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HURWITZ SPACES

by

Matthieu Romagny & Stefan Wewers

Abstract — This paper is intended to serve as a general introduction to the theory of
Hurwitz spaces and as an overview over the different methods for their construction.

Résumé(Espaces de Hurwitz). — Cet article a pour but de donner une introduction
a la théorie des espaces de Hurwitz et un apergu des différentes méthodes pour leur
construction.

1. Introduction

1.1. The classical Hurwitz space and the moduli of curves. — The classical
Hurwitz space first appeared in the work of Clebsch [Cle72] and Hurwitz [Hur91] as
an auxiliary object to study the moduli space of curves. Let X be a smooth projective
curve of genus g over C. A rational function f : X — P! of degree n is called simple if
there are at least n — 1 points on X over every point of P!. Such a cover has exactly
r := 2¢g + 2n — 2 branch points. Let H, , denote the set of isomorphism classes of
simple branched covers of P! of degree n with r branch points. Hurwitz [Hur91]
showed that the set H,, , has a natural structure of a complex manifold. In fact, one
can realize H,, , as a finite unramified covering

\I]n,r : Hn,r — U, =P — Ara

where A, is the discriminant hypersurface. (Note that the space U, has a natural
interpretation as the set of all subsets of P! of cardinality 7. The map ¥,, - sends the
class of a simple cover f : X — P! to the branch locus of f.) Using a combinatorial
calculation of Clebsch [Cle72] which describes the action of the fundamental group
of U, on the fibers of U,, ., Hurwitz showed that H, , is connected.

2000Mathematics Subject Classification— 14H30, 14D22.
Key words and phrases— Covers of curves, Galois theory, Hurwitz spaces.

(© Séminaires et Congres 13, SMF 2006



314 M. ROMAGNY & S. WEWERS

Later Severi [Sev21] proved that for n > g + 1 every curve X of genus g admits a
simple cover f : X — P! of degree n. In other words, the natural map

Hur — My

which maps the class of the cover f : X — P! to the class of the curve X is surjective.
Using the connectedness of 'H,, ., Severi concluded that M, is connected.

Although M, is an algebraic variety and can be defined over Z, the proof of its
connectedness sketched above is essentially topological. It therefore does not immedi-
ately yield the connectedness of M ®IF, for a prime p. In order to fill this gap, Fulton
[Ful69] gave a purely algebraic construction of the Hurwitz space H,,_ . In his theory,
., r is a scheme, of finite type over Z, which represents a certain moduli functor. It is
equipped with a natural étale morphism ¥,, ,. : H,, , — U, which becomes finite when
restricted to Spec Z[1/n!]. In this setup, Fulton was able to prove the irreducibility of
H,,r ® F, for every prime p > n, using the irreducibility of H,, , ® C. With the same
reasoning as above, one can deduce the irreducibility of My ® F,, for p > g+ 1. (At
about the same time, Deligne and Mumford proved the irreducibility of M, ® F,, for
all p, using much more sophisticated methods.)

Further applications of Hurwitz spaces to the moduli of curves were given by Harris
and Mumford [HM82]. They construct a compactification ﬂn,r of H,, . Points on
the boundary 87:{n,r = ﬂnm — Hp,» correspond to a certain type of degenerate covers
between singular curves called admissible covers. The map H,, — M, extends to a
map H,, — Mg, where M, is the Deligne-Mumford compactification of M. The
geometry of this map near the boundary yields interesting results on the geometry

of /\;lg.

1.2. Hurwitz spaces in Galois theory. — Branched covers of the projective line
have more applications besides the moduli of curves. For instance, in the context of the
regular inverse Galois problem one is naturally led to study Galois covers f : X — P!
with a fixed Galois group G. Here arithmetic problems play a prominent role, e.g.
the determination of the minimal field of definition of a Galois cover.

Fried [Fri77] first pointed out that the geometry of the moduli spaces of branched
covers of P! with a fixed Galois group G and a fixed number of branch points car-
ries important arithmetic information on the individual covers that are parameter-
ized. Matzat [Mat91] reformulated these ideas in a field theoretic language and gave
some concrete applications to the regular inverse Galois problem. Fried and Vélklein
[FV91] gave the following precise formulation of the connection between geometry
and arithmetic. For a field k of characteristic 0, let H, (k) denote the set of iso-
morphism classes of pairs (f,7), where f : X — P} is a regular Galois cover with r
branch points, defined over k, and 7 : G = Gal(X/P!) is an isomorphism of G with
the Galois group of f. Suppose for simplicity that G is center-free. Then it is proved
in [FV91] that the set H, ¢ (k) is naturally the set of k-rational points of a smooth
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variety H, g, defined over Q. Moreover, we have a finite étale cover of Q-varieties
\II’I‘,G : H’I‘,G — ur

whose associated topological covering map is determined by an explicit action of
the fundamental group of U, (called the Hurwitz braid group) on the fibres of ¥, .
Using this braid action, it is shown in [FV91] that H, ¢ has at least one absolutely
irreducible component defined over Q if r is sufficiently large. This has interesting
consequences for the structure of the absolute Galois group of Q, see [FV91].

In some very special cases one can show, using the braid action on the fibres of
V¥, g, that H, ¢ has a connected component which is a rational variety over Q and
hence has many rational points. Then these rational points correspond to regular
Galois extensions of Q(¢) with Galois group G. For instance, [Mat91], §9.4, gives
an example with r = 4 and G = Ms,. This example yields the only known regular
realizations of the Mathieu group May.

1.3. The general construction. — In [FV91] the Hurwitz space H, ¢ is first
constructed as a complex manifold. It is then shown to have a natural structure of
a QQ-variety with the property that k-rational points on H,. g correspond to G-Galois
covers defined over k, but only for fields &k of characteristic 0 (and assuming that G
is center-free). From the work of Fulton one can expect that there exists a scheme
‘H,.q,z of finite type over Z such that k-rational points correspond to tamely ramified
G-Galois covers over k for all fields k. Moreover, H, g,z should have good reduction
at all primes p which do not divide the order of G. One can also expect that the
construction of Harris and Mumford extends to the Galois situation and yields a
nice compactification H,. ¢z of H, ¢z, at least over Z[1/|G|]. These expectations are
proved in [Wew98], in a more general context.

If the group G has a nontrivial center, then the Hurwitz space H,, g,z is only a coarse
and not a fine moduli space. For instance, a k-rational point on H, gz corresponds
to a tame G-cover f : X — P}C defined over the algebraic closure of k. The field k
is the field of moduli, but not necessarily a field of definition of f. To deal with this
difficulty it is very natural to work with algebraic stacks.

The point of view of algebraic stacks has further advantages. For instance, even
if G is center-free, the construction of the Harris-Mumford compactification H,. g of
H,.c becomes awkward without the systematic use of stacks. It also provides a much
clearer understanding of the connection of Hurwitz spaces with the moduli space of
curves with level structure, see [Rom02]. Finally, Hurwitz spaces as algebraic stacks
are useful for the computation of geometric properties of the moduli of curves, e.g.
Picard groups.

The present paper is intended to serve as a general introduction to the theory of
Hurwitz spaces and as an overview over the different methods for their construction.
For applications to arithmetic problems and Galois theory, we refer to the other
contributions of this volume.
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2. Hurwitz spaces as coarse moduli spaces

In this section we define the Hurwitz space H, ¢ as a coarse moduli space, using
the language of schemes.

