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EFFECTIVE MODELS OF GROUP SCHEMES

MATTHIEU ROMAGNY

Abstract

Let R be a discrete valuation ring with fraction field K and let X be a
flat R-scheme. Given a faithful action of a K-group scheme GK over the
generic fibre XK , we study models G of GK acting on X. In various
situations, we prove that if such a model G exists, then there exists
another model G′ that acts faithfully on X. This model is the schematic
closure of G inside the fppf sheaf AutR(X); the major difficulty is to
prove that it is representable by a scheme. For example, this holds if
X is locally of finite type, separated, flat and pure and G is finite flat.

Pure schemes (a notion recalled in the text) have many nice properties:
in particular, we prove that they are the amalgamated sum of their
generic fibre and the family of their finite flat closed subschemes. We
also provide versions of our results in the setting of formal schemes.
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1. Introduction

The present paper is interested in the reduction of algebraic varieties with

group action. Let us fix a discrete valuation ring R with fraction field K and

residue field k. Algebraic and arithmetic geometers study all kinds of varieties,

or varieties with additional structures, defined over K. In various situations,

these objects have a unique model over R or over a finite extension; this is

the case each time that one has a proper moduli space for the objects, but

not only. Let us mention a few of these well-known models: stable models of

curves (Deligne and Mumford [DM]), Néron models of abelian varieties (Néron

[N]), semiabelic pairs as models of principally polarized varieties (Alexeev

[Al]), stable maps as models of morphisms from a curve to a fixed variety

(Abramovich and Vistoli [AV]). If a group G acts faithfully on the K-variety

and the model satisfies some unicity property, the action extends to it.

Our concern is, in fact, exclusively in the reduction of the group action.

The point is that even though most of the time the action of G extends as

just indicated, in general the action on the special fibre is not faithful, and

one wishes to consider other models of G whose action is better-behaved in

reduction. For typical examples, assume that R has unequal characteristics

(0, p) and G is a finite p-group. If A is an abelian scheme over R, or the Néron

model of an abelian variety AK of dimension g, such that the p-torsion AK [p]

is rational, then G = Z/p2gZ acts by translations. This action extends to A

and, for lack of p-torsion points in characteristic p, the action has a nontrivial

kernel on the special fibre. For another example, consider a smooth pointed

curve (CK , xK) endowed with a faithful action of G leaving xK fixed, and

assume that (CK , xK) has a stable pointed model (C, x) over R. We wish to

understand the reduction of the action, especially around the reduction xk.

We are led to focus on the orbit Z ⊂ Ck of the irreducible component of xk.

After throwing away all components of Ck not in Z, we get an open R-curve,

and we are asking for the best model for the induced action of G.

In the example above of an abelian scheme A, the R-group scheme of p-

torsion G′ = A[p] is the obvious choice of a good model. We can recover it

as follows: to the action of G is associated a morphism of R-group schemes

GR → AutR(A), where GR is the constant R-group scheme defined by G.

Then G′ is the schematic image of this morphism; the special properties of
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schematic images and closures over a discrete valuation ring ensure that G′

is flat over R. In the examples of a Néron model or an open curve, we would

like to do the same thing. But there comes a problem: these schemes are not

proper, and the automorphism functor is not representable by a scheme or

an algebraic space. Still, it is a sheaf for the fppf topology, and Raynaud has

given a definition of schematic closures in this setting; but representability

of these closures is by no means obvious, and indeed, it does not happen in

general. The main theorems of this article prove that these schematic images

are often representable by flat group schemes when we consider actions on

pure schemes, the notion of purity being a (very) weak version of properness.

For example, faithfully flat R-schemes with geometrically irreducible fibres

without embedded components are pure. Here are some of our most striking

results:

Theorem A. (i) Let X be an R-scheme locally of finite type, separated, flat

and pure. Let G be a proper flat R-group scheme acting on X, faithfully on

the generic fibre. Let N denote the kernel of the action. Then the schematic

image of G in AutR(X) is representable by a flat group scheme of finite type

G′ if and only if Nk is finite. Moreover, in this case G′ is proper.

(ii) Let X be an affine R-scheme, equal to the spectrum of a ring A such

that the map A → ΠA/Iλ to the product of the finite flat quotients of A is

universally injective. Let G be an R-group scheme locally of finite type, flat

and pure, acting on X, faithfully on the generic fibre. Then the schematic

image of G in AutR(X) is representable by a flat R-group scheme G′. If G is

quasi-compact, or affine, or finite, then G′ has the same property.

When it is representable, we call the schematic image the effective model

of G for its action on X. We also have versions of these results in the setting

of formal schemes.

The affine version in case (ii) is interesting because it applies not only to

rings of finite type, flat and pure (by Theorem B below), but also, for example,

to rings arising from the completion of smooth R-schemes along a section, and

also because the assumptions made on the group G are very light. Let us now

focus on case (i). As it turns out, this result does not have much to do with

groups. The crucial facts that govern the proof are the good properties of R-

schemes locally of finite type and pure. Such a scheme X is the amalgamated

sum of its generic fibre XK and the family of all its closed subschemes finite

flat over R, the latter family being schematically dense in a very strong sense.

In fact, we prove the following theorem.

Theorem B. Assume that R is Henselian. Let X be an R-scheme locally

of finite type, flat and pure. Then, the family of all closed subschemes Zλ ⊂ X

finite flat over R is R-universally schematically dense, and for all separated
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R-schemes Y and all diagrams in solid arrows

�Zλ,K
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��

���
��
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�Zλ
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���

���
���

���
�� X

��
Y

there exists a unique morphism X → Y making the full diagram commutative.

Here also, there is an analogue for formal schemes. Using Theorem B,

we prove representability results for schematic images of schemes or formal

schemes inside functors of the type HomR(X,Y ). Theorem A above is essen-

tially an application of the particular case X = Y .

The effective models defined in the present article have been studied in

full detail, for the cyclic group of order p2 in unequal characteristics, in the

recent Ph.D. thesis of D. Tossici (see [To1] and [To2]). His results provide

more examples of effective models, and show some of their general features.

Also, related to this work is the note [Ab] of Abramovich. There, some group

schemes over stable curves are considered. They are not unrelated with our

effective models, and we plan to compare the two approaches more precisely in

the near future. This will hopefully lead to some new insights on the reduction

of the moduli space of admissible Galois covers of stable curves (see [BR]).

The latter question is open at the moment, and it was the most important

motivation for the present work.

1.1. Overview of the article. Here is a short description of the con-

tents of the article, together with precise references to the statements of the

main results. In section 2, we recall some results on purity and provide some

complements. We prove openness results for some properties of the fibres of

morphisms of finite presentation, flat and pure, that have some independent

interest (Theorem 2.2.1). In section 3 we study schematically dominant fami-

lies of morphisms from flat schemes to a fixed scheme X. We prove the density

of finite flat closed subschemes (Theorem 3.2.4) as well as the amalgam prop-

erty (Propositions 3.1.6, 3.2.5, and 3.2.6) which together give the statement of

Theorem B. In the beginning of section 4 we introduce schematic images and

we prove some useful general results on kernels for scheme or group scheme

actions. Then the stage is set to prove representability of schematic images

in various situations: we start with images of schemes inside Hom functors

and then we prove representability of images of groups in the scheme case

(Theorems 4.3.4 and 4.3.5) and in the formal scheme case (Theorems 4.4.4
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and 4.4.5). Theorem A is the combination of these results. We also give

some properties enjoyed by the effective model of a finite flat group scheme

(Proposition 4.3.9). Finally, in section 5 we give some examples. Notably, we

compute explicitly the schematic image in two different cases of degeneration

of torsors under the cyclic group of order p2 in equal characteristic p > 0

(see 5.2). We observe in particular that for a normal subgroup H ⊂ G, the

effective model of G/H acting on X/H may be different from G′/H ′.

1.2. Notation and conventions. Everywhere in the paper, we abbrevi-

ate the notation of a discrete valuation ring R with fraction field K, residue

field k, and chosen uniformizer π, by the tuple (R,K, k, π). In general, the

residue characteristic is denoted p ≥ 0. For schemes or morphisms defined

over R, we use subscripts (·)K and (·)k to denote the restrictions to the generic

and the special fibre.

When R is complete, we also consider formal R-schemes. A formal scheme

X may be identified with a direct system of ordinary schemes Xn over the

ring Rn = R/(πn). We refer to [BL1] for basic facts on formal and rigid

geometry, and, in particular, for the notion of admissible formal blowing-

up. Admissible formal schemes in [BL1] are flat formal schemes locally of

finite type. Raynaud’s theorem (see [BL1], Theorem 4.1) asserts that there

is an equivalence between the category of quasi-compact admissible formal

R-schemes, localised by admissible formal blowing-ups, and the category of

quasi-compact and quasi-separated rigid K-spaces. The K-space associated

to a formal scheme X is called its generic fibre and denoted Xrig.

2. Complements on purity

2.1. Purity, projectivity and adic topologies. We first recall some

definitions from Raynaud-Gruson [RG].

2.1.1. Definition. Let X → S be a morphism of schemes and M be a

quasi-coherent OX -module.

(i) The relative assassin of M over S, denoted Ass(M/S) is the union

over all s ∈ S of the associated points x ∈ X ⊗ k(s) of M ⊗ k(s). If

M = OX , we set Ass(X/S) = Ass(M/S).

(ii) Assume that X → S is locally of finite type and M is of finite type.

For each s ∈ S, let (S̃, s̃ ) be a Henselization of (S, s). We say that M

is pure along X ⊗ k(s) if the closure of any point x̃ ∈ Ass(M×S S̃/S̃)

meets X ⊗ k(s̃ ). We say that M is S-pure if it is pure along X ⊗ k(s)

for all s ∈ S. Finally, we say simply that X is S-pure if OX is S-pure.
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2.1.2. Examples. (1) If X → S is proper, then it is pure.

(2) If X → S is faithfully flat with geometrically irreducible fibres without

embedded components, then it is pure.

(3) Let R be a Henselian discrete valuation ring and X1 =

Spec(R[ε, x]/(ε2, εx)). Let X be the complement in X1 of the closed point

defined by the ideal (π, ε, x). Then X is not pure over R.

Here is one of the main results of [RG] (théorème 3.3.5 in part I of loc.

cit.):

2.1.3. Theorem (Raynaud and Gruson). Let A be a ring, B an A-algebra

of finite presentation, M a B-module of finite presentation, flat over A. Then

M is a projective A-module if and only if it is pure over A.

In what follows, we shall provide some complements on the notion of purity.

In particular, given an S-schemeX, we will explain the relation between purity

of X and the property that X may have an open covering by affine schemes

with function rings separated for some adic topologies coming from S (in

particular, when S is a local scheme, the maximal-adic topology). We also

give some applications.

2.1.4. Lemma. Let S be a scheme and X,Y be S-schemes locally of finite

type. Let f : X → Y be an fppf morphism over S. Then Y is S-pure if X is

S-pure. If furthermore f is pure, then the converse holds.

Proof. We may assume that S is a local Henselian scheme and since the

locus of the base where a map is pure is open ([RG], I.3.3.8), it is enough to

test purity at the closed point s ∈ S. Now let y ∈ Ass(Y/S). Choose some

associated point x ∈ Xy so x ∈ Ass(X/S). Then there exists a ∈ Xs meeting

the closure of x, so f(a) meets the closure of y. So Y is S-pure.

Conversely, assume that f is pure and let x ∈ Ass(X/S) and y = f(x).

