 7 under «. Then,

z € {n} implies that y=a(z) € {a(n)} ={B(n)}
and this is a contradiction with the fact that 5(n) ¢ V. Therefore, we may
shrink U and assume that Ux C 7!(V). Then by Lemma ZT.II we may
shrink U further to the spectrum of a ring A separated for the 7m-adic topology.
Therefore, we reduce to X = Spec(A) and Y = Spec(C), and Proposition B0
applies. O

3.2.6. Proposition. Assume that R is complete. Let X be a flat formal
R-scheme of finite type. Let {Z)\} be a family of closed formal subschemes
of X finite flat over R such that the family {Zx 1} is schematically dense in
Xy and attains all closed points (e.g. the family of all closed subschemes of
X finite flat over R). Let f : 1Zy — X be the canonical map. Then the
analogue of the amalgamated sum property of Proposition holds, if we
understand a morphism from a rigid analytic K -space Z to a formal R-scheme
Y to be a morphism Z — Y. More precisely, given

e a separated formal R-scheme Y,

e a morphism of formal R-schemes a: 11 Zy — Y,

e a morphism of rigid spaces B : X.ig — Yiig
such that ouig = B o frg, there exists a unique morphism g : X — Y such that
Grig =B and go f = a.

Proof. The proof of Proposition works again in this setting, with
some adaptations which we now sketch. If g,¢': X — Y are two solutions
to the problem, then in particular g,z = géig. By Raynaud’s theorem ([BLI1],
th. 4.1) there exists an admissible formal blowing-up s : X’ — X such that
gos =g os. Since s is schematically dominant and Y is separated, we get
g = ¢’. Because of this unicity statement, as far as existence is concerned,



22 MATTHIEU ROMAGNY

we may define g locally on X and glue. Also, we need to know that F(X)y, is
schematically dense, which is granted by Theorem 3241 Then, by the same
method as above, we reduce to the affine case X = Spf(A4) and Y = Spf(C).
Now the arguments of the proof of point (3) in Proposition B.I6 carry on. O

4. Schematic images inside Hom and Aut functors

Throughout this section, we fix a discrete valuation ring (R, K, k, 7). We
first recall the definition of schematic closures and images for fppf sheaves
over a discrete valuation ring R. After a brief discussion of kernels, we prove
the main theorems of the paper on representability of schematic images.

4.1. Definitions. Recall that if f: W — X is a morphism of schemes,
there exists a smallest closed subscheme X’ C X such that f factors through
X'. We call it the schematic image of f. If U = Spec(A) is an open affine
subscheme of X and V = f~1(U), then X’ N U is defined by the ideal which
is the kernel of the map A — I'(V, Oy ) induced by f. It is equivalent to say
that the schematic image of f is X, or that f is schematically dominant.

If W is a closed subscheme of the generic fibre of X and f is the canonical
immersion, then the schematic image is called the schematic closure of W in
X. Tt is the unique closed subscheme of X which is flat over R and whose
generic fibre is W (see [EGA], 1V.2.8.5).

These definitions may be adapted to morphisms of sheaves as follows (see
[Ral):

4.1.1. Definitions. Let F be an fppf sheaf over the category of R-schemes.

(1) Let G be a subsheaf of the generic fibre Fr. Then the schematic
closure of G in F is the fppf sheaf G’ associated to the presheaf G°
defined as follows. Given an R-scheme T, G°(T) is the set of all
morphisms f: T — F such that there exists a factorization,

T ——=T'

NS

F

with 7”7 a flat R-scheme and g(T}) C G.

(2) We say that F'is flat over R if it is equal to the schematic closure of
its generic fibre.

(3) Let h: H — F be a morphism of fppf sheaves over R, with H flat. Let
G be the image sheaf of hx: Hx — Fi. Then the schematic image
of H in F' is defined to be the schematic closure of GG inside F'.
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The following properties are formal consequences of the definitions. The
formation of the schematic closure commutes with flat extensions of discrete
valuation rings. Let F}, F» be sheaves over the category of R-schemes. Let
G1 C Fy g, Go C Fy i be subsheaves, and let G, G} be the schematic clo-
sures. For a morphism of sheaves a: F; — Fy such that a(G1) C G2, we have
a(G)) C GY. As a consequence, the schematic closure of G in F is the only
subsheaf of F' which is flat over R and has generic fibre equal to G. Finally,
the formation of the schematic closure commutes with products; it follows
that if F' is a group (resp. monoid) sheaf, i.e. a group (resp. monoid) object
in the category of fppf sheaves, and G is a subgroup (resp. submonoid) sheaf
of Fk, then the schematic closure G’ is a subgroup (resp. submonoid) sheaf
of F.

In general, even if F' is representable by a scheme, one needs rather strong
conditions on the monomorphism G — F if one wants representability of the
schematic closure G’ by a scheme. As we recalled above, one pleasant case is
when G — F is a closed immersion; then G’ — F is also a closed immersion.
As another example, the following lemma shows that in the case of an open
immersion, the schematic closure is only representable by an inductive limit
of schemes.

4.1.2. Lemma. Let X be an R-scheme, Ux C Xg the complement of a
Cartier divisor. Then the schematic closure U’ of Uy in X is representable
by an inductive limit of affine X -schemes.