2.1. Basic definitions. — Let S be a scheme. By a curve over S we mean a
smooth and proper morphism X — S whose (geometric) fibres are connected and
1-dimensional. If X is a curve over S, a cover of X is a finite, flat and surjective
S-morphism f:Y — X, where Y is another curve over S. We denote by Aut(f) the
group of automorphisms of Y which leave f fixed.

A cover f:Y — X is called Galois if it is separable and the group Aut(f) acts
transitively on every (geometric) fibre of f. It is called tame if there exists a smooth
relative divisor D C X such that the following holds: (a) the natural map D — S is
finite and étale, (b) the restriction of f : Y — X to the open subset U := X — D is
étale, and (c) for every geometric point s : Speck — D, the ramification index of f
along D at s is > 1 and prime to the residue characteristic of s. If this is the case,
the divisor D is called the branch locus of f. If the degree of D — S is constant and
equal to r, we say that the cover f has r branch points.

Let G be a finite group and X a curve over S. A G-cover of X is a Galois cover
f:Y — X together with an isomorphism 7 : G = Aut(f). Usually we will identify
the group Aut(f) with G.

Two G-covers f1: Y] — X and f5: Yo — X of the same curve X over S are called
isomorphic if there exists an isomorphism h : Y7 = Y5 such that fo o h = f; and
goh=hogforall geqG.

2.2. Suppose that S = Speck, where k is a field. Then a curve X over S is uniquely
determined by its function field K := k(X). A cover f : Y — X corresponds one-to-
one to a finite, separable and regular field extension L/K (here ‘regular’ means that
k is algebraically closed in L). The cover f is Galois (resp. tame) if and only if the
extension L/K is Galois (resp. tamely ramified at all places of K which are trivial on

2.3. Let us fix a finite group G and an integer r > 3. For a scheme S, we denote by
]Pls the relative projective line over S. Define

Hec(S)={f: X EPL | deg(D/S) =11}/
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as the set of isomorphism classes of tame G-covers of P§ with r branch points. If
S = Speck then H, g is the set of G-Galois extensions of the rational function field
k(t), up to isomorphism.

2.4. The functor S +— H, ¢(S) is a typical example of a moduli problem. One would
like to show that there is a fine moduli space representing this functor, i.e. a scheme
H together with an isomorphism of functors (from schemes to sets)

H, c(S) = Homz(S, H).

Unfortunately, this is true only under an additional assumption (if and only if the
group G is center free). Fortunately, one can prove a slightly weaker result without
this extra assumption (see e.g. [Wew98]).

Theorem 2.1 — There exists a scheme H = Hy ¢z, smooth and of finite type over Z,
together with a morphism of functors (from schemes to sets)

(1) H,c(S) — Homyz(S, H),
such that the following holds.

(1) Suppose there is another scheme H' and a morphism of functors H, a(S) —
Homy (S, H'). Then there exists a unique morphism of schemes H — H' which
makes the following diagram commute:

Hr c(S) —— Homg(S, H)

|

Homyz (S, H').
(i1) If S is the spectrum of an algebraically closed field then (1) is a bijection.

We say that the scheme H = H, gz is the coarse moduli space associated to the
functor S +— H, ¢(S), and call it the Hurwitz space for tame G-Galois covers of P!
with r branch points.

In particular the theorem says that for any algebraically closed field k the set
Hr (k) (i-e. the set of isomorphism classes of regular and tamely ramified G-Galois
extensions of k(t)) has a natural structure of a smooth k-variety H, g 5. For k of
characteristic zero this was first proved by Fried and Vélklein, see [FV91]. In §4 we
will prove it for an arbitrary field k.

Let (f,7) be a G-cover over a scheme S. It follows immediately from the definition
that the group of automorphisms of the pair (f, o) is the center of G. It is a general
fact that a coarse moduli space representing objects with no nontrivial automorphisms
is actually a fine moduli space. Hence we deduce from Theorem 2.1:

Corollary 2.2 — Suppose that the center of G is trivial. Then (1) is a bijection for
all schemes S. In other words, the scheme H, ¢ 7 s a fine moduli space.
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In particular, if G is center-free then for any field k (not necessarily algebraically
closed) the set H, (k) (i.e. the set of isomorphism classes of regular and tamely
ramified G-Galois extensions of k(t)) can be identified with the set of k-rational points
of a smooth k-variety H, ¢ k.

2.5. Theorem 2.1 has many variants and generalizations. One variant which is impor-
tant in arithmetic applications comes up when we weaken the notion of ‘isomorphism’
between two G-covers. For instance, two G-covers f1 : Y7 — IP’}g and fo : Yo — IP’}g
over the same scheme S are called weakly isomorphic if there exist isomorphisms
¢:Y1 5 Y, and ¢ : PT 5 P! such that faogp =o f1 and gogp = ¢pog for all g € G.
(Note that 1) may be regarded as an element of PGL2(S).) Replacing ‘isomorphism
class’ by ‘weak isomorphism class’ in the definition of the moduli problem H,. g, we
get a new moduli problem S — H°¢(S) := H, ¢ (S)/PGL2(S). Theorem 2.1 carries

over to this new situation and shows the existence of a coarse moduli space H*g,

called a reduced Hurwitz space. It is easy to see that the natural map H, o — Hi?g
identifies H;‘fg with the quotient of H, ¢ under the natural action of PGLy. Hence
Hi?g is normal. In general, it is not smooth over Z.

There are many more variants of the moduli problem H, . For instance, one can
regard G-Galois covers f : Y — P! as mere covers (i.e. one forgets the isomorphism
7: G 5 Aut(f)), look at non Galois covers, or one can order the branch points. All
these variants are important in applications, and arithmetic questions dealing with
their differences can be quite subtle. See e.g. the other contributions for this volume.
However, as far as the construction of the corresponding Hurwitz spaces (i.e. the proof
of the relevant version of Theorem 2.1) is concerned, it makes no essential difference
which variant one is looking at. In fact, in [Wew98] a much more general version
of Theorem 2.1 is proved from which all the special cases discussed above can be
deduced. This general approach will be discussed in §4.3. In the first three sections
of the present article we restrict ourselves to the moduli problem H, ¢.

3. Analytic construction

In this section we describe the Hurwitz space H, g as an analytic space, using
Riemann’s Existence Theorem. We also prove the analog of Theorem 2.1 in the
context of analytic spaces.

3.1. Riemann’s Existence Theorem. — Let us fix, for the moment, a finite
subset D = {t1,...,t,} C P{, of cardinality r > 0. We denote by Hp ¢ c the set of
isomorphism classes of G-covers of Pl with branch locus D.
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Set U := P& — D and choose a basepoint zg € U. By elementary topology, there
exists a presentation

mU,z0) = (v, | [ =1,

where 7; is represented by a simple closed loop winding around the missing point ¢;,
counterclockwise.

Let f : X — PL be a G-cover with branch locus D. We consider f as a finite,
holomorphic map between compact Riemann surfaces. The restriction of f to V :=
f71(U) is a regular covering projection with group of deck transformations G, see
[Spa66], §2. It corresponds to a surjective homomorphism py : 71 (U, z9) — G (well
defined up to composition by an inner automorphism of G). Set g; := ps(7;). Then
g=(g1,-..,9-) is an element of the set

E(G)={g=1(91.---,9) | 9i€ G—{1}, G={(gs), Hgi 1)

We let G act on &.(G) by simultaneous conjugation and denote by
ni,(G) :=&.(G)/G
the set of (inner) Nielsen classes. The most fundamental fact about G-covers over C

is the following theorem, which is sometimes called Riemann’s Existence Theorem.