Thus x ∈ Ass(X/Y ) and y ∈ Ass(Y/S) (see [RG], I.3.2.4). Since Y is S-pure,

the closure of y meets Ys at some point b. Let (Ỹ , b̃) be a Henselization of

(Y, b), let X̃ = X ×Y Ỹ , and x̃ = (x, b̃) ∈ X̃ so that x̃ ∈ Ass(X̃/Ỹ ) by

[RG], I.3.2.3. Thus the closure of x̃ inside X̃ meets X̃b̃ at a point ã. The

image of ã in X lies in the closure of x and above b̃, thus in Xs. Therefore,

X is S-pure. �
2.1.5. Definition. Let n ≥ 1 be an integer. We say that a morphism of

schemes X → S is of type (FA)n if every set of n points of X whose images lie

in an affine open set of S lie in an affine open set of X. We say that X → S

is of type (FA) if it is of type (FA)n for all n ≥ 1.

2.1.6. Lemma. Assume that S is affine. Let X → S be of finite presen-

tation and of type (FA)n. Then there exists a scheme S0 of finite type over

Z and a morphism S → S0, an S0-scheme X0 of finite presentation of type

(FA)n, such that X � X0 ×S0
S.
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Proof. Since S = Spec(A) is affine and X → S is quasicompact, to say

that X → S is of type (FA)n means that there exists a finite cover by open

affine schemes Ui (1 ≤ i ≤ m) such that �(Ui)
n → Xn is surjective. Thus,

writing A as the inductive limit of its subrings finitely generated over Z and

using [EGA], IV.8.10.5(iii)–(vi), we see that there exists a scheme S0 of finite

type over Z, an S0-scheme X0 of finite presentation, and an open cover U0,i of

X0 such that Ui � U0,i ×S0
S for all i, X � X0 ×S0

S, and �(Ui,0)
n → (X0)

n

is surjective. �
In the next lemma, we relate the notion of purity for a scheme over a

Noetherian Henselian local ring (R,m) with the property of separation of the

function rings with respect to the m-adic topology. We will say that an R-

algebra A is strongly separated for the m-adic topology if and only if for all

prime ideals q ⊂ m, the ring A/qA is separated for the m/q-adic topology.

2.1.7. Lemma. Let R be a Noetherian Henselian local ring with maximal

ideal m. Let X be a scheme locally of finite type and flat over R. Consider

the following conditions:

(i) X is R-pure.

(ii) X has an open covering by affine schemes whose function algebras are

free R-modules.

(iii) X has an open covering by affine schemes whose function algebras are

strongly m-adically separated.

Then, we have (ii) ⇒ (iii) ⇒ (i). Assume, moreover, that R is a discrete

valuation ring and X is of type (FA)n+1, where n is the number of associated

points of the generic fibre. Then all three conditions (i), (ii), and (iii) are

equivalent. Furthermore, we may choose an open covering {Ui} as in (ii)–(iii)

so that all intersections Ui ∩ Uj are R-pure again. Finally, if moreover, X is

quasicompact, then the R-module H0(X,OX) is free.

Proof. The fact that (ii) implies (iii) is clear since any free R-module is

strongly separated for the m-adic topology. Let us check that (iii) implies (i).

Let x ∈ Ass(X/R) and U = Spec(A) be an open affine containing x, with A

strongly m-adically separated. Let p ⊂ A (resp. q ⊂ R) be the prime ideal

corresponding to x (resp. the image of x in S) and let k(q) = Rq/qRq be the

residue field of q. If the closure of x in U does not meet the special fibre,

there exist u ∈ p and v ∈ mA such that 1 = u+ v. But by assumption, there

is a ∈ A such that the image of p in A⊗ k(q) is the annihilator AnnA⊗k(q)(a).

Hence there exists s ∈ R \ q such that sua ∈ qA. In the ring A/qA, we get

sa = sav = savn for all n ≥ 1; hence, sa lies in
⋂

n≥0 (m/q)n(A/qA). The

latter intersection is zero by assumption; hence, sa = 0 in A/qA and a = 0 in

A⊗ k(q). This is impossible. By contrapositive, X is pure.
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We now prove that under the additional assumptions, we have (i) ⇒ (ii).

Call x1, . . . , xn the associated points of the generic fibre of X. By purity, for

each i the closure of xi meets the closed fibre in at least one point x′
i. Since

it is assumed that X → Spec(R) is of type (FA)n+1, for each x ∈ X we may

find an open affine Ux = Spec(A) containing x, x′
1, . . . , x

′
n. Obviously Ux is

R-pure, so it follows from 2.1.3 that A is a projective R-module, i.e. a free

R-module since R is a principal ideal domain. Since X is quasicompact, we

can extract from {Ux} a finite open cover, and since each of them contains

x′
1, . . . , x

′
n, the intersections Ui ∩ Uj are R-pure.

Finally, we prove that H0(X,OX) is free. Let Ui = Spec(Ai) be an open

covering by affine schemes whose function algebras are free R-modules. Since

X is quasi-compact, finitely many of the Ui are sufficient. Since a submodule

of a free R-module is free, the injection H0(X,OX) ↪→ ΠH0(Ui,OUi
) gives

the desired result. �

2.1.8. Remark. The special case where X is affine of finite type and flat

over a discrete valuation ring will be useful later in the paper. In this case, the

proof above shows that X is pure if and only if Γ(X,OX) is a free R-module,

if and only if Γ(X,OX) is separated for the π-adic topology.

We now point out some features of pure schemes over a discrete valuation

ring, and in particular a relation between purity and the topology of the

neighbourhoods of the special fibre. Note that the notions of schematic density

and schematic dominance will receive a more complete treatment in section 3;

we refer to it for more details.

2.1.9. Lemma. Let (R,K, k, π) be a discrete valuation ring. The following

properties hold.

(1) Let f : Z → X be a morphism of R-schemes with X flat over R.

Then f is schematically dominant if and only if fK is schematically

dominant.

(2) Let X be an R-scheme locally of finite type and pure. Then any open

neighbourhood of the closed fibre Xk is schematically dense in X. If,

moreover, X is flat over R, then such a neighbourhood is R-universally

schematically dense.

(3) Let X,Y be R-schemes of finite type with X pure and Y separated.

Let R̂, X̂, Ŷ be the π-adic formal completions of R, X, Y . Then, the

completion map

HomR(X,Y ) → HomR̂(X̂, Ŷ ), f �→ f̂

is injective.
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Proof. (1) This is clear, since XK is schematically dense in X.

(2) Let U be an open neighbourhood of the closed fibre Xk. To prove that

U is schematically dense, we may replace R by its Henselization and hence

assume that R is Henselian. Then it is enough to prove that Ass(X) ⊂ U . If

x ∈ Ass(X), then by [EGA], IV.3.3.1, it is an associated point in its fibre Xs,

where s is the image of x in Spec(R). Since X is pure, the closure of x meets

Xk, hence it meets U , so x ∈ U and we are done. If, moreover, X is flat over

R, then using point (1) we see that UK is schematically dense in XK . Since

Uk = Xk is schematically dense in Xk and U is flat over R, it is R-universally

schematically dense by [EGA] IV, 11.10.9.

(3) Let f, g : X → Y be such that f̂ = ĝ. By [EGA], I.10.9.4, there is an

open neighbourhood U ⊂ X of Xk where f and g are equal. It follows from

(2) that U is schematically dense in X. Since f = g on a schematically dense

open subscheme of X, we get f = g on X. �

2.1.10. Remark. Point (2) of this lemma allows us to compare pure

schemes with other schemes by looking at “how close” a scheme is to its

special fibre. If we arrange R-schemes by increasing distance to their special

fibre, we have k-schemes, then formal R-schemes, then pure R-schemes, then

general R-schemes.

2.1.11. Lemma. Let X → S be a morphism of schemes. Assume that

X is locally oetherian and S is affine. Let s ∈ S and let p ⊂ Γ(S,OS) be the

corresponding ideal. Then there is an open neighbourhood of the fibre Xs that

is covered by affine schemes whose function ring is separated for the p-adic

topology.

Proof. Let x ∈ Xs and let U1 = Spec(A1) be an affine neighbourhood

with A1 Noetherian. Let m ⊂ A1 be the prime ideal corresponding to x,

so pA1 ⊂ m. Let I1 =
⋂

n≥0 pnA1. Since OX,x is local Noetherian, it is

separated for the p-adic topology, hence I1 lies in the kernel of the localization

morphism A1 → OX,x. Since I1 is finitely generated, there is s1 ∈ A1 \ m

such that s1I1 = 0. In other words, if we set A2 = A1[1/s1], then I1 maps

to 0 under A1 → A2. By induction, after we have defined Ar, we let Ir =⋂
n≥0 pnAr, we argue that there is sr ∈ Ar \ m such that srIr = 0, and we

define Ar+1 = Ar[1/sr]. Because A1 is Noetherian, the increasing sequence of

ideals Kr = ker(A1 → Ar) must stabilise at some ρ. One checks that Iρ = 0,

that is, Aρ is separated for the p-adic topology. �
2.2. Application to the fibres of morphisms. We now mention an

application of these results to the study of the fibres of morphisms of schemes.

Namely, one can weaken the assumptions in some theorems of [EGA] IV, §12.2,
by requiring purity instead of properness.
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2.2.1. Theorem. Let f : X → S be of finite presentation, flat and pure,

and let n ≥ 1 be an integer. Then the following sets are open in S:

(i) The locus of points s ∈ S such that the fibre Xs is geometrically

reduced.

(ii) The locus of points s ∈ S such that the geometric fibre Xs is reduced

with less than n connected components.

(iii) The locus of points s ∈ S such that the geometric fibre Xs is reduced

and has less than n irreducible components.

Proof. The assertions to be proven are local on S so we may assume S =

Spec(R) affine. By limit arguments using [RG], corollaire 3.3.10, and other

usual results of [EGA] IV, §§8–11, we reduce to the case whereR is Noetherian.

Let P be one of the properties reduced, reduced with less than n connected

components, or reduced with less than n irreducible components. The loci we

are interested in are constructible so it is enough to prove that they are stable

under generization. By [EGA], II.7.1.7, one reduces to R = (R,K, k, π) equal

to a discrete valuation ring, which we may assume is Henselian. Then we

assume that the closed fibre has the geometric property P , and we have to

prove that the generic fibre has it also. For this it is enough to prove that for

all finite field extensions L/K, the scheme X⊗K L has property P . Replacing

R by its integral closure in L we reduce to K = L. We now consider the three

cases separately.

(i) By Lemma 2.1.11, there is an open neighbourhood U of the special fibre

of X that is covered by open affine subschemes with function ring separated

for the π-adic topology, i.e. pure. By Lemma 2.1.9, this U is universally

schematically dense so if U has reduced generic fibre, then X is also. There-

fore, we may replace X by U and hence assume that X is covered by pure

open affine subschemes. Let V = Spec(A) be such an open affine, it is enough

to prove that A is reduced. Since A is separated for the π-adic topology and

has no π-torsion, if x is a nonzero nilpotent we may assume that x 
∈ πA.

But then we have a contradiction with the fact that Ak is reduced. So A is

reduced.

(ii) From (i) we know that XK is reduced. Then we may as in (i) reduce

to the case where X is covered by pure open affine subschemes. We shall

prove that the number of connected components of XK is less than that of

Xk. Let B = H0(X,OX). From the injection Bk ↪→ H0(Xk,OXk
) we learn

that Bk is reduced. This, together with an easy calculation, proves that the

idempotents of B and those of BK are the same. So XK and X have the same

number of connected components; call it u. Then B splits as a product of

rings B1 × · · · ×Bu, with Bi 
= 0 for i = 1, . . . , u. Since B is a free R-module
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(Lemma 2.1.7), each of the Bi is free, and hence Bi,k 
= 0. Hence, Bk has at

least 2u idempotents, so Xk has at least u connected components.