Proof. We first construct U’. Fix an integer n > 0. For each open affine
V = Spec(A) in X, we may choose an equation f € A for Xx \ Ux. Define
Uy, to be the spectrum of the ring

)
Tnf—7"/,

where the subscript 0 means the quotient by the m-torsion ideal (0 : 7).
There are maps Uy,, — Uy n+1 given by z,41 +— 7z, and we define Uj, to
be the limit of the schemes Uy,,. This construction glues over all V to give
an inductive limit of affine X-schemes U’. It is not hard to see that this is
independent of the choice of local equations f, up to isomorphism. Finally, we
check that U’ is the desired schematic closure. Let g: T — X be a morphism
with T flat over R and g(Tx) C Uk. Let V = Spec(A) be an open affine in
X and W = Spec(B) an open affine in T', with g(W) C V; let f € A be an
equation for Xx \ Ux. Then we have a morphism of rings ¢: A — B such
that ¢(f) is invertible in By, i.e. there exists n > 0 and ¢t € B such that
o(f)t = 7. Furthermore, since B is R-flat, ¢ is uniquely determined, as well
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as the morphism of A-algebras

given by x,, — t. These morphisms glue to a unique map T — U’. O

4.2. Kernels. Let S be a base scheme and let I', X, Y be schemes over
S. We consider a morphism of S-schemes ¢: I' xg X — Y, which we view as
an action of I' on X with values in Y. Equivalently, we have a morphism of
functors ¢’': I' = Homg(X,Y). We say that ' acts faithfully on X, or that ¢
1s faithful, if ¢’ is a monomorphism. We can relate this to the morphism:

@' x ¢ T xgT — Homg(X,Y) xg Homg(X,Y).

4.2.1. Definition. The kernel of ¢ is the preimage of the diagonal of
Homg(X,Y) xg Homg(X,Y) under the morphism ¢’ x ¢’. It is denoted
ker(yp).

Obviously, it is equivalent to say that I' acts faithfully on X, or that the
natural monomorphism A — ker(p) is an isomorphism, A C T’ xg I' being
the diagonal of I'. When this holds, we shall also say, by abuse of notation,
that ker(yp) is trivial.

If X =Y and G is a group scheme acting on X, the relation between the
kernel we have just defined and the usual kernel H := (¢')~!(idx) is given by
the isomorphism G x H — ker(¢p) taking (g, h) to (g, gh). We use the notation
ker(¢) in both situations, because the context will never allow confusions.

The lemma below collects some cases where one knows that the kernel is
representable by a closed subscheme of I' xg I'. One of this case involves
essentially free morphisms of schemes, a notion which can be slightly (and
fruitfully) generalized to essentially semireflexive (see [SGA3], Exposé VIII,
§6 and [To2], §1). Recall that a module M over a ring A is called semireflexive
if the natural morphism M — MYV to the linear bidual is injective. It is
equivalent to say that M can be embedded into a product module A!, for
some set I. A morphism of schemes X — S is called essentially free (resp.
essentially semireflexive) over S, if there exists a covering of S by open affine
schemes S;, for all ¢ an affine scheme S faithfully flat over S;, and a covering
of X/ = X x5 8] by open affine schemes X7 ;, such that for all i, j the function
ring of X ; is a free (resp. semireflexive) module over the function ring of S;.
It is clear that an essentially free morphism is essentially semireflexive.

4.2.2. Lemma. Let X — S be flat and Y — S separated. Then ker(p) —
I' xg T is a closed immersion in any of the following cases:

(i) X — S is essentially semireflexive,
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(ii) S is regular Noetherian of dimension 1 and X — S is locally of finite
type, flat and pure, and
(i) X — S is proper and X,Y are locally of finite presentation over S.

We see that under one of these three conditions, faithfulness of ¢ implies
separation of I'. We remark also that it is not hard to see that if X — S is
flat and Y — S is separated, then ker(p) — T' xg I' satisfies the valuative
criterion of properness. What is more difficult is to check that it is of finite
type.

Proof. For case (i) we refer to [SGA3], Exposé VIII, §6 and [To2], Lemma
1.16. In case (iii), the functor Homg(X,Y) is a separated algebraic space, by
Artin’s theorems, so the result is clear. It remains to consider case (ii). We
may assume that S is the spectrum of a Henselian discrete valuation ring R.
By Lemma 2Z.T.17] there is an open neighbourhood U of the special fibre of X
that is covered by open affine subschemes U; with function ring A; separated
for the m-adic topology. Besides, U; is pure over R and A; is a free R-module,
by Remark It follows that U is essentially free over S, hence the kernel
Ny :=ker(I' xgU — Y) is a closed subscheme of I x g T by case (i). Consider
the map induced by the action:

’(bZNU Xg X =Y xgY
given on the points by

(71,72, ) = (p(11) (@), p(72)(2))-

By definition, the restriction of ¥ to Ny xg U factors through the diagonal
of Y. Since U is R-universally schematically dense in X (Lemma 2.1.9]), then
Ny xgU is schematically dense in Ny X g X. Thus 1 factors through the diago-
nal, that is, Ny — T xg I' factors through the kernel N :=
ker(I' xg X — Y'). This gives an inverse for the obvious morphism N — Ny
and proves that N ~ Ny. In particular, IV is a closed subscheme of I xg T,
as claimed. g

4.2.3. Lemma. Let X, Y, I' be R-schemes. Consider one of the two

situations:

(1) R is Henselian, X is locally of finite type, flat and pure, Y is separated,
I" is Noetherian.