Theorem 3.1 — The correspondence f +— g induces a bijection
Hp,c,c — ni(G).

For a proof, see e.g. [V6196]. It is not hard to see that an element g € ni.(G)
gives rise to a ramified Galois cover f® : Y — PL of compact Riemann surfaces.
The most substantial part of the proof of Theorem 3.1 consists in showing that f2"
is actually algebraic.

3.2. Deformation of covers. — Fix an integer » > 0 and set
Uc:={DCPt | |IDl=r}

The set U, c has a natural structure of a complex manifold. Let H, ¢ c be the set of
isomorphism classes of G-covers of P<1c with 7 branch points. Let

v, : HT,G,(C — ur,(C

denote the map which associates to a G-cover f : X — P{ the branch locus of f.
We endow the set H, g c with a topology, as follows. Fix a G-cover f : X — P<1c
with branch locus D = {t1,...,t,}, and let p : m (P& —D) — G denote the correspond-
ing group homomorphism. Let Ci,...,C, C PL be disjoint disk-like neighborhoods
of the points t1,...,¢.. Let U(C;) denote the subset of U, ¢ consisting of divisors
D' = {th,...,t.} € Ur¢c with t; € C;. Note that the subsets U(C;) form a basis of
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open neighborhoods of the point D € U,c. For any D' € U(C;) we have natural
isomorphisms

(2) m(Pe — D) = m (Pe — (UiCy)) = m(Pe — D).

We define the subset H(f,C;) C H,qa.c as the set of isomorphism classes of G-
covers f’: X' — P{ with the following properties. First, the branch locus D’ of f’
is contained in U(C;); second, the composition of the homomorphism p’ : 71 (P{ —
D’) — G corresponding to f’ with the isomorphism (2) agrees with p, up to an inner
automorphism of G. The topology we put on H, ¢ c is the unique topology in which
the sets H(f, C;) form a basis of open neighborhoods of the point corresponding to f.

Proposition 3.2 — (i) The map U, is a covering projection.
(ii) The topological space Hr.c.c has a unique structure of a complex manifold such
that U, is bitholomorphic.

Proof. — By construction, we have the following decomposition into open and closed
subsets:

o U(C)) = [ H ),
f

where f runs over all G-covers with branch locus D, up to isomorphism. Moreover, for
each f the induced map H(f, C;) — U(C;) is a bijection. This proves (i). Statement
(ii) is a direct consequence of (i). O

Remark 3.3 — By elementary topology, the space H, ¢ ¢ is determined, as a covering
of U, ¢, by a natural action of the fundamental group of U, ¢ on the fiber Hp g,c =
ni,(G). The fundamental group of U, ¢, which is called the Hurwitz braid group on
r strands, has a well known presentation by generators and relations. Moreover, the
action of the generators of this presentation on ni,(G) are given by simple and explicit
formulas, see e.g. [FVIL].

So from a topological point of view, we have a rather explicit description of the
Hurwitz space H, g c. For instance, the connected components of H, ¢ c correspond
to the orbits of the braid action on the set ni,(G).

3.3. H, g, is a coarse moduli space. — We consider the set H, g, c as a complex
manifold. Then we have the following result.

Proposition 3.4 — Let S be a complex analytic space and f : X — P a tame G-cover
over S with r branch points. Let

pf: 8 —=Hrac

be the map which assigns to a point s € S the isomorphism class of the fiber of
[ : X — P4 over s. Then ¢y is an analytic morphism.
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Proof. — Let ¢y : S — U, c denote the composition of the map ¢; with ¥,. By
definition, for s € S the point ¥ ¢(s) € U, ¢ corresponds to the branch divisor of the
fiber of f over the point s. Since the branch divisor of the fibres of f vary analytically
with s, ¥ is an analytic map. It also follows immediately from the definition of the
topology on H, g,c that ¢y is continuous. Since ¥, is a local isomorphism of complex
manifolds, we deduce that ¢ is analytic. O

For an analytic space S, let H,. c(S) denote the set of isomorphism classes of G-
covers of IP’ls with 7 branch points (as in §2.3). The proposition shows that we have a
natural morphism of functors (from analytic spaces to sets)

(3) Hr,q(S) — Homan (S, Hr.cc)-

It yields an analog of Theorem 2.1 in the context of analytic spaces. (We leave to
the reader the task of formulating the correct notion of ‘coarse moduli space’ in the
context of analytic spaces.)

Theorem 3.5 — The morphism of functors (3) identifies H, q,c with the coarse mod-
uli space of the functor S — H,.q(S).

Proof. — Let 'H' be an analytic space and
G(S) : Hr,q(S) — Homay (S, H)

a morphism of functors in S (from analytic spaces to sets). If we evaluate this mor-
phism on the analytic space S = {s} consisting of a single point, then we get a map
g Hrac — H'. We claim that ¢ is analytic. Once this claim is proved, it is clear
that the composition of the morphism (3) with the morphism induced by g is equal
to G (compare with the diagram of Theorem 2.1 (i)). Moreover, g is the unique map
with this property. Therefore, it remains to show that g is analytic. Let f: X — P!
be a G-cover and s € H, ¢, the corresponding point. Let S := H(f,C;) C Hr,a,c be
one of the basic neighborhoods of s constructed in §3.2 above. Let D C PL be the
relative divisor corresponding to the isomorphism S = U(C;). Using the fact that the
projection IP’ls —-D—>Sisa topological fibration, it is easy to show that there exists
a unique family of G-covers f : X — PL over S with branch locus D and such that
fNS = f. The morphism of functors G applied to the isomorphism class of f yields an
analytic map g : S — H’. By functoriality we have § = g|s. This shows that g is
analytic and finishes the proof of the theorem. O

4. Algebraic construction

In this section we prove a certain weak version of Theorem 2.1. Essentially we show
that there is a scheme H, ¢z, smooth and of finite type over Z, such that for any
algebraically closed field k there is a functorial bijection between the set of k-rational
points of H, ¢z and the set of isomorphism classes of tame G-covers f : X — Pj
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with 7 branch points, defined over k. This suffices for many applications. The proof
we give is somewhat similar to the proof of Theorem 3.5, in the sense that it relies
heavily on the nice deformation theory of tamely ramified covers. The topological
arguments used in the last section are replaced by the use of étale morphism. For
basic facts about étale morphisms, see the first chapter of [GT71] or of [Mil80].
Throughout this section, we fix an integer » > 3 and a finite group G.

4.1. The configuration space U, 7. — For r > 1, let U, 7 denote the open subset
of P}, defined by the condition
Alco:...:¢p) :=discr(coT" 4+ -+ -+ ¢pn) # 0.

Let Dyniv C P x4 U,z be the ‘universal’ smooth divisor of degree r, given by the
equation coT" + - - - 4+ ¢, = 0. To any morphism of schemes % : S — U, 7z we associate
the divisor Dy := Dyniv Xy S C P}g. This gives a one-to-one correspondence between
morphisms S — U, z and divisors D C P} such that the projection D — S is finite and
étale, of degree r. (This makes U, 7 a fine moduli space.) The morphism ¢ : S — U,z
corresponding to a divisor D C P} is called the classifying map of D.

4.2. The field of moduli of a G-cover. — Let k be an algebraically closed field
and f: X — P} a G-cover, defined over k. In this subsection we associate to f two
subfields of k, denoted by kg and k,,,. They depend only on the isomorphism class of
f as a G-cover.