(iii) From (i) we know that XK is reduced. It is enough to prove that for

any irreducible component W of Xk, there is a unique irreducible component

Z of XK whose closure in X contains W . For this, we may remove from X all

irreducible components W ′ 
= W of Xk and all irreducible components Y of

X that do not contain W (they are closures in X of irreducible components of

XK). Hence, we may assume that Xk is integral, and we have to prove that

XK is integral also. We may as in (i) reduce to the case where X is covered

by pure open affine subschemes. It is then enough to prove that all such open

affines V = Spec(A) are integral. But if xy = 0 in A, and x, y are nonzero, we

may as in (i) assume that they do not belong to πA. Then this contradicts

the fact that Ak is integral. �

2.2.2. Counter-examples. Obviously, the corollary does not extend to

all properties listed in [EGA], IV, §12.2. We give counter-examples for some

of them. Let (R,K, k, π) be a discrete valuation ring.

(1) Geometrically connected. Let A = R[t]/(t2 − πt) and X = Spec(A).

Then Xk is geometrically connected, but XK has two connected com-

ponents.

(2) Geometrically pointwise integral. Let A = R[e, x, y]/I where I is the

ideal generated by the four elements xy, e2 − e + π, (1 − e)x − πx,

ey − πy. Let X = Spec(A). Then Xk is geometrically pointwise

integral (with two connected components), but XK is not, for it is

geometrically connected and AK has zero divisors x, y.

(3) Smooth, geometrically normal, etc. Let X be a flat finite type R-

scheme with geometrically integral fibres without embedded compo-

nents. Let U be the complement in X of the singular locus of Xk.

Then U is again pure over R, with smooth special fibre, but the generic

fibre can be chosen to have arbitrary singularities.

3. Reconstructing a scheme from flat closed subschemes

In this section, we consider two types of situations:

(I) Ordinary: a discrete valuation ring (R,K, k, π) and an R-scheme X

with a family of morphisms of R-schemes Zλ → X indexed by a

set L.
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(II) Formal: a complete discrete valuation ring (R,K, k, π) and a formal

R-scheme X with a family of morphisms of formal R-schemes Zλ → X

indexed by a set L.

Most of the time, we write this family as a single morphism f : �Zλ → X.

After some generalities in subsection 3.1, we specialise in subsection 3.2 to the

case where f is the family of all (formal) closed subschemes of X finite flat

over R. The general theme is to find some conditions under which X is the

amalgamated sum of its generic fibre XK and the subschemes Zλ along the

subschemes Zλ,K (in the formal case, the generic fibres are the rigid analytic

spaces Xrig and Zλ,rig). As a matter of notation, when no confusion seems

possible, we will allow ourselves a slight abuse by maintaining the letter f to

denote the restriction Zλ0
↪→ �Zλ → X, for a given λ0 ∈ L. For example,

we will write f∗OZλ
instead of (f|Zλ

)∗OZλ
.

3.1. Schematically dominant morphisms. We will need various no-

tions of dominant morphisms; see also [EGA], IV.11.10.

3.1.1. Definitions. Let f : �Zλ → X, λ ∈ L, be a family of morphisms

of R-schemes.

(1) If X is affine, f is called affinely dominant if the intersection of the

kernels of the maps Γ(X,OX) → Γ(Zλ,OZλ
) is 0. If X is arbitrary,

f is called weakly schematically dominant if there exists a covering of

X by open affine subschemes Ui such that f−1(Ui) → Ui is affinely

dominant for all i.

(2) The map f is called schematically dominant if the intersection of the

kernels of the maps of sheaves OX → (fλ)∗OZλ
is 0, or equivalently,

if for all open affine subschemes U ⊂ X, the map f−1(U) → U is

affinely dominant.

If one of these properties is true after any base change R → R′, we say that

it is true universally.

The family of maps �n≥0 Spec(R/πn) → Spec(R) is affinely dominant,

hence weakly schematically dominant, but not schematically dominant.

If X is affine, it is equivalent to say that f is affinely dominant or that for

any two morphisms u, v : X → X ′ to an affine R-scheme X ′, u ◦ f = v ◦ f

implies u = v. If X is arbitrary, it is equivalent to say that f is schematically

dominant or that for any open set U ⊂ X, and any two morphisms u, v : U →
X ′ to a separated R-scheme X ′, if the compositions of u and v with the

restriction f−1(U) → U are equal, then u = v. In the case where each

f|Zλ
is an immersion, this gives the notion of a schematically dense family of

subschemes.
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If we consider a family of morphisms of formal R-schemes f : �Zλ → X,

λ ∈ L, the same definitions and remarks apply word for word.

In the sequel, we will meet one particular case where weakly schematically

dominant are schematically dominant. In order to explain this, we recall the

following standard notation: if I, J are ideals in a ring A, we write (I : J)A
or simply (I : J) for the ideal of elements a ∈ A such that aJ ⊂ I, and we

write (I : J∞) for the increasing union of the ideals (I : Jn). The following

definition applies in the case of schemes or formal schemes.

3.1.2. Definition. We say that the torsion in f∗OZλ
is bounded uniformly

in λ if and only if for all U ⊂ X open, for all t ∈ OX(U), there exists an

integer c ≥ 1 such that for all λ ∈ L, we have (0 : t∞) = (0 : tc) as ideals of

(f∗OZλ
)(U).

3.1.3. Lemma. Let f : �Zλ → X, λ ∈ L, be a family of morphisms of R-

schemes or formal R-schemes. Assume that either L is finite, or the torsion

in f∗OZλ
is bounded uniformly in λ. Then f is schematically dominant if and

only if it is weakly schematically dominant.

Proof. Only the if part needs a proof. Let U = Spec(A) in the scheme

case, resp. U = Spf(A) in the formal scheme case, be an open affine such that

f−1(U) → U is affinely dominant. Let Bλ = (f∗OZλ
)(U), ϕλ : A → Bλ the

map corresponding to fλ, and Iλ = ker(ϕλ). The intersection of the ideals Iλ
is zero and we have to prove that for all t ∈ A, the intersection of the kernels

of the maps ϕλ[1/t] : A[1/t] → Bλ[1/t] is zero. Let a be in this intersection.

Clearly it is enough to take a ∈ A. For all λ there is an integer cλ ≥ 0 such

that tcλϕλ(a) = 0. If the torsion in f∗OZλ
is bounded uniformly in λ, there is

an integer c such that for all λ we have tcϕλ(a) = 0. If L is finite, this is also

true with c = sup{cλ , λ ∈ L}. It follows that tca is in the intersection of the

Iλ, hence zero by assumption. Thus a = 0 in A[1/t]. �
3.1.4. Remark. We will also use this lemma in the case where the base

ring R is a field (cf. proof of Theorem 3.2.4), and it is clear that it holds true

also in this context.

We now use more specifically the properties of flat modules over the discrete

valuation ring R. The first lemma below is stated as a useful observation to

keep in mind. Then we continue with some properties of schemes dominated

by flat families.

3.1.5. Lemma. For a morphism of R-modules u : M → N with N flat,

the following conditions are equivalent:

(1) u is universally injective.

(2) u is injective and uk is injective.

(3) u is injective and coker(u) is flat.
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If N is a direct product of flat modules Nλ, λ ∈ L, and we denote by Iλ the

kernel of M → Nλ, these conditions are also equivalent to:

(4)
⋂

λ∈L

Iλ = 0 and ∩
λ∈L

Iλ,k = 0.

Proof. See for instance [EGA], OIII.10.2, notably [EGA], OIII.10.2.4. �
The main point of the following result is to say that X satisfies the property

of the amalgamated sum of XK and the Zλ along their respective generic

fibres, for morphisms to affine R-schemes Y .

3.1.6. Proposition. Let f : �Zλ → X be a family of morphisms of R-

schemes with Zλ flat over R, for all λ ∈ L. Assume, moreover, that we are

in one of the following cases.

(i) X has a covering by open affine schemes Ui whose function alge-

bras are π-adically separated and the restriction of fk to f−1(Ui)k is

affinely dominant.

(ii) X is locally Noetherian and fk is schematically dominant.

Then the following properties hold:

(1) X is flat over R.

(2) f , equivalently fK , is weakly schematically dominant (in case (ii) one

needs to assume also that X is locally of finite type and pure).

(3) For all affine R-schemes Y and all diagrams in solid arrows,

�Zλ,K
��

��

XK

��

���
��
��
��
��
��
��
��

�Zλ
��

�����
���

���
���

���
�� X

��
Y

there exists a unique morphism X → Y making the full diagram com-

mutative.

Note that the equivalence in point (2) between the fact that one of the

two morphisms f or fK is weakly schematically dominant is granted by

Lemma 2.1.9 (although that lemma is not stated for weakly schematically

dominant morphisms, it is clear that it holds for these morphisms, with the

same proof).

Proof. Observe that after we have proven that X is flat, in order to prove

the amalgamated sum property to affine schemes, since X is flat and Y is

separated, the map g : X → Y is unique if it exists. Thus we may define it

locally on X and glue. It follows that all assertions to be established are local.
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In case (i) we are immediately reduced to the situation where X = Spec(A)

with A separated for the π-adic topology. We keep the notation of the proof

of Lemma 3.1.3 and we also set B = ΠBλ, ϕ = Πϕλ and I = ker(ϕ). From

the injection A/I ↪→ B it follows that A/I has no π-torsion hence is flat

over R. If a ∈ I, then since ϕk is injective, there exists a1 ∈ A such that

a = πa1. Since A/I has no π-torsion, a1 himself lies in I, and by induction

we obtain a ∈
⋂
πnA. So a = 0 by the assumption on A. This proves that

A is torsion-free, hence flat over R, and also that f is weakly schematically

dominant. Now we have a diagram with all morphisms injective:

B �� BK

A ��

��

AK

��

Obviously, in order to prove the amalgamated sum property for maps to affine

schemes, it is enough to show that A is isomorphic to the fibred product

AK ×BK
B. Since A is separated for the π-adic topology, a nonzero element

in B ∩ AK may be written a/πd with a ∈ A and d ∈ Z minimal, such that

there exists b ∈ B with a = πdb in B. If d � 1, reducing modulo π we find

that the image of a vanishes in Bk. Since Ak → Bk is injective, it follows that

a ∈ πA, and this contradicts the minimality of d. Hence d ≤ 0, so a/πd ∈ A

and we are done.

In case (ii), in order to prove flatness it is enough to look at points of the

special fibre Xk. By Lemma 2.1.11, such a point has an affine neighbourhood

Spec(A) with A separated for the π-adic topology. From case (i) it follows

that X is flat. Also, in this way we have found a neighbourhood U of the

special fibre which is covered by open affine schemes whose function algebras

are π-adically separated. From case (i) it follows that the restriction of f to

f−1(U) is weakly schematically dominant. So, if X is locally of finite type and

pure, U is schematically dense in X by Lemma 2.1.9; hence, f itself is weakly

schematically dominant. Finally, to prove the amalgamated sum property,

it is enough to define g in a neighbourhood of all closed points x ∈ Xk. By

Lemma 2.1.11, we may choose a neighbourhood Spec(A) where A is π-adically

separated. Then we are reduced to case (i). �
It is possible to formulate an analogue of the amalgamated sum property

for formal schemes finite type, using the definition of the generic fibre as a

rigid analytic K-space as in [BL1]. Since we have to impose the assumption

of finite type, the direct formal analogue of the affine version 3.1.6 is not

relevant. Hence we will content ourselves with a statement of the properties

needed in order to prove 3.2.6.
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3.1.7. Proposition. Assume that R is complete. Let f : �Zλ → X be a

family of morphisms of formal R-schemes locally of finite type, with Zλ flat

over R for all λ ∈ L, such that fk is schematically dominant. Then,

(1) X is flat over R.