(2) X is affine and the family of its closed subschemes finite flat over R
is universally affinely dominant (Definition BI11), Y is affine, T is
Noetherian.

Consider an action ¢ : I' x X — Y faithful on the generic fibre. Then there
erists a finite R-flat closed subscheme Z C X such that the induced action
I'x Z =Y has the same kernel as ¢.
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Proof. Note that in case (2), the scheme X is semireflexive, so that in
both cases the kernels are closed subschemes of I' x I" by Lemma Let
N = ker(p). Let Z; C X be a finite flat closed subscheme and let N7 be the
kernel of the restricted action I' x Z; — Y. If N7 # N, there exists Z; C X
with Z; C Z, such that N7 2 Ns. For, otherwise, N7 would act trivially on all
the finite flat closed subschemes Z O Z;, which are universally schematically
dense in X (by Theorem B2 in case (1)), hence N7 would act trivially on
X; a contradiction. For s > 1, as long as Ny # N, we iterate this process and
obtain a sequence Ny 2 Ny D N3 D ... Since I' x I' is Noetherian, for some
s, we obtain that Ny = N. We can choose Z = Z,. O

4.3. Representability of schematic images. We now come to the main
results of this paper.

4.3.1. Lemma. Let R be a discrete valuation ring. Let X,Y be R-schemes
locally of finite type, with X flat and pure and Y separated. Consider a finite
flat R-scheme T" and an action ¢ : I' x X — Y faithful on the generic fibre.
Then the schematic image of T' in Hompg(X,Y) is representable by a finite
flat R-scheme T".

We stress again that Hompg(X,Y) is far from being representable, in gen-
eral.

Proof. We start with the case where R is Henselian. By Lemma .23
there is a finite R-flat closed subscheme Zy C X such that 'k acts faithfully
on Zo k. Let {Zx}rer be the family of all finite R-flat closed subschemes
of X containing Zy. This family carries the filtering order by inclusion of
subschemes: A < p if and only if Z C Z,. Since Z) is finite flat over R, the
functor Hompg(Z,,Y) is representable by a scheme. Moreover, since Z, D Z
and I' is finite, the map I'x — Homg (Z) k, Yk ) is a closed immersion. For
each A we define I'}, to be the schematic image of the map I' = Hompg(Zy,Y).
If A < pin L, there is a restriction morphism Homp(Z,,Y) — Hompg(Z),Y)
and taking schematic closures gives maps I'j, — T"\. Let I be the filtering
projective limit of the system {I'}}. This is an affine, flat, integral R-scheme;
it is dominated by T', hence finite over R. Applying Proposition to the
diagram,

T X Zy ¢ — Dhe x 11 Zy g — I x Xg




EFFECTIVE MODELS OF GROUP SCHEMES 27

we obtain an action of TV on X with values in Y. This action is clearly uni-
versally faithful (i.e. faithful after any base change), because the morphism
IITY xg Zy — I xg X is universally schematically dominant (apply The-
orem 324 to X and pull back to IV xp X). So I' has the characterizing
properties of the schematic closure of T in Homg(X,Y), and this proves the
theorem.

If R is an arbitrary discrete valuation ring, let R" be a Henselization of
R. By the preceding discussion, I' @ g R" is representable by a finite flat R"-
scheme. So by descent using [BLR] 6.2/D.4, T is representable by a finite flat
R-scheme. |

There is also a version in the affine case, where one can relax the assump-
tions of finite type. For example, it applies to rings arising from the completion
of smooth R-schemes along a section.

4.3.2. Lemma. Let X be an affine flat R-scheme such that the family
of its closed subschemes finite flat over R is universally affinely dominant
(Definition BII]). Let Y be an affine R-scheme and T’ an R-scheme locally of
finite type, flat and pure. Consider an action ¢ : ' x X — Y faithful on the
generic fibre. Then the schematic image of T in Hompg(X,Y) is representable
by a flat R-scheme which is affine if ' is, and finite if T is.

Proof. Observe that the assumptions imply that X is semireflexive over
R, therefore kernels of actions are representable by closed subschemes, by
Lemma .22 Let X = Spec(A) and Z) = Spec(By), A € L, be the family of
the finite flat closed subschemes of X, and let B = II By. Note that since the
family {Z,} is universally affinely dominant, then the map A — B is injective
and, in particular, A is separated for the m-adic topology. The proof goes in
three steps.

First step: T is finite. In this case we follow the proof of Lemma3.1l The
reference to Theorem [3.2.4] is replaced by the assumption made on X. The
reference to Proposition is replaced by a reference to Proposition
The conclusion is that the schematic image is representable by a finite flat
R-scheme I".