Definition 4.1 — Let D C P}, be the branch locus of f. The branch locus field of f is
the residue field ky of the image of the classifying map Speck — U,z of D. In other
words, ko is the smallest field of definition of the divisor D C P*.

Definition 4.2 — Let o : k = k be a field automorphism. We extend ¢ to an auto-
morphism of the rational function field k(¢) by prescribing that o(t) = t. We denote
by & the corresponding automorphism of P} (where we regard k(t) as the function
field of P}, in the standard way). The twist of f by o is the G-cover f7 : X7 — P}
occurring in the following commutative diagram with Cartesian squares:

X7 — X

| |7

1 g 1
Pk Pk

The field of moduli of f is the subfield k,, C k of elements of k fixed by the group of
automorphisms

Ap={o:k Sk | fo=f}
Note that the condition fo = f is equivalent to the condition that o : k(t) = k(t)
extends to an automorphism of the function field L := k(X) of X which commutes
with the action of G.
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By construction, we have kg C k,, C k. Moreover, if k' C k is a field of definition
of f then k,, C k’. We have the following important finiteness result.

Theorem 4.3 — Let k be an algebraically closed field and f : X — P} a tame G-cover
defined over k. Then f has a field of definition k' C k which is a finite separable
extension of the branch locus field ko. In particular, the field of moduli of f is a finite
separable extension of kg.

A well known application of this theorem is the ‘obvious direction’ of Belyi’s theo-
rem: if X is a smooth projective curve over C and f : X — P! is a rational function
with only three branch points, then X can be defined over a number field.

Theorem 4.3 is equivalent to the assertion that the tame fundamental group

mh (P}Cgep — D) does not change under base change with the extension k/ky™". The

corresponding fact for smooth projective schemes is proved in [G171], see Corollaire
X.1.8 and Théoreme IX.6.1. In [GT71], Exposé XIII, the tame fundamental group
of an affine curve over an algebraically closed field is studied. However, as the referee
pointed out, there seems to be no statement in loc.cit. of which Theorem 4.3 is a
direct consequence.

Note that the tameness assumption in Theorem 4.3 is necessary, see [GT71], Re-
marque X.1.10. We will prove Theorem 4.3 in §4.4 below. The proof is part of our
algebraic construction of the Hurwitz space H, g. For a different proof of Theorem
4.3 in the case where k has characteristic 0, see e.g. [V6196], §7, or [K04]. Both these
proofs use the Riemann Existence Theorem, see §3.

The following fact is very useful, in particular for applications to the regular inverse
Galois problem.

Proposition 4.4 — Let f : X — P} be a G-cover, with field of moduli k., C k. Suppose
that the group G has trivial center. Then f has a unique model over k,,. In particular,

km is a field of definition.

In general, the obstruction for k,, to be a field of definition is represented by an
element of the Galois cohomology group H?(k,, Za), where Zg denotes the center of
G. See [DD97].

4.3. Algebraic deformation theory. — Let k be an algebraically closed field.
We denote by Ci, the category of Noetherian complete local rings with residue field k.
Homomorphisms between objects of Cy are local ring homomorphisms which induce
the identity on k.

Let f: X — P}C be a G-cover defined over k, and let R be an object of Cx. A
deformation of f over R is a G-cover fr: Xp — P} defined over the ring R together
with an isomorphism of G-covers between f and the special fiber fr ® k. Usually we
will identify f and fr ® k. An isomorphism between two deformations fr and fj is
an isomorphism of G-covers over R which induces the identity on f.
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Let tq1,...,t,. denote the branch points of f. It is no restriction to assume that
f is unramified over infinity. We may hence consider the t; as elements of k. The
next proposition is the algebraic version of the fact that one can deform a cover in
a unique way by moving its branch points. It is our main tool for the proof of the
Theorems 4.3 and 4.11 (just as the corresponding topological fact was the main tool
for the proof of Theorem 3.5).

Proposition 4.5 — Assume that the cover f is tamely ramified. Let R be an object
of C, and let t1,...,t, € R be elements which lift t,...,t, € k. Then there ex-
ists a deformation fr of f with branch points ti,...,t.. It is unique up to unique
isomorphism.

Proposition 4.5 is a special case of the deformation theory of tame covers, see
[G*71] and §5 below. Here is a useful lemma which follows from the uniqueness
statement in Proposition 4.5.

Lemma 4.6 — Let R be a Noetherian, normal and integral domain, S = Spec R, and
fi: X1 — P}g, fo:Xo— P}g two tame G-covers over S.

(i) Let \, N : fi = fa be two isomorphisms of G-covers. If there exists a geometric
point s : Speck — S such that A\s = X, then A = X.

(ii) Suppose that f1 and fo have the same branch locus D C PY. Let s : Speck — S
be a geometric point and s : f1.s — f2.s an isomorphism between the fibres of
f1 and fo over s. Then there exists an étale neighborhood S’ — S of the point
s and an isomorphism X : f1 xg S’ = fo x5 S" which extends .

(iii) Let K denote the fraction field of R. Any isomorphism \i : f1 xs Spec K =
fa x5 Spec K extends to a unique isomorphism X : fi = fo.

Proof. — Let A\, X be as in (i), and let W C S denote the locus of points s : Speck —
S such that A = \,. It is easy to see that W is a closed subset of V. Therefore,
W = Spec R/I, where I < R is an ideal. Suppose that s : Spec k — S has image in
W. Let R denote the strict completion of R at s. Since A; = X, we can think of
fi Xs Spec R as two deformations of the same G-cover over k; then A xg Spec R and
N X g Spec R are isomorphisms of these two deformations. The uniqueness statement
in Proposition 4.5 implies that A x g Spec R=X\xg Spec R. But since R is contained
in R, this shows that 7 =0 and W = S and proves (i).

Suppose now that fi; and fo have the same branch locus and that there exists a
point s : Speck — S and an isomorphism Ag : f1 s — fas. Let R denote the strict
completion of R at s. By Proposition 4.5 and the assumption on the branch locus,
the isomorphism A; extends to an isomorphism A fi1 Xs Specf% = fy x5 Spec R.
Since X; and X5 are of finite presentation over R, there exists a subring R’ C R,
which is a finitely generated R-algebra, such that A descends to an isomorphism
A: fixsS 5 faxgS over S = SpecR'. Let s’ : Speck — S’ be the point
corresponding to the composition of the inclusion R’ C R and the natural map R — k.
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Since S is of finite type over S and R’ C R, the map S’ — S is étale in a neighborhood
of &', see e.g. [Har77|, Ex. I11.10.4. Replacing S’ by an open subset containing the
image of s’, we may assume that S’ — S is étale. This proves (ii).

The schemes X; and X5 are smooth over the normal scheme S and hence normal.
Therefore, X; is the normalization of ]P’%; in the function field of X; xg Spec K. It
follows immediately that any isomorphism A : f1 X gSpec K = fa x gSpec K extends
to a unique isomorphism A : fi = fo. The lemma is proved. O

Remark 4.7 — With a little extra work, the same reasoning as in the proof of Lemma
4.6 yields the following statement. Let S be an arbitrary scheme and f1, fo two tame
G-covers over S. Then the functor which associates to an S-scheme S’ the set of
isomorphisms from f; X g5’ to fa x5S’ is representable by a scheme Isog(f1, f2). This
scheme is finite and étale over the closed subscheme of S defined by the condition that
f1 and f5 have the same branch locus. Note that this statement immediately implies
Lemma 4.6.