(2) f (equivalently fK) is weakly schematically dominant.

Proof. (1) We may restrict to an open affine formal subscheme Spf(A).

Then A is π-adically separated and the arguments of the proof of point (1) in

Proposition 3.1.6 carry on.

(2) The arguments are the same as in point (2) in Proposition 3.1.6. �
In the sequel of the paper, we will be mainly interested in the case where

L is infinite. Concerning the case where L is finite (this is essentially the case

where L has just one element, for, one may consider Z = �Zλ), the following

property is still worth recording:

3.1.8. Proposition. Let S be a scheme and let f : Z → X be a morphism

of flat S-schemes of finite presentation. Assume that X is pure. Let S0 ⊂ S

be the locus of points s ∈ S such that fs is schematically dominant, X0 =

X ×S S0, Z0 = Z ×S S0. Then S0 is open in S an f|Z0
: Z0 → X0 is S0-

universally schematically dominant.

Proof. As in the proof of Theorem 2.2.1, one reduces to the case where S

is the spectrum of a Henselian discrete valuation ring R with uniformizer π,

and fk is schematically dominant. By Lemma 2.1.11, there is an open neigh-

bourhood U of the special fibre of X that is covered by open affine schemes

whose function algebras are π-adically separated. By 3.1.6(2) and 3.1.3, the

restriction of f to U is schematically dominant. Since U is schematically

dense in X by Lemma 2.1.9, then f is schematically dominant. The fact that

f|Z0
: Z0 → X0 is S0-universally schematically dominant is a consequence of

[EGA] IV, 11.10.9. �
3.2. Gluing along the finite flat subschemes. We continue with the

ordinary (I) and formal (II) situations presented at the beginning of section 3.

From now on, the family Zλ will always be the family of all closed subschemes

of X in case (I), resp. closed formal subschemes of X in case (II), that are

finite and flat over R. We denote this family by F(X). Under some mild

conditions, we will prove that this family is R-universally schematically dense

in X and we will improve Proposition 3.1.6 by extending the amalgamated

sum property to morphisms to arbitrary separated (formal) schemes Y .

We keep the notation f : � Zλ → X for the canonical morphism induced

by the inclusions Zλ ⊂ X. Note that F(X) is naturally an inductive system,

if we consider it together with the closed immersions Zλ ↪→ Zμ. Moreover, we

can define the union of two finite flat closed subschemes by the intersection
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of the defining ideals; this is again a finite flat closed subscheme. In this way,

we see that F(X) is filtering.

Let us start our program. We start with a well-known property.

3.2.1. Lemma. Consider one of the two situations:

(I) X is an R-scheme locally of finite type. Assume that X is flat over

R, or more generally that Xred is flat over R.

(II) R is complete and X is a flat formal R-scheme locally of finite type.

Then F(X) attains all the closed points of Xk. In case (I) the converse is

true: if F(X) attains all the closed points of Xk, then Xred is flat over R.

Proof. In case (I), first note that Xred is flat if and only if no irreducible

component of X is included in the special fibre. Hence if Xred is flat, for each

closed point x ∈ Xk, there is an irreducible component W ⊂ X at x that

is not contained in Xk. Then the claim follows from Proposition 10.1.36 of

[Liu] applied to W . Conversely, if Xred is not flat, then there is an irreducible

component included in the special fibre, and it is clear that this component

contains at least one point not lying on any Z ∈ F(X). In case (II) this is

just [BL1], Proposition 3.5. �
For the sequel, a crucial ingredient is a theorem of Eisenbud and Hochster

(see [EH]) which we recall for convenience:

3.2.2. Theorem (Eisenbud and Hochster). Let A be a ring, and let P be

a prime ideal of A. Let N be a set of maximal ideals m such that Am/Pm is

a regular local ring, and such that⋂
m∈N

m = P.

If M is a finitely generated P -coprimary module annihilated by P e, then⋂
m∈N

meM = 0.

As a preparation for the proof of Theorem 3.2.4 below, we first establish

a lemma. We refer to Bruns-Herzog [BH] for more details on the following

notions. Let (A,m) be a Noetherian local ring of dimension r, and write

lgA(M) or simply lg(M) for the length of an A-module M . For an arbitrary

ideal of definition q ⊂ A, one defines the Hilbert-Samuel multiplicity e(q) as

the coefficient of ir/r! in the polynomial-like function i �→ lgA(A/qi). The

Hilbert-Samuel multiplicity of A itself is defined to be e(m). If A is Cohen-

Macaulay and q is a parameter ideal (that is, an ideal generated by a system

of parameters), we have e(q) = lg(A/q). If, moreover, the residue field is

infinite, there exists a parameter ideal q such that e(q) = e(m) (see exercise

4.5.14 in [BH]).
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3.2.3. Lemma. Let k be a separably closed field and X = Spec(A) an

affine scheme of finite type over k. Then there exists an integer c ≥ 1, a

set of Cohen-Macaulay closed points M ⊂ X, and for all points x ∈ M a

parameter ideal qx ⊂ OX,x satisfying dimk(OX,x/qx) ≤ c, such that⋂
x∈M

q′x = 0

where q′x is the preimage of qx in A.

Proof. Let 0 = I1∩· · ·∩Ir be a primary decomposition of the sub-A-module

0 ⊂ A, where Ij is a Pj-primary ideal, Pj =
√
Ij . For each 1 ≤ j ≤ r, let ej

be such that (Pj)
ej ⊂ Ij . The closed subscheme Zj defined by the ideal Pj

is a variety, in particular it is reduced. On one hand, by classical properties

of schemes of finite type over a field, there is a dense open set Uj ⊂ Zj of

points that are regular in Zj and Cohen-Macaulay in X. On the other hand,

let ka be an algebraic closure of k, and let Sj be the smooth locus of the

reduced subscheme of Zj ⊗k ka. It is defined over a finite purely inseparable

extension �j/k, whose degree we call γj . Hence there is a smooth �j-scheme Vj

whose pullback to ka is Sj . Since �j is separably closed, the set of �j-rational

points of Vj is dense. Therefore, the set Mj = Uj ∩ Vj(�j) is dense in Zj . By

Theorem 3.2.2 applied with N = Mj and M = A/Ij , we have⋂
x∈Mj

mejA ⊂ Ij

where m denotes the maximal ideal of A corresponding to the point x. We

call e = max(ej), M =
⋃

Mj , γ = max(γj). Then, for all x ∈ M, we have

[k(x) : k] ≤ γ, and ⋂
x∈M

meA ⊂ I1 ∩ · · · ∩ Ir = 0.

We now choose suitable parameter ideals qx. For x ∈ X we let e(x) denote

the Hilbert-Samuel multiplicity of the local ring at x. This is an upper-

semicontinuous function, hence it is bounded on X by some constant α. By

the remarks preceding the lemma, for each Cohen-Macaulay closed point x ∈
X, we can find a parameter ideal q = (r1, . . . , rs) with e(q) = e(x), where

s = dim(OX,x) ≤ n = dim(X). Now qx := ((r1)
e, . . . , (rs)

e) is again a

parameter ideal, with qx ⊂ me. It follows from the above that if q′x denotes

the preimage of qx in A, then ⋂
x∈M

q′x = 0.

Furthermore, one sees readily that if β = s(e− 1) + 1, then qβ ⊂ qx. Thus,

lg(OX,x/qx) = e(qx) ≤ e(qβ) = βs
e(q) ≤ βsα .
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Finally, since the degree of the residue fields of points x ∈ M is bounded by

γ, we have

dimk(OX,x/qx) = [k(x) : k] lg(OX,x/qx) ≤ γβsα ≤ γ(n(e− 1) + 1)nα.

If we set c := γ(n(e − 1) + 1)nα, we have proven all the assertions of the

lemma. �
3.2.4. Theorem. Consider one of the two situations:

(I) R is Henselian and X is an R-scheme locally of finite type, flat and

pure.

(II) R is complete and X is a flat formal R-scheme locally of finite type.

Then the family F(X) of all closed (formal) subschemes Zλ ⊂ X finite flat

over R is R-universally schematically dense.

Proof. We start with case (I). We first assume that R is strictly Henselian.

By Lemma 2.1.11, there is an open neighbourhood U of the special fibre of X

that is covered by open affine subschemes with function ring separated for the

π-adic topology. Lemma 2.1.9 implies that U is R-universally schematically

dense in X. Therefore we may replace X by U and hence assume that X is

covered by open affine subschemes with function ring separated for the π-adic

topology. Since the result is local on X we may finally assume that X is affine,

with function ring A of finite type over R, separated for the π-adic topology

(and in fact free, by Remark 2.1.8).

By Lemma 3.2.3, there exists a constant c ≥ 1, a set of Cohen-Macaulay

closed points M ⊂ Xk, and parameter ideals qx ⊂ OXk,x satisfying

dimk(OXk,x/qx) ≤ c and such that the ideals q′x = qx ∩ Ak have zero in-

tersection. We let {Zc
λ}, λ ∈ Lc, denote the family of all closed subschemes

of X, finite flat over R, of degree less than c, and we write fc : �Zc
λ → X for

the canonical morphism.

The ideal qx is generated by a regular sequence r = (r1, . . . , rs), where

s = dim(OXk,x). Let r̃ be a sequence obtained by lifting the ri in OX,x and

let Y = Spec(OX,x/(r̃)). As r is a regular sequence, it follows that Y is flat

over R. Furthermore, Yk is Artinian, hence Y is quasi-finite over R. Since R is

Henselian, Y is in fact finite over R. Thus Y → X is a proper monomorphism,

hence a closed immersion. So Y is one of the schemes Zc
λ.

Since the k-algebras of functions of Zc
λ,k are free of rank less than c, the

Cayley-Hamilton theorem implies that in the terminology of Definition 3.1.2,

the torsion in (f c
k)∗OZc

λ,k
is bounded uniformly in λ (in a strong form, since the

bound c is independent of the local sections t). As the intersection of the ideals

q′x = qx ∩Ak is zero, Lemma 3.1.3 applies and proves that f c
k is schematically

dominant. Moreover, the R-algebras of functions of Zc
λ are free of rank less

than c, so the argument used above works again and by Proposition 3.1.6 we



20 MATTHIEU ROMAGNY

get that f c and f c
K are schematically dominant. Applying [EGA] IV, 11.10.9,

it follows that f c is R-universally schematically dominant. A fortiori, the

family F(X) is R-universally schematically dense.

It remains to treat the case of a general Henselian discrete valuation ring

R. Let Rsh be a strict Henselization, and Xsh = X ⊗R Rsh. By the preceding

discussion we know that F(Xsh) is universally schematically dense in Xsh.

Since Rsh is an integral extension of R, the canonical morphism j : Xsh → X

is integral. Thus the schematic image of any finite Rsh-flat closed subscheme

Zsh ⊂ Xsh is an R-flat closed subscheme Z of X, integral over R, hence a

finite flat R-scheme. This proves that the family {j−1(Z)}, with Z ∈ F(X),

is a cofinal subfamily of F(Xsh), thus it is universally schematically dense in

Xsh. By faithfully flat descent (see [EGA], IV.11.10.5), so is F(X) in X.