Second step: T' is affine. Let I’ = Spec(C') and call A, = Spec(D,,), p € M
the family of all finite R-flat closed subschemes of I'. By the first step, for all
i, the schematic image of A,, in Hompg(X,Y) is representable by a finite flat
R-scheme Aj, = Spec(D),). Let D = 1I1D,, D' =11 D). We have injective
ring homomorphisms C < D and D’ — D. Let C’ be the intersection of C
and D’ inside D, and I = Spec(C"). We claim that {A],} s is the family of
all finite flat closed subschemes of IV. Indeed, it is easy to see that C' — D:L
is surjective, i.e. AL is a finite flat closed subscheme of IV. Moreover, for
each finite flat closed subscheme 7" C I”, we can consider T} as a closed
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subscheme of ', we set A, equal to the schematic closure of T in T', then
obviously 7" = A,. Now we prove that I acts on X. For this, note that
coker(C’ — D') injects into coker(C' — D) and hence is R-flat. It follows
from Lemma that the family of finite flat closed subschemes of TV is
universally affinely dominant. Then the affine scheme IV x X has a family of
finite flat subschemes AL x Zy which is universally affinely dominant. Using
Proposition B. 1.6, one obtains an action IV x X — Y. It is clear that this
action has trivial kernel, hence I is the schematic image of T.

Third step: T is arbitrary. By Lemma 21.7] and Lemma 21T there is
an open neighbourhood of the special fibre of I" that is covered by pure open
affine subschemes U;. For each i, by the second step the schematic image of
Ui is representable by an affine flat R-scheme U]. By unicity of the schematic
image, the formation of U/ is compatible with localisation, so that the various
U/ glue to give a flat R-scheme U’. Since U}, ~ Uk, we can glue U’ and 'k
along their intersection to get a flat R-scheme I". It is clear that this is the
schematic image of T". a

In the sequel, we examine the most interesting case of images of groups
acting on schemes by group homomorphisms. We introduce some terminology.

4.3.3. Definition. If an R-group scheme G acts on an R-scheme X in
such a way that the action on the generic fibre is faithful, then the schematic
image of G in Autr(X) is called the effective model of G for its action on X.

4.3.4. Theorem. Let X be an affine flat R-scheme whose closed sub-
schemes finite flat over R form a universally affinely dominant family. Let
G be an R-group scheme locally of finite type, flat and pure, acting on X,
faithfully on the generic fibre. Then the effective model G' of the action is
representable by a flat R-group scheme. If G is quasi-compact, or affine, or
finite, then G’ has the same property.

Proof. Let G be the schematic image of G inside Hompg(X, X). By the
previous lemma G” is representable by a flat R-scheme. Since Autr(X) is an
open subfunctor of Homp (X, X), the preimage of G” in Autr(X) is flat over
R and hence is the schematic image G’. Tt follows from the general remarks
of subsection 1] that G’ is a sub-R-group scheme of Autp(X).

If G is quasi-compact, let (U/);cr be an open cover of G'. Let U; be the

preimage of U/ in G. By assumption, a finite number of open sets Uy, ..., Uy,
cover G. The scheme G’ is covered by the schematic images of Uy,...,U,
which are none other than Uy, ..., U). It follows that G’ is quasi-compact.

If G is affine, then G” is affine by Lemma [£3.2] hence G’ is quasi-affine.
Let H be the affine hull of G’. This is a flat group scheme containing G’ as
an open subgroup. Moreover, the special fibre G is schematically dense in
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the special fibre Hj, and since these are k-group schemes, we have in fact
G}, = Hy,. It follows that G’ = H is affine.

If G is finite, then G — G’ is surjective and it follows easily that G’ is
finite. O

These representability results extend obviously to the case where X is cov-
ered by invariant open affine subschemes satisfying the relevant assumptions.
When X is locally of finite type but not necessarily affine, it is more difficult
to prove that schematic images are representable. In fact, it is easy to provide
a group scheme G° which is a candidate to be the image, but in order to
prove that it acts on X using Proposition B.2.5] one needs G¢ to be of finite
type. This is the major difficulty of our method. Moreover, it seems that in
numerous situations one cannot expect the schematic image G’ to be of finite
type unless the kernel of the action of G is very small. The following two
results give examples of this.

4.3.5. Theorem. Let X be an R-scheme locally of finite type, separated,
flat and pure. Let G be a flat proper R-group scheme acting on X, faithfully
on the generic fibre. Let N denote the kernel of the action. Then the effective
model G’ is representable by a flat group scheme of finite type if and only if
Ny is finite. Moreover, in this case G’ is proper.

Proof. First, assume that Ny, is finite. We adapt the proof of Lemma 311
By Lemma [L.23] there is a finite R-flat closed subscheme Zy C X such that
G acts faithfully on Zp x. Let Gy be the schematic image of G inside
Hompg(Zy, X), which is representable since Zj is finite. We claim that the
morphism u: G — Gy is finite. Indeed, on the special fibre u; factors as
the composition of the finite quotient Gy — Gj /N and the monomorphism
Gi /N — Gy i given by the embedding in Homy (Zy, X}). It follows that w is
quasi-finite, hence finite since G is proper.