Definition 4.8. — Let S be a connected scheme and f : X — P a tame G-cover with
r branch points over S. Let ¢ : S — U, 7z be the classifying map of the branch locus
of f, see §4.1. If 1) is étale then f is called a versal family of G-covers over S.

Definition 4.9. — Let k be an algebraically closed field and f : X — Pi a tame G-
cover over k with r branch point. A wersal algebraic deformation of f is a triple
(f,s,)\), where
— f ‘X — P is a versal family of G-covers over a scheme S,
— s:Speck — S is a k-rational point, and
— X: f 5 f, is an isomorphism of G-covers between f and the pullback of f via
s.

A morphism between two versal deformations ( fi, 8, A;) defined over schemes S;, i =
1,2, is a morphism h : S; — Sa such that h(s1) = s2, together with an isomorphism
h:fi 2 fyxg,S1 of G-covers over S; which identifies A; with the pullback of Ay. We
write h : fl — fg to denote this morphism.

We would like to point out that the image of the k-rational point s is in general
not a closed point of the scheme S, and that the residue field of this point is never
equal to k. So a ‘versal algebraic deformation’ is something quite different from a
‘deformation’, as defined at the beginning of this subsection.

Proposition 4.10 — Let f : X — P} be a tame G-cover with r branch points, defined
over an algebraically closed field k.

(i) There exists a versal algebraic deformation (f,s,\) of f.
(ii) Given two versal algebraic deformations of f, f1 and fa2, there exists a third one,
fs, together with morphisms fs — f1 and f3 — fo.
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Proof. — We start with Part (ii) of the proposition. Let (f}, SiyAi), t = 1,2, be two
versal algebraic deformations of f. Let S3 be the connected component of S1 Xy, , S2
which contains the image of s3 := (s1,$2). The projections hy : S3 — S and
hg : S5 — So are étale and we have hy(s3) = s; and ha(s3) = s2. After replacing S3 by
a sufficiently small étale neighborhood of s3, the isomorphism Ay o)\l_1 10k S fook
extends to an isomorphism f; x S5 2 f, x S3, by Lemma 4.6 (ii). Part (ii) of the
proposition follows immediately.

To prove Part (i), let us first assume that k = k, where ko C k is the branch
locus field of f (see §4.2). This is the case, for instance, when k is the algebraic
closure of its prime field (which is either Q or F, for a prime p). Without loss of
generality, we may assume that f is unramified over infinity. Hence we may regard
the branch points ¢1,...,%,. of f as elements of k. If k£ has characteristic p > 0, then
we write W (k) to denote the ring of Witt vectors over k; if k is of characteristic 0,
then we set W (k) := k. In any case, we set R := W (k)[[s1,...,s,]], the ring of formal
power series over W (k) in r variables. Lift the elements ¢; € k to elements of W (k)
with the same name. Set #; = t; + s; € R. By the existence part of Proposition
4.5, there exists a unique deformation of f to a G-cover f X — P}% over R with

branch points 1, ...,%.. (The uniqueness part of Proposition 4.5 shows that f is the
universal deformation of f.)

Since projective curves are of finite presentation, there exists a subring R C R which
is of finite type over Z and such that f descends to a finite map f: X — PL between
flat projective curves over S = Spec R. Let s : Speck — S be the point obtained by
composing the inclusion R — R with the canonical map R — k. The fiber fs of f
over s is canonically isomorphic to f. We denote this canonical isomorphism by A. By
standard arguments, the locus of points on S where the fiber of f is a tame G-cover
is open in S. Therefore, after restricting S to an open subset containing the point s,
we may assume that f is a tame G-cover over S. Let ¢ : § — U,z be the classifying
map of the branch locus of f . The map 1 induces an isomorphism between the strict
completions of the local rings at s and (s), because both these rings are equal to R
(here we use the assumption k = kj!). Since ¢ is of finite type, it follows that 1
is étale in a neighborhood of s (see e.g. [Wew99], Proposition 5.2.3.(v) and [Mil80],
Proposition 1.3.8). Therefore, after shrinking S we may assume that ¢ : S — U,z is
étale everywhere. Then ( f ,8,A\) is a versal algebraic deformation of f. This proves
(i), under the assumption k = k;™".

We now give the proof in the general case. As above, we note that there exists
a subring R C k which is of finite type over Z such that f descends to a tame G-
cover fr over Spec R. Since R is of finite type over Z, there exists a geometric point
t : Specl — Spec R, where ¢ is the algebraic closure of its prime field. Write f; for
the pullback of fr via t, and let £y C ¢ denote the branch locus field of f;. Then
¢ = ()P, and hence we may apply to f; the case of the proposition which we have
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already proved. Let ( f ,8,A\) over S be the resulting versal algebraic deformation of
Jt- Let (57, s') be an étale neighborhood of the pointed scheme (S Xy, , Spec R, (s,t))
(the map S — U,z used in the definition of the fiber product is the classifying map
of the branch locus of f ). We obtain a commutative diagram of pointed schemes

(5',s") —— (Spec R,t)

l l

(5,8) —— Urz,to)

in which the horizontal arrows are étale. Consider the two tame G-covers f x5 S" and
fr X specrS’. By the commutativity of the above diagram, they have the same branch
locus. Moreover, their fibers at the point s’ are both isomorphic to f;. Therefore, by
Lemma 4.6 (ii) we may assume, after shrinking the neighborhood (5’,s’), that the
isomorphism of the fibers extends to an isomorphism

(4) fNXSS/ng XSpecRS/

over S’. The map S’ — Spec R being étale, we can lift the tautological geometric point
Spec k — Spec R to a geometric point s” : Spec k — S’. Specializing the isomorphism
(4) at s”, we obtain an isomorphism

f=(frx 8= (f xS = fom,

where s : Spec k — S is the composition of s” with S — S. We may therefore regard
f as a versal algebraic deformation of f. This completes the proof of Proposition
4.10. O

4.4. Proof of Theorem 4.3. — We will now derive Theorem 4.3 from Proposition
4.10. Let (f, s, \) be a versal algebraic deformation of f. Let k’ be the residue field of
the image of s : Speck — S. By definition, k' is a field of definition for the G-cover f.
Let ¢ : S — U,z be the (étale) classifying map of the branch locus of fg. The image
of the composition of s : Speck — S with ¢ is a point on U,z whose residue field is,
by definition, the branch locus field ky of f. We obtain the following commutative
diagram:

Speck/ —— S

I !

Specky —— U, z.

The horizontal arrows and the right vertical arrow are unramified morphisms. It
follows that the left vertical arrow is also unramified. This means that &'/ky is a
finite separable extension (see [Har77], Exercise II1.10.3). Theorem 4.3 follows. O
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4.5. The algebraic Hurwitz space H, g z. — Here is the main result of this
section.

Theorem 4.11 — There ezists a scheme H = H, gz of finite type over Z, an étale
morphism w1 H — Uy 7 and, for each algebraically closed field k, a bijection

fr—[flk

between (a) the set of isomorphism classes of tame G-covers f : X — P} defined over
k with v branch points and (b) the set of k-rational points Speck — H. Furthermore,
the following holds.