In case (II), we follow the same strategy of proof. We start with the case

where R is strictly Henselian. We reduce to the formal affine case X =

Spf(A), with A topologically of finite type over R. Such an A is automatically

separated for the π-adic topology. Then we consider the family {Zc
λ} of all

closed formal subschemes of X, finite flat over R, of degree less than c. We

apply Lemma 3.2.3 again, and as before, for each Cohen-Macaulay closed point

x in M ⊂ Xk, we can realize the subscheme defined by the parameter ideal

qx ⊂ OXk,x as the special fibre of some Zc
λ. Then we use Proposition 3.1.7 to

get that f c and f c
K are schematically dense. It makes no difficulty to adapt

[EGA], IV, 11.10.9, to formal schemes and conclude that fc and a fortiori

F(X) is R-universally schematically dense. Also, the argument from [EGA]

to descend from the strict Henselization to R is easily adapted. �
3.2.5. Proposition. Let X be an R-scheme locally of finite type and flat.

Let {Zλ} be a family of closed subschemes of X finite flat over R, and assume

that the family {Zλ,k} is schematically dense in Xk and attains all closed

points (e.g. R is Henselian, X is pure and {Zλ} is the family of all closed

subschemes of X finite flat over R, by Lemma 3.2.1 and Theorem 3.2.4).

Then for all separated R-schemes Y and all diagrams in solid arrows,

�Zλ,K
��

��

XK

��
β

���
��
��
��
��
��
��
��

�Zλ
��

α

�����
���

���
���

���
�� X

��
Y

there exists a unique morphism g : X → Y making the full diagram commu-

tative.
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Proof. In fact, the flatness of X follows from the other assumptions, by

Proposition 3.1.6. Let f : �Zλ → X, α : �Zλ → Y and β : XK → Y

be the maps in the diagram. By the same argument, as in the proof of

Proposition 3.1.6, the map g : X → Y is unique if it exists. Thus we may

define it locally on X and glue. It is enough to define g in a neighbourhood of

all closed points x ∈ Xk. By assumption f is surjective on closed points of the

special fibre, so the given point x is equal to f(z) for some λ and z ∈ Zλ. Let

y = α(x), let V = Spec(C) be an open affine neighbourhood of y in Y , and

let U be an open subscheme of X containing x. We will prove that x does not

belong to the closure in X of XK \β−1(V ). Indeed, otherwise there is a point

η ∈ XK \ β−1(V ) such that x ∈ W := {η}. Thanks to Lemma 3.2.1 applied

to W , we may replace η by a closed point of WK and hence we assume that

η is closed in XK . In this case W is one of the Zλ, so it makes sense to speak

about the images of x and η under α. Then,

x ∈ {η} implies that y = α(x) ∈ {α(η)} = {β(η)}

and this is a contradiction with the fact that β(η) 
∈ V . Therefore, we may

shrink U and assume that UK ⊂ β−1(V ). Then by Lemma 2.1.11 we may

shrink U further to the spectrum of a ring A separated for the π-adic topology.

Therefore, we reduce toX = Spec(A) and Y = Spec(C), and Proposition 3.1.6

applies. �
3.2.6. Proposition. Assume that R is complete. Let X be a flat formal

R-scheme of finite type. Let {Zλ} be a family of closed formal subschemes

of X finite flat over R such that the family {Zλ,k} is schematically dense in

Xk and attains all closed points (e.g. the family of all closed subschemes of

X finite flat over R). Let f : �Zλ → X be the canonical map. Then the

analogue of the amalgamated sum property of Proposition 3.2.5 holds, if we

understand a morphism from a rigid analytic K-space Z to a formal R-scheme

Y to be a morphism Z → Yrig. More precisely, given

• a separated formal R-scheme Y ,

• a morphism of formal R-schemes α : �Zλ → Y ,

• a morphism of rigid spaces β : Xrig → Yrig

such that αrig = β ◦ frig, there exists a unique morphism g : X → Y such that

grig = β and g ◦ f = α.

Proof. The proof of Proposition 3.2.5 works again in this setting, with

some adaptations which we now sketch. If g, g′ : X → Y are two solutions

to the problem, then in particular grig = g′rig. By Raynaud’s theorem ([BL1],

th. 4.1) there exists an admissible formal blowing-up s : X ′ → X such that

g ◦ s = g′ ◦ s. Since s is schematically dominant and Y is separated, we get

g = g′. Because of this unicity statement, as far as existence is concerned,
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we may define g locally on X and glue. Also, we need to know that F(X)k is

schematically dense, which is granted by Theorem 3.2.4. Then, by the same

method as above, we reduce to the affine case X = Spf(A) and Y = Spf(C).

Now the arguments of the proof of point (3) in Proposition 3.1.6 carry on. �

4. Schematic images inside Hom and Aut functors

Throughout this section, we fix a discrete valuation ring (R,K, k, π). We

first recall the definition of schematic closures and images for fppf sheaves

over a discrete valuation ring R. After a brief discussion of kernels, we prove

the main theorems of the paper on representability of schematic images.

4.1. Definitions. Recall that if f : W → X is a morphism of schemes,

there exists a smallest closed subscheme X ′ ⊂ X such that f factors through

X ′. We call it the schematic image of f . If U = Spec(A) is an open affine

subscheme of X and V = f−1(U), then X ′ ∩ U is defined by the ideal which

is the kernel of the map A → Γ(V,OV ) induced by f . It is equivalent to say

that the schematic image of f is X, or that f is schematically dominant.

If W is a closed subscheme of the generic fibre of X and f is the canonical

immersion, then the schematic image is called the schematic closure of W in

X. It is the unique closed subscheme of X which is flat over R and whose

generic fibre is W (see [EGA], IV.2.8.5).

These definitions may be adapted to morphisms of sheaves as follows (see

[Ra]):

4.1.1. Definitions. Let F be an fppf sheaf over the category of R-schemes.

(1) Let G be a subsheaf of the generic fibre FK . Then the schematic

closure of G in F is the fppf sheaf G′ associated to the presheaf G�

defined as follows. Given an R-scheme T , G�(T ) is the set of all

morphisms f : T → F such that there exists a factorization,

T ��

f ���
��

��
��

� T ′

g

��
F

with T ′ a flat R-scheme and g(T ′
K) ⊂ G.

(2) We say that F is flat over R if it is equal to the schematic closure of

its generic fibre.

(3) Let h : H → F be a morphism of fppf sheaves over R, with H flat. Let

G be the image sheaf of hK : HK → FK . Then the schematic image

of H in F is defined to be the schematic closure of G inside F .
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The following properties are formal consequences of the definitions. The

formation of the schematic closure commutes with flat extensions of discrete

valuation rings. Let F1, F2 be sheaves over the category of R-schemes. Let

G1 ⊂ F1,K , G2 ⊂ F2,K be subsheaves, and let G′
1, G

′
2 be the schematic clo-

sures. For a morphism of sheaves α : F1 → F2 such that α(G1) ⊂ G2, we have

α(G′
1) ⊂ G′

2. As a consequence, the schematic closure of G in F is the only

subsheaf of F which is flat over R and has generic fibre equal to G. Finally,

the formation of the schematic closure commutes with products; it follows

that if F is a group (resp. monoid) sheaf, i.e. a group (resp. monoid) object

in the category of fppf sheaves, and G is a subgroup (resp. submonoid) sheaf

of FK , then the schematic closure G′ is a subgroup (resp. submonoid) sheaf

of F .

In general, even if F is representable by a scheme, one needs rather strong

conditions on the monomorphism G → FK if one wants representability of the

schematic closure G′ by a scheme. As we recalled above, one pleasant case is

when G → FK is a closed immersion; then G′ → F is also a closed immersion.

As another example, the following lemma shows that in the case of an open

immersion, the schematic closure is only representable by an inductive limit

of schemes.

4.1.2. Lemma. Let X be an R-scheme, UK ⊂ XK the complement of a

Cartier divisor. Then the schematic closure U ′ of UK in X is representable

by an inductive limit of affine X-schemes.

Proof. We first construct U ′. Fix an integer n ≥ 0. For each open affine

V = Spec(A) in X, we may choose an equation f ∈ A for XK \ UK . Define

UV,n to be the spectrum of the ring

(
A[xn]

xnf − πn

)
0

where the subscript 0 means the quotient by the π-torsion ideal (0 : π∞).

There are maps UV,n → UV,n+1 given by xn+1 �→ πxn, and we define U ′
V to

be the limit of the schemes UV,n. This construction glues over all V to give

an inductive limit of affine X-schemes U ′. It is not hard to see that this is

independent of the choice of local equations f , up to isomorphism. Finally, we

check that U ′ is the desired schematic closure. Let g : T → X be a morphism

with T flat over R and g(TK) ⊂ UK . Let V = Spec(A) be an open affine in

X and W = Spec(B) an open affine in T , with g(W ) ⊂ V ; let f ∈ A be an

equation for XK \ UK . Then we have a morphism of rings ϕ : A → B such

that ϕ(f) is invertible in BK , i.e. there exists n ≥ 0 and t ∈ B such that

ϕ(f)t = πn. Furthermore, since B is R-flat, t is uniquely determined, as well
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as the morphism of A-algebras(
A[xn]

xnf − πn

)
0

→ B

given by xn �→ t. These morphisms glue to a unique map T → U ′. �
4.2. Kernels. Let S be a base scheme and let Γ, X, Y be schemes over

S. We consider a morphism of S-schemes ϕ : Γ×S X → Y , which we view as

an action of Γ on X with values in Y . Equivalently, we have a morphism of

functors ϕ′ : Γ → HomS(X,Y ). We say that Γ acts faithfully on X, or that ϕ

is faithful, if ϕ′ is a monomorphism. We can relate this to the morphism:

ϕ′ × ϕ′ : Γ×S Γ → HomS(X,Y )×S HomS(X,Y ).

4.2.1. Definition. The kernel of ϕ is the preimage of the diagonal of

HomS(X,Y ) ×S HomS(X,Y ) under the morphism ϕ′ × ϕ′. It is denoted

ker(ϕ).

Obviously, it is equivalent to say that Γ acts faithfully on X, or that the

natural monomorphism Δ → ker(ϕ) is an isomorphism, Δ ⊂ Γ ×S Γ being

the diagonal of Γ. When this holds, we shall also say, by abuse of notation,

that ker(ϕ) is trivial.

If X = Y and G is a group scheme acting on X, the relation between the

kernel we have just defined and the usual kernel H := (ϕ′)−1(idX) is given by

the isomorphism G×H → ker(ϕ) taking (g, h) to (g, gh). We use the notation

ker(ϕ) in both situations, because the context will never allow confusions.

The lemma below collects some cases where one knows that the kernel is

representable by a closed subscheme of Γ ×S Γ. One of this case involves

essentially free morphisms of schemes, a notion which can be slightly (and

fruitfully) generalized to essentially semireflexive (see [SGA3], Exposé VIII,

§6 and [To2], §1). Recall that a module M over a ring A is called semireflexive

if the natural morphism M → M∨∨ to the linear bidual is injective. It is

equivalent to say that M can be embedded into a product module AI , for

some set I. A morphism of schemes X → S is called essentially free (resp.

essentially semireflexive) over S, if there exists a covering of S by open affine

schemes Si, for all i an affine scheme S′
i faithfully flat over Si, and a covering

of X ′
i = X×S S

′
i by open affine schemes X ′

i,j , such that for all i, j the function

ring of X ′
i,j is a free (resp. semireflexive) module over the function ring of S′

i.

It is clear that an essentially free morphism is essentially semireflexive.

4.2.2. Lemma. Let X → S be flat and Y → S separated. Then ker(ϕ) →
Γ×S Γ is a closed immersion in any of the following cases:

(i) X → S is essentially semireflexive,
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(ii) S is regular Noetherian of dimension 1 and X → S is locally of finite

type, flat and pure, and

(iii) X → S is proper and X,Y are locally of finite presentation over S.