Now let {Zx}xer be the family of all finite R-flat closed subschemes of X
containing Zy. For each A, let G¥ be the schematic image of the map G —
Homp(Zy, X). Since G — G¥ — Gy is finite and schematically dominant,
then G — GY and GY — Gy are also finite schematically dominant. Let G”
be the filtering projective limit of the system {G%}. This is a scheme which is
finite over Gg. Also, G — G” is finite, thus G” is of finite type over R by the
Artin-Tate theorem (see [Eil, exercise 4.32). Applying Proposition as in
the proof of Lemma 3T we obtain an action of G on X with values in X.
Let G’ be the preimage of G” under the inclusion Autr(X) C Hompg(X, X).
This is the schematic image of G in Autr(X). Since G — G’ is finite, then
G’ is proper.

Conversely, assume that G’ is representable by a flat group scheme of finite
type over R. A result of Anantharaman asserts that a separated morphism
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between flat R-group schemes of finite type such that uyx has affine kernel is
affine ([An], chap. II, prop. 2.3.2). It follows that G — G’ is affine. Since it is
also proper, it is in fact finite. It follows easily that N is finite. O

4.3.6. Remark. It is a well-known fact that a proper flat group scheme
over R is in fact projective. Here is one way to see it. Given a finite extension
K* /K, write G* for the extension of G to R*, the integral closure of R in K*.
By a result of Raynaud and Faltings (|[PY], corollary A.4) there is a finite
extension K*/K such that the normalization morphism (é*)red = (G*)red 18
finite and (é*)red is smooth. Hence, it is the product of an abelian scheme by
an étale finite group, hence projective. It follows that (G*).eq is projective,
hence also G* and G itself. Another way to check that G is projective is to
reduce to the connected case. Then G is commutative and one can apply [Anl,

chap. II, prop. 2.2.1.

4.3.7. Remark. Under the assumptions of Theorem [£.3.5] it seems plau-
sible that if N, is finite, then G’ is representable whether G is proper or not.
The only point that needs a verification is that u : G — Gy is finite (with the
notation of the proof of the proposition). Even though ux and wy are finite,
we were not able to prove this.

4.3.8. Proposition. Let X be an R-scheme locally of finite type, sep-
arated, flat and pure. Let G be a reductive R-group scheme acting on X,
faithfully on the generic fibre. Assume furthermore that either k has charac-
teristic p # 2, or that no normal subgroup of G5 is isomorphic to SOz, 11 for
somen > 1. Let N denote the kernel of the action. Then the effective model
G’ is representable by a flat group scheme of finite type if and only if N is
trivial.

Proof. This is in fact a rigidity property of reductive groups. Assume that
G’ is representable by a flat group scheme of finite type. Since X is flat and
separated, then Autg(X) is a separated sheaf. It follows that G’ is separated.
Then G’ is affine by [An], chap. II, prop. 2.3.1. By corollary 1.3 of [PY], we
obtain that G — G’ is a closed immersion. It follows that G acts faithfully
on X, in other words N is trivial. The converse is obvious. O

From this proposition it it follows that if G is a finite group scheme of order
prime to p = char(k) acting on an R-scheme locally of finite type, separated,
flat and pure X, then G acts faithfully as soon as G acts faithfully on Xg.
Indeed, the effective model is a finite flat group scheme G’ by Theorem
Since G is reductive by the assumption on its order, we get N = 1. We prove
a refinement of this result in Proposition [£.3.9] below. There, we also give
other properties of the effective model of a finite group scheme, especially in
the case where the action is admissible, which means that X can be covered
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by G-stable open affine subschemes. In this case, there exist quotient schemes
X/G and X/G’', and we want to compare them.

4.3.9. Proposition. Let X be an R-scheme satisfying the assumptions
of Theorem 34 or of Theorem B35 Let G be a finite flat R-group scheme
acting on X and let G' be its effective model. Then:

(i) Let W be a closed or an open subscheme of X. If W is G-stable, then
it is G'-stable. In particular, if G acts admissibly, then G’ also acts
admissibly.

(ii) The effective model of a finite flat subgroup H C G, for the restricted
action on X, is the schematic image of H in G'. If H is normal in
G, then H' is normal in G'.

(iii) Assume that G is étale and let p = char(k). Let N <1G be the (unique)
subgroup of G such that Ny is the kernel of the action on Xy. Then,
the effective model of N is a connected p-group.

In the sequel, we assume that G acts admissibly on X.

(iv) The identity of X induces an isomorphism X/G ~ X/G’.

(v) Assume that there is an open subset U C X which is universally
schematically dense, such that G’ acts freely on U. Then for any
closed normal subgroup H <1 G, the effective model of G/H acting on
X/H is G'/H'.

(vi) Under assumptions (iii) and (v), the group G’ has a connected-étale
sequence

1-N -G —G/N—1.

Proof. (i) If W is a closed subscheme of X, then it follows from the general
remarks of subsection EI] that the morphism G x W — W extends to a
morphism G’ x W — W. Now assume that W is open. It is enough to prove
that the underlying set of W is stable under G'. Let w € W be a point and
let © be its orbit, by which we mean the schematic image of G x Spec(k(w))
in X. This is a closed subscheme of X, hence G’-stable. Since Q C W, it
follows that W is G’-stable.

(ii) This is clear.