(i) Let f be a tame G-cover f with r branch points, defined over an algebraically
closed field k. Let o : k = k be o field isomorphism. Then we have

[Tk = [f1-
Therefore, the field of moduli of [ is equal to the residue field of the point [f]k.
(ii) The point w([f]r) : Speck — U,z is the classifying map of the branch locus
D CP}, of f.
(iil) For k = C, the bijection f +— [f]x gives rise to an isomorphism of complex

manifolds H, q.c = H ®z C.

This theorem is a special case of Theorem 2.1. Combining Theorem 4.11 with
Proposition 4.4, we obtain:

Corollary 4.12 — If the group G has trivial center, then for every field k the set of
k-rational points on H, .z is in natural bijection with the set of isomorphism classes
of G-covers with r branch points defined over k.

Proof. — (of Theorem 4.11) In the first step of the proof we define a scheme H’ which
is, in some sense, a good candidate for the Hurwitz scheme H. Let Ky denote the
function field of U, z. We identify K with the rational function field Q(éy,...,é)
in such a way that the generic point Spec Ky — U,z corresponds to the ‘generic’
divisor Dgen C Py, with equation ¢ 4 &¢"~* +--- 4 & = 0. Choose an embedding
Ky — C and let (f, : X, — P{)uem be a system of representatives of the orbits of
the action of Aut(C/Kj) on the set of isomorphism classes of G-covers over C with
branch locus Dge,, C ]P’(%:. It follows from the Riemann’s Existence Theorem (Theorem
§3.1) that M is a finite set. For each u € M, we let K, denote the field of moduli of
the G-cover f,,. By Theorem 4.3, K, is a finite extension of Ko. We let H], denote
the normalization of U,z in K,,. Recall that, by definition, H;L is a normal connected
scheme with function field K, and that there is a commutative diagram

Spec K, —— H,,

I L

Spec Ko —— Uz,
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where WL is a finite morphism of schemes. We define the scheme

H = H H;L
pneM
as the disjoint union of the #, and denote by 7’ : H' — U,z the map whose restriction
to 'Hj, is equal to 7},

Let f X — ]P’ls be a versal family of G-covers, defined over a scheme S. By
definition, the classifying map v : S — U,z of the branch locus of f is étale. Since
U, 7 is regular and in particular normal, the same holds for S (see [GT71], Corollaire
1.9.2). Let K be the function field of S. The map ¢ : S — U, z induces an embedding
Ky — K. Choose an embedding K — C which extends the embedding Ky — C
fixed at the beginning of this subsection. The pullback f x g Spec C is a G-cover over
C with branch locus Dgen C IP’%:. We may therefore choose the embedding K C C
in such a way that f xg SpecC is isomorphic to the G-cover fu, for some u € M.
It follows that K C C is a field of definition for f,. Therefore, K contains the field
K, the field of moduli of f,. Recall that the scheme H], C H' was defined as the
normalization of U, 7 in the field extension K,/Ko. Using the normality of S, the
universal property of normalization (see e.g. [Har77], Exercise 11.3.8) implies that
Y . S — U,z factors through the map ), : H;, — U, z, resulting in a dominant map
¢ S — H;, which induces the inclusion K, C K. We consider ¢ as a map S — H'
and call it the chart associated to the versal family f . (The next proposition shows
that ¢ does not depend on the choice of the embedding K — C.)

Let k be an algebraically closed field and f : X — P} a tame G-cover with 7 branch
points over k. Let (f,s,\) be a versal algebraic deformation of f (which exists by
Proposition 4.10 (i)) and ¢ : S — H’ the associated chart. We define the k-rational
point [f]x : Speck — H' as the composition of the point s with ¢.

Proposition 4.13 — (i) The chart ¢ : S — H’ is étale.

(i) Let (f;,s5,N\i), i = 1,2, be two versal algebraic deformations of f and @; :
S; — H' the associated charts. Let h : fl — fg be a morphism of algebraic
deformations and h : S1 — So the underlying morphism of the base schemes.
Then ps o h = 1. In particular, the map p; is independent of the choice of the
embedding of the function field of S; into C.

(iii) The point [f]r defined above depends only on the isomorphism class of the G-
cover f. Moreover, for all o € Aut(k) we have [f]] = [f7]k.

(iv) If f' is another tame G-cover over k with r branch points and [f] = [f'], then
Fp.

(v) The image of the map f +— [f]r is an open subscheme of H'.

Proof. — Statement (i) follows from the fact that ¥ = 7’0 is étale and from Lemma
4.14 below. Let h: fi — fa, h : S; — S2 and ¢; be as in (ii). Let ¢; : S; — Uz
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be the classifying map of the branch locus of f} The existence of the isomorphism
h shows that o o h = 1. Let K; denote the function field of S;. Recall that the
definition of the chart ¢; depended on the choice of an embedding K; — C. This
embedding extends the fixed embedding Ky < C and was chosen such that f; ®g, C
is isomorphic to the cover f,,, for a unique p; € M. In particular, K,,, the field
of moduli of f,,, is contained in K;. The map ¢; : S; — H;u is characterized by
the two properties that ﬂLi o ¢; = 1; and that it induces the inclusion K, C K; on
the function fields. Let o : C = C be an automorphism of C whose restriction to
K> is equal to the inclusion Ko — K; induced by the map h. Then the morphism
h fl — fg induces an isomorphism

f~1 ®S1 C :) (f~2 ®52 C)U

It follows now from the definition of the field of moduli that the restriction of ¢ to
K,,, is the identity K, = K,,,. Together with the equality 2 o h = 41, this implies
the desired equality po o h = ¢1 and proves (ii). Statement (iii) follows easily from
(ii) and Proposition 4.10 (ii).

To prove (iv), let f' : X’ — P} be another tame G-cover defined over k. Choose
a versal algebraic deformation (f’, s, ') of f’ and let ¢’ : &’ — H’ be the associated
chart. We assume that ¢(s) = ¢’(s'), and we have to show that f = f’. Let S” be a
connected normal scheme, s” : Speck — S” a k-rational point and h : S — S and
h :S"” — 5 quasi-finite and dominant maps such that p o h = ¢’ o b/, h(s") = s
and h'(s"”) = s’ (e.g. as in the proof of Proposition 4.10 (ii)). By construction, the
generic fibres of the G-covers f xg S” and f' xg S” have the same field of moduli.
Therefore, after replacing S” by a finite cover, we may assume that the generic fibres
are isomorphic. It follows now from Lemma 4.6 (iii) that fxg8"and f' xg S” are
isomorphic. Specializing this isomorphism at the point s”, we get an isomorphism
f = f'. This proves (iv). (The preceeding argument can be summarized by saying
that, if two versal families over the same scheme S have the same chart, then there
exists a finite étale cover S’ — S over which they become isomorphic. See also Remark
A7)

Let 5" : Speck — S be any point; then (f, s, 1d) is a versal deformation of f, with
chart ¢. Therefore, [fo]r = ¢(s’). We conclude that every point in the image of ¢ is
in the image of the map f — [f]x. But ¢ is an open morphism because it is étale by
(i). Statement (v) follows. This finishes the proof of the proposition. O

We define H := H, ¢z as the union of the images of all charts ¢ : S — H'. By
Proposition 4.13, this is an open subscheme of H’, and the map f +— [f]i is a bijection
between H, (k) and the set of k-rational points of H. So Part (i) of Theorem 4.11 is
proved. Part (ii) is obvious. Set 7w := 7’|y : H — U, z. The following lemma, applied
to the maps ¢ : S — H and 7 : H — U, 7, shows that = and all charts ¢ are étale.
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Lemmad.14 — Let f: X — Y and g : Y — Z be morphisms of schemes. Assume
that the following holds.