We see that under one of these three conditions, faithfulness of ϕ implies

separation of Γ. We remark also that it is not hard to see that if X → S is

flat and Y → S is separated, then ker(ϕ) → Γ ×S Γ satisfies the valuative

criterion of properness. What is more difficult is to check that it is of finite

type.

Proof. For case (i) we refer to [SGA3], Exposé VIII, §6 and [To2], Lemma

1.16. In case (iii), the functor HomS(X,Y ) is a separated algebraic space, by

Artin’s theorems, so the result is clear. It remains to consider case (ii). We

may assume that S is the spectrum of a Henselian discrete valuation ring R.

By Lemma 2.1.11, there is an open neighbourhood U of the special fibre of X

that is covered by open affine subschemes Ui with function ring Ai separated

for the π-adic topology. Besides, Ui is pure over R and Ai is a free R-module,

by Remark 2.1.8. It follows that U is essentially free over S, hence the kernel

NU := ker(Γ×S U → Y ) is a closed subscheme of Γ×S Γ by case (i). Consider

the map induced by the action:

ψ : NU ×S X → Y ×S Y

given on the points by

(γ1, γ2, x) �→ (ϕ(γ1)(x), ϕ(γ2)(x)).

By definition, the restriction of ψ to NU ×S U factors through the diagonal

of Y . Since U is R-universally schematically dense in X (Lemma 2.1.9), then

NU×SU is schematically dense in NU×SX. Thus ψ factors through the diago-

nal, that is, NU → Γ ×S Γ factors through the kernel N :=

ker(Γ×S X → Y ). This gives an inverse for the obvious morphism N → NU

and proves that N � NU . In particular, N is a closed subscheme of Γ ×S Γ,

as claimed. �
4.2.3. Lemma. Let X, Y , Γ be R-schemes. Consider one of the two

situations:

(1) R is Henselian, X is locally of finite type, flat and pure, Y is separated,

Γ is Noetherian.

(2) X is affine and the family of its closed subschemes finite flat over R

is universally affinely dominant (Definition 3.1.1), Y is affine, Γ is

Noetherian.

Consider an action ϕ : Γ ×X → Y faithful on the generic fibre. Then there

exists a finite R-flat closed subscheme Z ⊂ X such that the induced action

Γ× Z → Y has the same kernel as ϕ.
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Proof. Note that in case (2), the scheme X is semireflexive, so that in

both cases the kernels are closed subschemes of Γ × Γ by Lemma 4.2.2. Let

N = ker(ϕ). Let Z1 ⊂ X be a finite flat closed subscheme and let N1 be the

kernel of the restricted action Γ × Z1 → Y . If N1 
= N , there exists Z2 ⊂ X

with Z1 ⊂ Z2 such that N1 � N2. For, otherwise, N1 would act trivially on all

the finite flat closed subschemes Z ⊃ Z1, which are universally schematically

dense in X (by Theorem 3.2.4 in case (1)), hence N1 would act trivially on

X; a contradiction. For s ≥ 1, as long as Ns 
= N , we iterate this process and

obtain a sequence N1 � N2 � N3 � . . . Since Γ × Γ is Noetherian, for some

s, we obtain that Ns = N . We can choose Z = Zs. �
4.3. Representability of schematic images. We now come to the main

results of this paper.

4.3.1. Lemma. Let R be a discrete valuation ring. Let X,Y be R-schemes

locally of finite type, with X flat and pure and Y separated. Consider a finite

flat R-scheme Γ and an action ϕ : Γ × X → Y faithful on the generic fibre.

Then the schematic image of Γ in HomR(X,Y ) is representable by a finite

flat R-scheme Γ′.

We stress again that HomR(X,Y ) is far from being representable, in gen-

eral.

Proof. We start with the case where R is Henselian. By Lemma 4.2.3,

there is a finite R-flat closed subscheme Z0 ⊂ X such that ΓK acts faithfully

on Z0,K . Let {Zλ}λ∈L be the family of all finite R-flat closed subschemes

of X containing Z0. This family carries the filtering order by inclusion of

subschemes: λ ≤ μ if and only if Zλ ⊂ Zμ. Since Zλ is finite flat over R, the

functor HomR(Zλ, Y ) is representable by a scheme. Moreover, since Zλ ⊃ Z0

and Γ is finite, the map ΓK → HomK(Zλ,K , YK) is a closed immersion. For

each λ we define Γ′
λ to be the schematic image of the map Γ → HomR(Zλ, Y ).

If λ ≤ μ in L, there is a restriction morphism HomR(Zμ, Y ) → HomR(Zλ, Y )

and taking schematic closures gives maps Γ′
μ → Γ′

λ. Let Γ′ be the filtering

projective limit of the system {Γ′
λ}. This is an affine, flat, integral R-scheme;

it is dominated by Γ, hence finite over R. Applying Proposition 3.2.5 to the

diagram,

� Γ′
K × Zλ,K

��

	 �� Γ′
K ×� Zλ,K

�� Γ′
K ×XK

��

		

� Γ′ × Zλ
	 ��

��

Γ′ ×� Zλ
�� Γ′ ×X




Y
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we obtain an action of Γ′ on X with values in Y . This action is clearly uni-

versally faithful (i.e. faithful after any base change), because the morphism

�Γ′ ×R Zλ → Γ′ ×R X is universally schematically dominant (apply The-

orem 3.2.4 to X and pull back to Γ′ ×R X). So Γ′ has the characterizing

properties of the schematic closure of Γ in HomR(X,Y ), and this proves the

theorem.

If R is an arbitrary discrete valuation ring, let Rh be a Henselization of

R. By the preceding discussion, Γ⊗R Rh is representable by a finite flat Rh-

scheme. So by descent using [BLR] 6.2/D.4, Γ is representable by a finite flat

R-scheme. �
There is also a version in the affine case, where one can relax the assump-

tions of finite type. For example, it applies to rings arising from the completion

of smooth R-schemes along a section.

4.3.2. Lemma. Let X be an affine flat R-scheme such that the family

of its closed subschemes finite flat over R is universally affinely dominant

(Definition 3.1.1). Let Y be an affine R-scheme and Γ an R-scheme locally of

finite type, flat and pure. Consider an action ϕ : Γ ×X → Y faithful on the

generic fibre. Then the schematic image of Γ in HomR(X,Y ) is representable

by a flat R-scheme which is affine if Γ is, and finite if Γ is.

Proof. Observe that the assumptions imply that X is semireflexive over

R, therefore kernels of actions are representable by closed subschemes, by

Lemma 4.2.2. Let X = Spec(A) and Zλ = Spec(Bλ), λ ∈ L, be the family of

the finite flat closed subschemes of X, and let B = ΠBλ. Note that since the

family {Zλ} is universally affinely dominant, then the map A → B is injective

and, in particular, A is separated for the π-adic topology. The proof goes in

three steps.

First step: Γ is finite. In this case we follow the proof of Lemma 4.3.1. The

reference to Theorem 3.2.4 is replaced by the assumption made on X. The

reference to Proposition 3.2.5 is replaced by a reference to Proposition 3.1.6.

The conclusion is that the schematic image is representable by a finite flat

R-scheme Γ′.

Second step: Γ is affine. Let Γ = Spec(C) and call Δμ = Spec(Dμ), μ ∈ M

the family of all finite R-flat closed subschemes of Γ. By the first step, for all

μ, the schematic image of Δμ in HomR(X,Y ) is representable by a finite flat

R-scheme Δ′
μ = Spec(D′

μ). Let D = ΠDμ, D
′ = ΠD′

μ. We have injective

ring homomorphisms C ↪→ D and D′ ↪→ D. Let C ′ be the intersection of C

and D′ inside D, and Γ′ = Spec(C ′). We claim that {Δ′
μ}μ∈M is the family of

all finite flat closed subschemes of Γ′. Indeed, it is easy to see that C ′ → D′
μ

is surjective, i.e. Δ′
μ is a finite flat closed subscheme of Γ′. Moreover, for

each finite flat closed subscheme T ′ ⊂ Γ′, we can consider T ′
K as a closed
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subscheme of ΓK , we set Δμ equal to the schematic closure of T ′
K in Γ, then

obviously T ′ = Δ′
μ. Now we prove that Γ′ acts on X. For this, note that

coker(C ′ → D′) injects into coker(C → D) and hence is R-flat. It follows

from Lemma 3.1.5 that the family of finite flat closed subschemes of Γ′ is

universally affinely dominant. Then the affine scheme Γ′ ×X has a family of

finite flat subschemes Δ′
μ × Zλ which is universally affinely dominant. Using

Proposition 3.1.6, one obtains an action Γ′ × X → Y . It is clear that this

action has trivial kernel, hence Γ′ is the schematic image of Γ.

Third step: Γ is arbitrary. By Lemma 2.1.7 and Lemma 2.1.11, there is

an open neighbourhood of the special fibre of Γ that is covered by pure open

affine subschemes Ui. For each i, by the second step the schematic image of

Ui is representable by an affine flat R-scheme U ′
i . By unicity of the schematic

image, the formation of U ′
i is compatible with localisation, so that the various

U ′
i glue to give a flat R-scheme U ′. Since U ′

K � UK , we can glue U ′ and ΓK

along their intersection to get a flat R-scheme Γ′. It is clear that this is the

schematic image of Γ. �
In the sequel, we examine the most interesting case of images of groups

acting on schemes by group homomorphisms. We introduce some terminology.

4.3.3. Definition. If an R-group scheme G acts on an R-scheme X in

such a way that the action on the generic fibre is faithful, then the schematic

image of G in AutR(X) is called the effective model of G for its action on X.

4.3.4. Theorem. Let X be an affine flat R-scheme whose closed sub-

schemes finite flat over R form a universally affinely dominant family. Let

G be an R-group scheme locally of finite type, flat and pure, acting on X,

faithfully on the generic fibre. Then the effective model G′ of the action is

representable by a flat R-group scheme. If G is quasi-compact, or affine, or

finite, then G′ has the same property.

Proof. Let G′′ be the schematic image of G inside HomR(X,X). By the

previous lemma G′′ is representable by a flat R-scheme. Since AutR(X) is an

open subfunctor of HomR(X,X), the preimage of G′′ in AutR(X) is flat over

R and hence is the schematic image G′. It follows from the general remarks

of subsection 4.1 that G′ is a sub-R-group scheme of AutR(X).

If G is quasi-compact, let (U ′
i)i∈I be an open cover of G′. Let Ui be the

preimage of U ′
i in G. By assumption, a finite number of open sets U1, . . . , Un

cover G. The scheme G′ is covered by the schematic images of U1, . . . , Un

which are none other than U ′
1, . . . , U

′
n. It follows that G

′ is quasi-compact.

If G is affine, then G′′ is affine by Lemma 4.3.2, hence G′ is quasi-affine.

Let H be the affine hull of G′. This is a flat group scheme containing G′ as

an open subgroup. Moreover, the special fibre G′
k is schematically dense in



EFFECTIVE MODELS OF GROUP SCHEMES 29

the special fibre Hk, and since these are k-group schemes, we have in fact

G′
k = Hk. It follows that G

′ = H is affine.

If G is finite, then G → G′ is surjective and it follows easily that G′ is

finite. �
These representability results extend obviously to the case where X is cov-

ered by invariant open affine subschemes satisfying the relevant assumptions.

When X is locally of finite type but not necessarily affine, it is more difficult

to prove that schematic images are representable. In fact, it is easy to provide

a group scheme Gc which is a candidate to be the image, but in order to

prove that it acts on X using Proposition 3.2.5, one needs Gc to be of finite

type. This is the major difficulty of our method. Moreover, it seems that in

numerous situations one cannot expect the schematic image G′ to be of finite

type unless the kernel of the action of G is very small. The following two

results give examples of this.