(iii) Since the composition Ny — N; — Auty(Xy) is trivial as a morphism
of sheaves, the morphism N, — N, also is. Moreover, N — N’ is dominant
and closed, hence surjective. Hence N, is infinitesimal so N' is a p-group. Let
us show that it is connected. We may and do assume that R is Henselian.
Then N’ has a connected-étale sequence whose étale quotient we denote by
N/,. The composition ¢t : N — N’ — N/ is trivial on the special fibre.
Moreover, t is determined by its restriction to the special fibre because it is a
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morphism between étale schemes. So it is globally trivial. As t is dominant,
we get N/, =1, thus N’ is connected.

(iv) The quotient X — X/G is described, locally on a G-stable open affine
U = Spec(A), by the invariant ring A® = {a € A, pg(a) = 1 ® a} where
g A — RG ® A is the coaction. Now ug factors through the coaction ug:
corresponding to the action of G':

A— RG ®@A— RG® A.

Therefore, AS" = {a € A, uer(a) =1®a} = AS. The result follows.

(v) Clearly H acts admissibly, and X/H ~ X/H’ by (ii). We just have to
show that G'/H' acts faithfully on X/H’. This is true since G'/H' acts freely
on the image of U in X/H’, by the assumptions on U.

(vi) Apply (v) to H = N. O

In and [£.3] below, we will give an example where the effective model
G’ does not act freely on some schematically dense open subscheme, and the
claim in (v) does not hold.

4.4. Schematic images for formal schemes. The same methods as
in subsection 3] yield analogous representability results in the category of
formal schemes locally of finite type. Since the proofs are completely similar,
we will simply indicate how the objects are defined and then state the results.
In this subsection, the discrete valuation ring (R, K, k, 7) is complete and we
write R,, := R/n". With a slight abuse of notation, we use the notation i, for
both closed immersions Spec(R,,) < Spec(R,+1) and Spec(R,) — Spec(R),
since confusions are not likely to arise.

4.4.1. Formal sheaves. We first recall some notation and definitions.
By a presheaf over R we mean a contravariant functor from the category of
R-schemes to the category of sets. As usual, we have the notion of a group
presheaf and most of what will be said hereafter is valid for group presheaves.
Schemes over R are identified with their functor of points and hence can be
viewed as presheaves. Presheaves over R form a category denoted PSh /R.
Of course, what we just said works for any base ring.

Let ¢} : PSh/R,4+1 — PSh/R, be the pullback defined by i’ F =
F Xspec(Rpy1) SPC(Ry). An fppf formal sheaf over R is a functor from the
category of formal R-schemes to the category of sets satisfying the sheaf con-
dition for fppf coverings. It may be identified with a direct system of fppf
sheaves over R, i.e. a sequence (F},) such that F,, = i F,,41 for all n > 1.
Precisely, the identification goes as follows: to a formal sheaf F', we associate
the direct system F,, = i} F'. To a direct system (F,,) of fppf sheaves over R,
we associate the functor F' = lim F, defined by F(X) = @Fn(Xn) where
X = (X,). These mappings are inverse to each other. We say that F' is
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locally of finite presentation (or locally of finite type, since R is Noetherian)
if each F), is locally of finite presentation, i.e. satisfies the usual condition of
commutation with filtering direct limits of rings (see [EGA], IV.8.14.2).

4.4.2. Formal sheaves in groups. Given formal R-schemes of finite
type X and Y, we have two important examples of formal sheaves locally of
finite type: the homomorphism sheaf Homp(X,Y) = lim Homp,, (X5, Y,) and
the automorphism sheaf Autg(X) = lim Autg, (X5).

Let G be a flat formal scheme in groups of finite type and X a flat separated
formal scheme of finite type over R. An action of G on X is given by a
morphism of formal schemes G x X — X (satisfying the usual axioms) or
equivalently by a morphism of formal sheaves in groups G — Autr(X). The
kernel N of the action is defined as usual. As in Lemma[£.2.2] one shows that
N is representable by a closed formal subscheme of G. As in Lemma 23]
one shows that there exists a finite R-flat formal closed subscheme Z C X
such that the induced action G x Z — X has kernel equal to G x N (here the
kernel is understood as a subobject of G x G, see subsection[4.2]). An action is
faithful if and only if N = 1, and one can also define faithfulness by requiring
that no nontrivial R-flat closed subscheme of G acts trivially on X.

4.4.3. Schematic images. Let Rig /K denote the category of quasi-
compact, quasi-separated rigid analytic K-spaces. As we recalled, Raynaud’s
point of view gives an equivalence between Rig /K and the category of flat for-
mal R-schemes of finite type localised by admissible formal blowing-ups. Us-
ing the existence of flat models for flat morphisms of rigid spaces (see [BL2]),
one can set up a satisfactory theory of fppf descent in Rig /K. It is not our
intention to provide the details of such a theory. We quote these facts without
further justification; they give a meaning to what an fppf sheaf on Rig /K is.