(i) Y and Z are normal,

(i) f and g are dominant, and
(iii) go f is étale.
Then f and g|;(x) are étale.

Proof. — The map go f is unramified, by (iii). Hence f is unramified as well. Using
(i), (ii) and [Mil80], Theorem I.3.20, we conclude that f is étale.

Let 2 € X and set y := f(x), z := g(y). Since go f is étale, X, := X xz k(z)
is of the form [, Spec k(z'), where 2’ runs over (go f)~!(z) and k(2’)/k(z) are all
finite separable field extensions. Moreover, since f is étale the induced morphism
f:: X, =Y, =Y Xz k(z) is étale as well. The last two assertions together show
that Y, N f(X) is of the form [],, Speck(y'), where 3 runs over g~'(z) N f(X) and
k(y')/k(z) are all finite separable field extensions. Hence g|¢(x) is unramified. Using
again (i), (ii) and [Mil80], Theorem 1.3.20, we conclude that g|;(x) is étale. O

It remains to prove Part (iii) of Theorem 4.11. Part (i) of Theorem 4.11 in the case
k = C and the Riemann Existence Theorem show that we have a bijection

t: H((C) = H’I‘,G,(C'

We only have to show that t is an analytic map. Let f ‘X — IP’ls be a versal family
of G-covers and ¢ : S — 'H the associated chart. Since ¢ is étale, the induced map
¢ : S(C) — H(C) of analytic spaces is a local isomorphism (see [G171], Proposition
XI1.3.1 and Remarque XII.3.3). Therefore, it suffices to show that for all charts ¢
the composition ¢ o p?" is analytic. But t o ¢*" is obviously the classifying map of the
analytification of the G-cover f and is analytic by Proposition 3.4. This concludes
the proof of Theorem 4.11. O

Remark 4.15 — (i) Part (iii) of Theorem 4.11 shows that the morphism 7 ® Q :
Hrcz®@Q — Uz ®Q is finite and hence H,. ¢z ® Q =H ® Q.

(ii) Let n be the order of G. Using more or less standard arguments (good re-
duction and the valuation criterion of properness) one can conclude from (i)
that 7 ® Z[1/n] : Hrqz ® Z[1/n] — Urz ® Z[1/n] is still finite. Furthermore,
H,.c.z has good reduction at all primes p not dividing n. In particular, the con-
nected components of H, gz ® IF’,, are in natural bijection with the connected
components of H, g c. See [Ful69] and [Wew98].

(iii) For primes p dividing n, the reduction H, gz @ Fp, is not very well under-
stood. However, a few cases have been successfully studied, see e.g. [BW04]
and [Rom)].
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5. Admissible covers

In the tame case, it is possible to compactify the Hurwitz schemes by adjoining
coverings of stable curves of a particularly nice type. The resulting projective schemes
are helpful in a number of questions : for example, it is often easier to find rational
points on the boundary. More applications will be given in the other lectures of the
conference.

i

We construct here a compactification denoted

'G» whose objects are called ad-
missible G-covers. The branch locus map W: Hrif‘G — U, extends to a map on this
moduli space, with values in the moduli space of genus 0 stable marked curves of
Knudsen-Mumford. We denote the latter by U, (but be careful : this is not exactly
the same one as in [Wew98]).

The moduli space ﬁTmG being a posteriori normal, we could define it like in Section
4, using a normalization of U/, in some field extension. However, the map ¥ is not
étale any more on the compactification, so we get into trouble when we want to prove
that the variety we obtain is the desired moduli space. Instead we will present two
other constructions of the moduli space : either by Geometric Invariant Theory, or
by the use of theorems of representability for tamely ramified stacks.

5.1. Definitions. — For a double point on a curve, the tangent space at the point
splits canonically into two one-dimensional subspaces which we call the branches.

Definition 5.1 — Let G be a finite group. Let k be an algebraically closed field of
characteristic zero. An admissible G-cover of a curve of genus 0 is a pair (f, @) where

(i) f:Y — X is a cover of stable curves with X of genus 0.

(ii) a: G — Autx(Y) is an injective group homomorphism such that for any node
y €Y, for any g € G with g(y) = y, a(g) respects the branches at y and acts
on them by characters that are inverse to each other.

(iii) f factors through an isomorphism Y/G ~ X.

The branch divisor is defined as the image by f of the (ramification) divisor defined
by the sheaf of ideals 7 := ffwx ® w;l, where w? denotes dualizing sheaves. By
condition (ii) the support of the branch divisor of an admissible G-cover is included
in the smooth locus of X. In the case of smooth curves, this is the same divisor as in
section 1. Also as before, if the degree of the branch divisor is constant and equal to
r we say that f has r branch points.

The definition of an isomorphism of admissible G-covers is the same as in the
smooth case.

The moduli space for admissible G-covers with r branch points will be called ﬁ;“G

5.2. The Geometric Invariant Theory construction. — It is possible to adapt
the construction of M, as a GIT quotient by Gieseker and Mumford [Gie82], to the
case of Hurwitz moduli spaces. This was worked out by Bertin, and we now sketch the
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steps of his proof, in the case of _TiflG. We keep the data g,r, G as above. For clarity,
for each of the three main steps below we indicate the result which is the analog in
the construction of M, in [Gie82].

We recall the notion of the Hilbert points of a curve X C P¥ in projective space
over a field k. Let L denote the restriction of Op~ (1) to X. From the theorems of
Serre it follows that there is an v such that : for all v > vy the Euler characteristic
x(v) =Y, (=1)'h* (X, L") is just equal to h°(X, L"), and we have a surjection

HPY,0(v)) — H(X, L") — 0
Taking exterior powers yields another surjection

WO e, 0w) — WHOX, 1Y) ~ k

This defines the wv-th Hilbert point of X as a point in the projective space
P(AH (PN, O(v))). Observe that PGLy41 acts naturally on P(AH?(PY, O(v))), so
there is a notion of GIT-stability for this action.

Now fix m > 10, N = (2m — 1)(g — 1) — 1 and the Hilbert polynomial P(x) =
(2mx — 1)(g — 1). Let H be the Hilbert scheme parameterizing closed subschemes of
PV with Hilbert polynomial P. Let Z — H be the universal curve. Finally, fix an
injection G C PGLy 41 (this is not a restriction, since we are interested in G-curves
and their canonical embeddings).

Theorem 5.2 — There exists v such that for any fiber of Z — H which is smooth
and nondegenerate (i.e. included in no hyperplane), the v-th Hilbert point of Zp is
GIT-stable for the action of PGLy 1.

This result is essentially [Gie82], th. 1.0.0, p. 26. In the sequel v is fixed like in
the theorem. Let H® be the open subset of H of points h such that the v-th Hilbert
point of Z; is GIT-semi-stable. Now define U C H®® by the two conditions "7}, is
connected” and ”Z;, C PV is the m-canonical embedding”.

Theorem 5.3 — U is closed in H®. Furthermore, the fibres of Z|y — U are stable
curves in the sense of Deligne-Mumford.

This is the conjunction of [Gie82], th. 1.0.1, p. 35 and prop. 2.0.0, p. 88. The
scheme U is smooth (by deformation theory), hence so is the fixed point subscheme
T := UY. (Thisis a simple calculation ; it follows from the fact that the characteristics
do not divide the order of G.) By construction, the fibres of Z|r — T are endowed
with an action of G. Among the irreducible components of T for which the fiber Z;
over the generic point is a smooth curve, let Ty C T" be the component for which the
genus of Z;/G is zero, and the number of branch points of Z; — Z;/G equal to r.