4.3.5. Theorem. Let X be an R-scheme locally of finite type, separated,

flat and pure. Let G be a flat proper R-group scheme acting on X, faithfully

on the generic fibre. Let N denote the kernel of the action. Then the effective

model G′ is representable by a flat group scheme of finite type if and only if

Nk is finite. Moreover, in this case G′ is proper.

Proof. First, assume that Nk is finite. We adapt the proof of Lemma 4.3.1.

By Lemma 4.2.3, there is a finite R-flat closed subscheme Z0 ⊂ X such that

GK acts faithfully on Z0,K . Let G0 be the schematic image of G inside

HomR(Z0, X), which is representable since Z0 is finite. We claim that the

morphism u : G → G0 is finite. Indeed, on the special fibre uk factors as

the composition of the finite quotient Gk → Gk/Nk and the monomorphism

Gk/Nk → G0,k given by the embedding in Homk(Zk, Xk). It follows that u is

quasi-finite, hence finite since G is proper.

Now let {Zλ}λ∈L be the family of all finite R-flat closed subschemes of X

containing Z0. For each λ, let G′′
λ be the schematic image of the map G →

HomR(Zλ, X). Since G → G′′
λ → G0 is finite and schematically dominant,

then G → G′′
λ and G′′

λ → G0 are also finite schematically dominant. Let G′′

be the filtering projective limit of the system {G′′
λ}. This is a scheme which is

finite over G0. Also, G → G′′ is finite, thus G′′ is of finite type over R by the

Artin-Tate theorem (see [Ei], exercise 4.32). Applying Proposition 3.2.5 as in

the proof of Lemma 4.3.1, we obtain an action of G′′ on X with values in X.

Let G′ be the preimage of G′′ under the inclusion AutR(X) ⊂ HomR(X,X).

This is the schematic image of G in AutR(X). Since G → G′ is finite, then

G′ is proper.

Conversely, assume that G′ is representable by a flat group scheme of finite

type over R. A result of Anantharaman asserts that a separated morphism u
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between flat R-group schemes of finite type such that uK has affine kernel is

affine ([An], chap. II, prop. 2.3.2). It follows that G → G′ is affine. Since it is

also proper, it is in fact finite. It follows easily that Nk is finite. �
4.3.6. Remark. It is a well-known fact that a proper flat group scheme

over R is in fact projective. Here is one way to see it. Given a finite extension

K∗/K, write G∗ for the extension of G to R∗, the integral closure of R in K∗.

By a result of Raynaud and Faltings ([PY], corollary A.4) there is a finite

extension K∗/K such that the normalization morphism (G̃∗)red → (G∗)red is

finite and (G̃∗)red is smooth. Hence, it is the product of an abelian scheme by

an étale finite group, hence projective. It follows that (G∗)red is projective,

hence also G∗ and G itself. Another way to check that G is projective is to

reduce to the connected case. Then G is commutative and one can apply [An],

chap. II, prop. 2.2.1.

4.3.7. Remark. Under the assumptions of Theorem 4.3.5, it seems plau-

sible that if Nk is finite, then G′ is representable whether G is proper or not.

The only point that needs a verification is that u : G → G0 is finite (with the

notation of the proof of the proposition). Even though uK and uk are finite,

we were not able to prove this.

4.3.8. Proposition. Let X be an R-scheme locally of finite type, sep-

arated, flat and pure. Let G be a reductive R-group scheme acting on X,

faithfully on the generic fibre. Assume furthermore that either k has charac-

teristic p 
= 2, or that no normal subgroup of GK is isomorphic to SO2n+1 for

some n ≥ 1. Let N denote the kernel of the action. Then the effective model

G′ is representable by a flat group scheme of finite type if and only if N is

trivial.

Proof. This is in fact a rigidity property of reductive groups. Assume that

G′ is representable by a flat group scheme of finite type. Since X is flat and

separated, then AutR(X) is a separated sheaf. It follows that G′ is separated.

Then G′ is affine by [An], chap. II, prop. 2.3.1. By corollary 1.3 of [PY], we

obtain that G → G′ is a closed immersion. It follows that G acts faithfully

on X, in other words N is trivial. The converse is obvious. �
From this proposition it it follows that if G is a finite group scheme of order

prime to p = char(k) acting on an R-scheme locally of finite type, separated,

flat and pure X, then G acts faithfully as soon as GK acts faithfully on XK .

Indeed, the effective model is a finite flat group scheme G′ by Theorem 4.3.5.

Since G is reductive by the assumption on its order, we get N = 1. We prove

a refinement of this result in Proposition 4.3.9 below. There, we also give

other properties of the effective model of a finite group scheme, especially in

the case where the action is admissible, which means that X can be covered
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by G-stable open affine subschemes. In this case, there exist quotient schemes

X/G and X/G′, and we want to compare them.

4.3.9. Proposition. Let X be an R-scheme satisfying the assumptions

of Theorem 4.3.4 or of Theorem 4.3.5. Let G be a finite flat R-group scheme

acting on X and let G′ be its effective model. Then:

(i) Let W be a closed or an open subscheme of X. If W is G-stable, then

it is G′-stable. In particular, if G acts admissibly, then G′ also acts

admissibly.

(ii) The effective model of a finite flat subgroup H ⊂ G, for the restricted

action on X, is the schematic image of H in G′. If H is normal in

G, then H ′ is normal in G′.

(iii) Assume that G is étale and let p = char(k). Let N�G be the (unique)

subgroup of G such that Nk is the kernel of the action on Xk. Then,

the effective model of N is a connected p-group.

In the sequel, we assume that G acts admissibly on X.

(iv) The identity of X induces an isomorphism X/G � X/G′.

(v) Assume that there is an open subset U ⊂ X which is universally

schematically dense, such that G′ acts freely on U . Then for any

closed normal subgroup H � G, the effective model of G/H acting on

X/H is G′/H ′.

(vi) Under assumptions (iii) and (v), the group G′ has a connected-étale

sequence

1 → N ′ → G′ → G/N → 1.

Proof. (i) If W is a closed subscheme of X, then it follows from the general

remarks of subsection 4.1 that the morphism G × W → W extends to a

morphism G′ ×W → W . Now assume that W is open. It is enough to prove

that the underlying set of W is stable under G′. Let w ∈ W be a point and

let Ω be its orbit, by which we mean the schematic image of G× Spec(k(w))

in X. This is a closed subscheme of X, hence G′-stable. Since Ω ⊂ W , it

follows that W is G′-stable.

(ii) This is clear.

(iii) Since the composition Nk → N ′
k ↪→ Autk(Xk) is trivial as a morphism

of sheaves, the morphism Nk → N ′
k also is. Moreover, N → N ′ is dominant

and closed, hence surjective. Hence N ′
k is infinitesimal so N ′ is a p-group. Let

us show that it is connected. We may and do assume that R is Henselian.

Then N ′ has a connected-étale sequence whose étale quotient we denote by

N ′
ét. The composition t : N → N ′ → N ′

ét is trivial on the special fibre.

Moreover, t is determined by its restriction to the special fibre because it is a
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morphism between étale schemes. So it is globally trivial. As t is dominant,

we get N ′
ét = 1, thus N ′ is connected.

(iv) The quotient X → X/G is described, locally on a G-stable open affine

U = Spec(A), by the invariant ring AG = { a ∈ A, μG(a) = 1 ⊗ a } where

μG : A → RG ⊗ A is the coaction. Now μG factors through the coaction μG′

corresponding to the action of G′:

A → RG′ ⊗A ↪→ RG⊗A.

Therefore, AG′
= { a ∈ A, μG′(a) = 1⊗ a } = AG. The result follows.

(v) Clearly H acts admissibly, and X/H � X/H ′ by (ii). We just have to

show that G′/H ′ acts faithfully on X/H ′. This is true since G′/H ′ acts freely

on the image of U in X/H ′, by the assumptions on U .

(vi) Apply (v) to H = N . �
In 5.2 and 5.3 below, we will give an example where the effective model

G′ does not act freely on some schematically dense open subscheme, and the

claim in (v) does not hold.

4.4. Schematic images for formal schemes. The same methods as

in subsection 4.3 yield analogous representability results in the category of

formal schemes locally of finite type. Since the proofs are completely similar,

we will simply indicate how the objects are defined and then state the results.

In this subsection, the discrete valuation ring (R,K, k, π) is complete and we

write Rn := R/πn. With a slight abuse of notation, we use the notation in for

both closed immersions Spec(Rn) ↪→ Spec(Rn+1) and Spec(Rn) ↪→ Spec(R),

since confusions are not likely to arise.

4.4.1. Formal sheaves. We first recall some notation and definitions.

By a presheaf over R we mean a contravariant functor from the category of

R-schemes to the category of sets. As usual, we have the notion of a group

presheaf and most of what will be said hereafter is valid for group presheaves.

Schemes over R are identified with their functor of points and hence can be

viewed as presheaves. Presheaves over R form a category denoted PSh /R.

Of course, what we just said works for any base ring.

Let i∗n : PSh /Rn+1 → PSh /Rn be the pullback defined by i∗nF =

F ×Spec(Rn+1) Spec(Rn). An fppf formal sheaf over R is a functor from the

category of formal R-schemes to the category of sets satisfying the sheaf con-

dition for fppf coverings. It may be identified with a direct system of fppf

sheaves over Rn, i.e. a sequence (Fn) such that Fn = i∗nFn+1 for all n ≥ 1.

Precisely, the identification goes as follows: to a formal sheaf F , we associate

the direct system Fn = i∗nF . To a direct system (Fn) of fppf sheaves over Rn,

we associate the functor F = lim−→Fn defined by F (X) = lim←−Fn(Xn) where

X = (Xn). These mappings are inverse to each other. We say that F is
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locally of finite presentation (or locally of finite type, since R is Noetherian)

if each Fn is locally of finite presentation, i.e. satisfies the usual condition of

commutation with filtering direct limits of rings (see [EGA], IV.8.14.2).

4.4.2. Formal sheaves in groups. Given formal R-schemes of finite

type X and Y , we have two important examples of formal sheaves locally of

finite type: the homomorphism sheaf HomR(X,Y ) = lim−→HomRn
(Xn, Yn) and

the automorphism sheaf AutR(X) = lim−→AutRn
(Xn).

Let G be a flat formal scheme in groups of finite type and X a flat separated

formal scheme of finite type over R. An action of G on X is given by a

morphism of formal schemes G × X → X (satisfying the usual axioms) or

equivalently by a morphism of formal sheaves in groups G → AutR(X). The

kernel N of the action is defined as usual. As in Lemma 4.2.2, one shows that

N is representable by a closed formal subscheme of G. As in Lemma 4.2.3,

one shows that there exists a finite R-flat formal closed subscheme Z ⊂ X

such that the induced action G×Z → X has kernel equal to G×N (here the

kernel is understood as a subobject of G×G, see subsection 4.2). An action is

faithful if and only if N = 1, and one can also define faithfulness by requiring

that no nontrivial R-flat closed subscheme of G acts trivially on X.

4.4.3. Schematic images. Let Rig /K denote the category of quasi-

compact, quasi-separated rigid analytic K-spaces. As we recalled, Raynaud’s

point of view gives an equivalence between Rig /K and the category of flat for-

mal R-schemes of finite type localised by admissible formal blowing-ups. Us-

ing the existence of flat models for flat morphisms of rigid spaces (see [BL2]),

one can set up a satisfactory theory of fppf descent in Rig /K. It is not our

intention to provide the details of such a theory. We quote these facts without

further justification; they give a meaning to what an fppf sheaf on Rig /K is.