Recall that a model of a rigid K-space X is a pair (X,4) where X is a
flat formal scheme of finite type and 4 is an isomorphism between X,i; and
Xk. A map between models (X7,41) and (Xa,i2) is a morphism of formal
schemes X; — Xo compatible with the given isomorphisms i;,is. We define
the generic fibre Fiig of an fppf formal sheaf locally of finite type F' to be
the fppf sheaf on Rig /K defined as follows. For any quasi-compact, quasi-
separated rigid analytic space X, we set:

Fag(Xx) = lm  F(X)
Xrig=XK
where the limit is taken with respect to all models X of Xg. If F' is rep-
resentable by a formal scheme locally of finite type, this definition coincides
with the definition of the generic fibre of a formal scheme by [dJ], Proposi-
tion 7.1.7. Then the definitions of the schematic closure of a subsheaf G of
the generic fibre Fii, schematic image and related notions are the obvious
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extensions of the definitions in subsection [l We can now state our results
for formal schemes.

4.4.4. Theorem. Let X be an affine flat formal R-scheme of finite type.
Let G be a flat formal R-scheme in groups of finite type acting on X, faithfully
on the generic fibre. Then the effective model G’ of the action is representable
by a flat formal R-scheme in groups which is not necessarily of finite type. If
G is quasi-compact, or affine, or finite, then G’ has the same property.

4.4.5. Theorem. Let X be a flat, separated formal R-scheme of finite type.
Let G be a proper flat formal R-scheme in groups acting on X, faithfully on
the generic fibre. Let N denote the kernel of the action and assume that Ny
is finite. Then the effective model G’ is representable by a proper flat formal
R-group scheme.

5. Examples

5.1. Schematic closure of a K-group scheme. When it is repre-
sentable, it is clear that the schematic image G’ depends only on the generic
fibre of G. One may start from an action of a finite K-group scheme Gk and
wonder if its schematic closure in Autg(X) is representable by a finite flat
R-scheme. This is not true in general, simply because the action of G may
fail to extend to the special fibre. For an example of this, consider the ring of
power series R = E[[A]] over a field of characteristic 0. Consider the projective
completion of the affine R-curve with equation y? = x(x — 1)(x — \), and let
E/R be the complement of the unique singular point of the special fibre. Thus
Ef is the Legendre elliptic curve over K. The 2-torsion Ex[2] is rational and
contains, in particular, the point A = (0,0) generating a group of translations
Gg ~ (Z/27) k. This point has singular reduction, and it is easy to see that
the image of the nontrivial point of Gx under Gg — Autgr(E) is a closed
point. Therefore, the schematic closure is the group obtained by gluing G
and the unit section 1g; it is not finite over R.

5.2. Two effective models of Z/p*Z. The end of the paper is devoted to
the computation of schematic images for the group Z/p?Z. The degeneration
of torsors under Z/pZ is well understood; one observes the exceptional feature
that the effective model tends to act freely on an R-universally dense open set.
Recently, Saidi studied degenerations of torsors under Z/p?Z in equal char-
acteristics [Sa]. He computed equations for such degenerations; they inherit
an action of Z/p?Z. We will compute the effective model in two cases: one
case where one gets a torsor structure, and one where this fails to happen. In
the case of mixed characteristics, similar examples have been given by Tossici
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in his Ph.D. thesis using the Kummer-to-Artin-Schreier isogeny of Sekiguchi
and Suwa in degree p? (see [Tol] and [To2]).

We let (R, K, k,t) be a complete discrete valuation ring with equal charac-
teristics p > 0, so R ~ k[[t]]. Under this assumption, torsors under Z/p*Z are
described by Witt theory.

5.2.1. Classical Witt theory First we briefly recall the notation of Witt
theory in degree p* (see [DGJ, chap. V). The group scheme of Witt vectors
of length 2 over R has underlying scheme Ws g = Spec(R[u1, us]) ~ A% with
multiplication law

p—1

(u1,u2) + (v1,02) = (U1 +v1,up +va + Z {i}ulfvf_k)-
k=1

Here we put once and for all {¥} := %(2), where (¥) is the binomial coefficient.
The Frobenius morphism of Wy is denoted by F(uj,uz) = (uf,ub). Put

¢ := F —id. From the exact sequence

0— (Z/pQZ)R — W27R i> W27R —0

it follows that any étale torsor f: Spec(B) — Spec(A) under (Z/p*Z)r is
given by an equation

F(X1,X2) — (X1, X2) = (a1,a2)

where (a1, a2) € Wa(A) is a Witt vector and the subtraction is that of Witt
vectors. Furthermore, (a1, as) is well defined up to the addition of elements
of the form F'(cy1,ca) — (e1,c¢2). Note that

p—1
F(X1, Xa) — (X1, X2) = (X} = X0, X5 — Xo + > (2} (X0)PF(=X1)P7F).
k=1

We emphasize that the Hopf algebra of (Z/p*Z)g is

R[ul, UQ}

R[Z/p*Z] =

(’U’ﬁ) - ulaug - u2)

with comultiplication that of Ws.