Recall that a model of a rigid K-space XK is a pair (X, i) where X is a

flat formal scheme of finite type and i is an isomorphism between Xrig and

XK . A map between models (X1, i1) and (X2, i2) is a morphism of formal

schemes X1 → X2 compatible with the given isomorphisms i1, i2. We define

the generic fibre Frig of an fppf formal sheaf locally of finite type F to be

the fppf sheaf on Rig /K defined as follows. For any quasi-compact, quasi-

separated rigid analytic space XK , we set:

Frig(XK) = lim−→
Xrig=XK

F (X)

where the limit is taken with respect to all models X of XK . If F is rep-

resentable by a formal scheme locally of finite type, this definition coincides

with the definition of the generic fibre of a formal scheme by [dJ], Proposi-

tion 7.1.7. Then the definitions of the schematic closure of a subsheaf G of

the generic fibre Frig, schematic image and related notions are the obvious
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extensions of the definitions in subsection 4.1. We can now state our results

for formal schemes.

4.4.4. Theorem. Let X be an affine flat formal R-scheme of finite type.

Let G be a flat formal R-scheme in groups of finite type acting on X, faithfully

on the generic fibre. Then the effective model G′ of the action is representable

by a flat formal R-scheme in groups which is not necessarily of finite type. If

G is quasi-compact, or affine, or finite, then G′ has the same property.

4.4.5. Theorem. Let X be a flat, separated formal R-scheme of finite type.

Let G be a proper flat formal R-scheme in groups acting on X, faithfully on

the generic fibre. Let N denote the kernel of the action and assume that Nk

is finite. Then the effective model G′ is representable by a proper flat formal

R-group scheme.

5. Examples

5.1. Schematic closure of a K-group scheme. When it is repre-

sentable, it is clear that the schematic image G′ depends only on the generic

fibre of G. One may start from an action of a finite K-group scheme GK and

wonder if its schematic closure in AutR(X) is representable by a finite flat

R-scheme. This is not true in general, simply because the action of G may

fail to extend to the special fibre. For an example of this, consider the ring of

power series R = k[[λ]] over a field of characteristic 0. Consider the projective

completion of the affine R-curve with equation y2 = x(x− 1)(x− λ), and let

E/R be the complement of the unique singular point of the special fibre. Thus

EK is the Legendre elliptic curve over K. The 2-torsion EK [2] is rational and

contains, in particular, the point A = (0, 0) generating a group of translations

GK � (Z/2Z)K . This point has singular reduction, and it is easy to see that

the image of the nontrivial point of GK under GK → AutR(E) is a closed

point. Therefore, the schematic closure is the group obtained by gluing GK

and the unit section 1R; it is not finite over R.

5.2. Two effective models of Z/p2Z. The end of the paper is devoted to

the computation of schematic images for the group Z/p2Z. The degeneration

of torsors under Z/pZ is well understood; one observes the exceptional feature

that the effective model tends to act freely on an R-universally dense open set.

Recently, Säıdi studied degenerations of torsors under Z/p2Z in equal char-

acteristics [Sa]. He computed equations for such degenerations; they inherit

an action of Z/p2Z. We will compute the effective model in two cases: one

case where one gets a torsor structure, and one where this fails to happen. In

the case of mixed characteristics, similar examples have been given by Tossici
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in his Ph.D. thesis using the Kummer-to-Artin-Schreier isogeny of Sekiguchi

and Suwa in degree p2 (see [To1] and [To2]).

We let (R,K, k, t) be a complete discrete valuation ring with equal charac-

teristics p > 0, so R � k[[t]]. Under this assumption, torsors under Z/p2Z are

described by Witt theory.

5.2.1. Classical Witt theory First we briefly recall the notation of Witt

theory in degree p2 (see [DG], chap. V). The group scheme of Witt vectors

of length 2 over R has underlying scheme W2,R = Spec(R[u1, u2]) � A2
R with

multiplication law

(u1, u2) + (v1, v2) =
(
u1 + v1, u2 + v2 +

p−1∑
k=1

{p
k

}
uk
1v

p−k
1

)
.

Here we put once and for all
{p
k

}
:= 1

p

(
p
k

)
, where

(
p
k

)
is the binomial coefficient.

The Frobenius morphism of W2 is denoted by F (u1, u2) = (up
1, u

p
2). Put

φ := F − id. From the exact sequence

0 → (Z/p2Z)R → W2,R
φ−→ W2,R → 0

it follows that any étale torsor f : Spec(B) → Spec(A) under (Z/p2Z)R is

given by an equation

F (X1, X2)− (X1, X2) = (a1, a2)

where (a1, a2) ∈ W2(A) is a Witt vector and the subtraction is that of Witt

vectors. Furthermore, (a1, a2) is well defined up to the addition of elements

of the form F (c1, c2)− (c1, c2). Note that

F (X1, X2)− (X1, X2) =
(
Xp

1 −X1, X
p
2 −X2 +

p−1∑
k=1

{p
k

}
(X1)

pk(−X1)
p−k

)
.

We emphasize that the Hopf algebra of (Z/p2Z)R is

R[Z/p2Z] =
R[u1, u2]

(up
1 − u1, u

p
2 − u2)

with comultiplication that of W2.

5.2.2. Twisted forms of W2. Let λ, μ, ν be elements of R. We define

a “twisted” group Wλ
2 as the group with underlying scheme Spec(R[u1, u2])

and multiplication law given by

(u1, u2) + (v1, v2) =

(
u1 + v1 , u2 + v2 + λ

p−1∑
k=1

{p
k

}
uk
1v

p−k
1

)
.
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We have the following analogues of the scalar multiplication and the Frobenius

of W2:

Iνλ,μ : Wλ
2 −→ Wλμ

2

(u1, u2) �−→ (νu1, μν
pu2)

and
Fλ : Wλ

2 −→ Wλp

2

(u1, u2) �−→ (up
1, u

p
2).

In case μ = λp−1 we define an isogeny

φλ,ν := Fλ − Iνλ,λp−1 : Wλ
2 → Wλp

2 .

We have

φλ,ν(u1, u2) =

(
up
1 − νu1 , u

p
2 − νpλp−1u2 + λp

p−1∑
k=1

{p
k

}
upk
1 (−νu1)

p−k

)
.

The kernel Kλ,ν := ker(φλ,ν) is a finite flat group of rank p2. If p > 2, its

Hopf algebra is

R[Kλ,ν ] =
R[u1, u2]

(up
1 − νu1, u

p
2 − νpλp−1u2)

.

We now come to the examples. They arise from the following situation.

Denote by G = Z/p2Z the constant group, and by Y = A1
R = Spec(R[w]) the

affine line over R. Let m1,m2 ∈ Z be integers. Let fK : XK → YK be the

(Z/p2Z)K-torsor over YK = A1
K given by the equations:⎧⎪⎨

⎪⎩
T p
1 − T1 = tm1w

T p
2 − T2 = tm2w −

p−1∑
k=1

{p
k

}
(T1)

pk(−T1)
p−k

Depending on the values of the conductors m1, m2 this gives rise to different

group degenerations.

5.2.3. First example. Assume m1 = 0 and m2 = −p. Then after the

change of variables Z1 = T1, Z2 = tT2 the map fK extends to a cover X → Y

with equations:⎧⎪⎨
⎪⎩

Zp
1 − Z1 = w,

Zp
2 − t(p−1)Z2 = w − tp

p−1∑
k=1

{p
k

}
(Z1)

pk(−Z1)
p−k.

The scheme X is a smooth affine R-curve. It is quickly seen that the action

of Z/p2Z extends to X. As is obvious from the expression of the isogeny φλ,ν

(see 5.2.2), the map X → Y is a torsor under Kλ,ν for λ = t and ν = 1. Thus,

the effective model is G′ = Kt,1.
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5.2.4. Second example. Assume m1 = −p2n1 < 0 and m2 = 0. Put

m̃1 = n1(p(p − 1) + 1). Then after the change of variables Z1 = tpn1T1 and

Z2 = tm̃1T2 the map fK extends to a cover X → Y with equations⎧⎪⎨
⎪⎩

Zp
1 − t(p−1)pn1Z1 = w,

Zp
2 − t(p−1)m̃1Z2 = tpm̃1w −

p−1∑
k=1

{p
k

}
tpn1(p−1)(p−1−k)(Z1)

pk(−Z1)
p−k.

The scheme X is a flat R-curve with geometrically integral cuspidal special

fibre. The action of Z/p2Z extends to this model as follows: for (u1, u2) a

point of GR = (Z/p2Z)R,

(u1, u2).(Z1, Z2) =

(
Z1 + tpn1u1,

Z2 + tm̃1u2 +

p−1∑
k=1

{p
k

}
tn1(p(p−1)+1−pk)(Z1)

k(u1)
p−k

)
.

In order to find out the effective model G′ we look at the subalgebra of RG

generated by v1 = tn1u1 and v2 = tm̃1u2:

RG′ := R[v1, v2] ⊂ RG.

One computes that RG′ inherits a comultiplication from RG:

(v1, v2) + (w1, w2) =

(
v1 + w1 , v2 + w2 +

p−1∑
k=1

{p
k

}
tn1(p−1)2vk1w

p−k
1

)
.

Thus if p > 2 we recognize G′ � Kλ,ν for λ = tn1(p−1)2 and ν = tn1(p−1). The

action of G on X extends to an action of G′ given by

(v1, v2).(Z1, Z2) =

(
Z1 + t(p−1)n1v1,

Z2 + v2 +

p−1∑
k=1

{p
k

}
tn1(p−1)(p−1−k)Zk

1 v
p−k
1

)
.

Here X → Y is not a torsor under G′. Indeed, on the special fibre we have

G′
k = (αp)

2 and the action on Xk is

(v1, v2).(Z1, Z2) =

(
Z1 , Z2 + v2 + v1Z

p−1
1

)
.

This action is faithful as required, but any point (z1, z2) ∈ Xk has a stabilizer

of order p which is the subgroup of G′
k defined by the equation v2+v1z

p−1
1 = 0.
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5.3. Effective model of a quotient. We finish with a counter-example

to point (v) in Proposition 4.3.9. For ν ∈ R we introduce the group schemeMν

which is the kernel of the isogeny ψν : Ga,R → Ga,R defined by ψν(x) = xp−νx

(see [Ma], §3.2). This is a finite flat group scheme of order p.

We continue with the example in 5.2.4. Thus G = (Z/p2Z)R and G′ � Kλ,ν

where λ = tn1(p−1)2 and ν = tn1(p−1). Let H = (Z/pZ)R ⊂ G and let H ′ ⊂ G′

be its image. We have

H ′ = Spec

(
R[v2]

(vp2 − νpλp−1v2)

)
� Mνpλp−1

and

G′/H ′ = Spec

(
R[v1]

(vp1 − νv1)

)
� Mν .

The quotient scheme X/H � X/H ′ is the cover of Y given by the equation

Zp
1 − t(p−1)pn1Z1 = w, i.e. Zp

1 − νpZ1 = w. It has an action of G′/H ′ given

by

v1.Z1 = Z1 + νv1.

This action is not faithful on the special fibre. It is visible that the effective

model of G′/H ′, or equivalently of G/H, acting on X/H ′ is the group whose

Hopf algebra is equal to the subalgebra of R[G′/H ′] generated by s1 = νv1.

Therefore (G/H)′ � Mνp and the map G′/H ′ → (G/H)′ = (G′/H ′)′ is not

an isomorphism. We see that the effective model of the quotient is not the

quotient of the effective models.
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[SGA3] M. Demazure, A. Grothendieck, Schémas en groupes II: Groupes de type mul-
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