5.2.2. Twisted forms of W5. Let A, u,v be elements of R. We define
a “twisted” group W3 as the group with underlying scheme Spec(R[u1, us])
and multiplication law given by

p—1
(u1,uz) + (vi,v2) = (ul +v1, u2 +v2 + A Z {i}ulfvf_k)
k=1
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We have the following analogues of the scalar multiplication and the Frobenius
of WQZ
v A
I3, W3 — Wt

(u1,u2)  — (vug, prPuz)
and )

Fy: W3 — Wy

(ula UQ) — (ullla U’IQ))
In case i = AP~! we define an isogeny
Oaw = Fx — I{ pur: W3 — W3

We have

p—1
O (U, ug) = (u’f — vy, ul — VPAP T tug + NP Z {i}u’l’k(—uul)p_k)
k=1
The kernel Ky, := ker(¢y,) is a finite flat group of rank p2. If p > 2, its
Hopf algebra is
R[’U,l,U,Q]

(U] — vuyg,ub — vPAP~luy)’

R[:K)\,V] =

We now come to the examples. They arise from the following situation.
Denote by G = Z/p*Z the constant group, and by Y = A} = Spec(R[w]) the
affine line over R. Let myi,mo € Z be integers. Let fx: Xx — Yx be the
(Z/p*Z) k-torsor over Y = Al given by the equations:

7—T = t™uw

p—1
tm2w = (P (Ty)PR(=Ty)P*
=1

TP — T,

Depending on the values of the conductors mq, mo this gives rise to different
group degenerations.

5.2.3. First example. Assume m; = 0 and my = —p. Then after the
change of variables Z; = T, Zy = t15 the map fx extends to a cover X — Y
with equations:

Zf — Zl = w,

p—1
75—t N7, = w1y (P} (Z)PR(=Zy)PF,
k=1
The scheme X is a smooth affine R-curve. It is quickly seen that the action
of Z/p*Z extends to X. As is obvious from the expression of the isogeny ¢, ,
(seeB22)), the map X — Y is a torsor under X, , for A = ¢t and v = 1. Thus,
the effective model is G’ = K 1.



EFFECTIVE MODELS OF GROUP SCHEMES 37

5.2.4. Second example. Assume m; = —p?n; < 0 and my = 0. Put
m1 = n1(p(p — 1) + 1). Then after the change of variables Z; = t?™ T} and
Zy = t™ T, the map fx extends to a cover X — Y with equations

ZP — =Dz =y,
p—1

Z;’ _ t(pfl)ﬁu Z2 — tpfr'uw _ Z{i}tpnl(pfl)(pflfk)(Zl)pk(_Zl)pfk'
k=1

The scheme X is a flat R-curve with geometrically integral cuspidal special
fibre. The action of Z/p*Z extends to this model as follows: for (ui,us) a
point of Gg = (Z/p*Z)rg,

(u17u2)~(21, ZQ) :(Z1 + tpnlul,

p—1
Ty + 1My + Z{z} tnl(p(p—1)+1—pk)(Zl)k(ul)p—k).
k=1

In order to find out the effective model G’ we look at the subalgebra of RG
generated by v; = t"u; and vy, = M qg:

RG' := R[v1,v2] C RG.
One computes that RG’ inherits a comultiplication from RG:
p—1
2 _
(v1,v2) + (w1, w2) = <U1 Fwr, vy +wy+ Y (P3O wfwd k)
k=1
Thus if p > 2 we recognize G’ ~ X ,, for A\ = 1 (P=1)* and v = 71 (=1, The

action of G on X extends to an action of G’ given by

(vlv U2)~(Zl, ZQ) = (Zl + t(p_l)nl'l)l,

p—1
Zo+va+ Y {7} t”ﬂp_lﬂp—l—’ﬂz{wf—’“).
k=1

Here X — Y is not a torsor under G’. Indeed, on the special fibre we have
G, = (ap)? and the action on Xy is

(1)17U2).(Z17ZQ) = (Zl , Zo + v —|—’UlZf1>.

This action is faithful as required, but any point (21, 22) € Xj, has a stabilizer
of order p which is the subgroup of G, defined by the equation vy +v; z?f*1 =0.
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5.3. Effective model of a quotient. We finish with a counter-example
to point (v) in Proposition 3.9l For v € R we introduce the group scheme M,
which is the kernel of the isogeny ¥, : G4 r — G4 g defined by ¢, (x) = 2P —vz
(see [Ma], §3.2). This is a finite flat group scheme of order p.

We continue with the example in[5.24l Thus G = (Z/p*Z)g and G’ ~ K,
where A = tm®=D” and y = tm =1 Let H = (Z/pZ)gr C Gandlet H C G’
be its image. We have

Rlvy]

1
H'" = Spec <(v§ v Toy)

) ~ Myp)\p—l
and

G'/H' = Spec <I,R[4Uﬂ)> ~ M,.

(0] — vy

The quotient scheme X/H ~ X/H' is the cover of Y given by the equation
ZP — =V gz — e, Z¥ —vPZ; = w. It has an action of G'/H’ given
by

Ul-Zl = Z1 + vvy.

This action is not faithful on the special fibre. It is visible that the effective
model of G'/H’, or equivalently of G/H, acting on X/H' is the group whose
Hopf algebra is equal to the subalgebra of R[G’/H’] generated by s; = vv;.
Therefore (G/H)" ~ M,» and the map G'/H' — (G/H) = (G'/H') is not
an isomorphism. We see that the effective model of the quotient is not the
quotient of the effective models.
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