Theorem 5.4 — T, //PGLy1 is a coarse moduli space for H),.
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This is the analog of [Gie82], th. 2.0.2, p. 93 in the equivariant case.

We can notice that some facts from deformation theory are needed in the course
of the proof, e.g. in order to show that U is smooth. This is also necessary at the
end, if we want to prove that the points of Typ//PGLy 1 are exactly the G-covers as
we defined them in 5.1. The necessary results from deformation theory are presented
in the next subsection.

5.3. The construction via algebraic stacks. — This construction uses general
arguments based on extensions of the theory of Grothendieck of representation for un-
ramified functors. It involves algebraic stacks which are somehow more sophisticated
objects. However, the reader who does not know about stacks should feel comfortable
enough, in the sequel of this section, if he keeps in mind the following ideas. Roughly,
a stack is a category, whose isomorphism classes we want to classify.

In our main case of interest the category is denoted by _;?G. It is determined by
the categories of families over S denoted by _Tif‘G(S ), for varying S :

— the objects in the category _Ti’fG(S ) are the families of admissible covers with r
branch points over S,

— the morphisms between two given families are the G-equivariant isomorphisms
of covers over S.

A particular case is when the stack is representable by a scheme (i.e. it is equal to
its moduli space), which means essentially that the category considered is equivalent
to a category with unique isomorphisms. Thus the presence of morphisms is the main
difference between moduli spaces and moduli stacks. The utility of stacks is that very
often, they are "close enough” to a scheme so that we can really do geometry in the
same way as we usually do with schemes. For more details, the interested reader is
advised to look at e.g. [DM69], §4 or the Appendix of [Vis89].

Let S be a smooth Deligne-Mumford stack with a normal crossings divisor D. Let
M be a stack over S. Assume that M is a stack with respect to the fpqc topology,
locally of finite presentation, and has finite diagonal. In the case where S = U, with
D=U,—U,, and M = ﬁri?G, these assumptions are verified by standard arguments.
For example, the fact that the diagonal is finite is equivalent to the finiteness of the
schemes of automorphisms of coverings, well-known by [DM69].

Theorem 5.5 — Assume M — S is as above. If M is formally tamely ramified along
D (and formally étale over S — D), then it is algebraic and tamely ramified along D.

The proof of this is theorem 1.3.3 and remark 2.1.3 of [Wew98]. Thus, for the
application to M = ﬁﬁf‘G, we only have to check formal tame ramification. Showing
this property is essentially a question of deformation theory.

Let R be a Noetherian complete local ring with separably closed residue field k.
Let X be a stable curve over R, marked with a divisor D C X of degree r (we will
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be interested only in the case where X has geometric genus 0). Let Xy be the special
fiber of X. For each double point x; € X in the special fiber, we can choose local
étale coordinates u;, v; lying in the Henselian ring (;)vx,mi such that t; := u;v; € R.

Now let fy: Yy — X be an admissible G-cover, with branch locus D. Choose one
point y; € f5 ' (x;) above each x;. By the definition (5.1(ii)), we can choose local étale
coordinates p;, ¢; at y; such that 7; := p;@; € R and the map (5;(07%. — (5)/07% is given
by @; — p;*, U; — q;* with the stabilizer of G at y; acting by inverse characters. In
particular, we have 7, = t,.

If a cover f: Y — X extends fy there is a unique choice of coordinates p;,q; at
each point y;, satisfying u,; — p;*, v; +— ¢;'* and lifting p;, ;. Thus for 7; := p;q; we
have 7" = t;.

Define Def(fy) to be the set of isomorphism classes of lifts f of fo, and T'({¢;}) to
be the set of families {;} such that 7; € R and 7;"" = t;. As we said above there is a
map Def(fo) — T({t:}).

Theorem 5.6 — The natural map Def(fo) — T({t;}) is a bijection. Moreover, if any
two lifts of fo are isomorphic, then the isomorphism between them is unique.

This result appears in several places, e.g. [Wew99] or [Moc95]. This shows that
ﬁ;f‘G is formally tamely ramified along the divisor of singular curves in U,.. Hence, by

Hin

theorem 5.5, H,; is an algebraic stack. Its coarse moduli space ([KM97]) is _Tif‘G.

6. Picard groups of Hurwitz stacks

We end these notes with a paragraph about the information on the covers which
is not captured by the coarse moduli spaces. We chose to present Picard groups
because some recent results give nice examples. The computations are similar in
spirit to the computation of the Picard group of the moduli of elliptic curves (see
Mumford [Mum65]). One can expect that the invariants obtained in this way reflect
the difference between the cases of tame and wild ramification. In this respect the
case p = 2 is however quite exceptional, since it is known to be the only case where
the moduli space of the corresponding wild covers is smooth [BMOO].

We recall that given a Deligne-Mumford algebraic stack M, its Picard group is by
definition the group of isomorphism classes of invertible sheaves on M (an invertible
sheaf is given by invertible sheaves on every atlas of M, together with compatible
isomorphisms between the sheaves for different choices of atlases). The operation is
induced by the tensor product of invertible sheaves. In the case where M is a quotient
stack [X/G], the Picard group is just the group of isomorphism classes of G-linearized
invertible sheaves on X, denoted Picg(X).

6.1. Hyperelliptic curves in characteristic # 2,9+ 1 after Arsie-Vistoli. —
Arsie and Vistoli describe stacks of cyclic covers of projective space P™ as quotient
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stacks. A particular case is the computation of the Picard group of the stack of genus
g hyperelliptic curves (as double covers of P!), in characteristics # 2,g + 1.

To simplify the exposition we restrict the choice of the base scheme to a field with
characteristic different from some "bad” primes. Except for this point, we keep the
same generality as in [AV04]. So let n,r,d be integers and k a field of characteristic
p > 0 such that pf2rd. In this subsection all schemes are schemes over k. For
our main concern, which is hyperelliptic curves, the first two definitions with their
discussion can be better understood in example 6.3 below.

Definition 6.1 — Let S be a scheme and Y an S-scheme. A (relative) uniform cyclic
cover of Y is a morphism of S-schemes f : X — Y together with an action of u,
on X/S, with the following local property. Any point ¢ € Y has an open affine
neighborhood V' = Spec (R) such that f~1(V) is isomorphic to Spec (R[z]/z" — h)
with the obvious action of u,, and the divisor of Y defined by h is a relative Cartier
divisor (the branch divisor of f).

The last condition means that h € R is a nonzerodivisor and R/h is flat over S.
Any such covering is affine, hence is determined by the algebra structure on f,Ox.
Due to the p, action this structure is particularly simple : there is an invertible sheaf
L € Pic(Y) such that f.Ox decomposes into eigenspaces

[Ox =0y @ Lo L@ oL

Furthermore there is an injective morphism ¢ : £L” — Oy and multiplication in f,Ox
is given by

. ‘ s@te L ifi+j<r

the product of s € L with t € £/ is o
(pid)(s®@t) e LT ifi+j>7r

It follows that, up to isomorphism, it is equivalent to consider a uniform cyclic cover
or a triple (Y, L, ¢).

Definition 6.2 — Let f : X — Y be a uniform cyclic cover as above.

If Y — S is a Brauer-Severi scheme, i.e. it is isomorphic to IP¢ locally for the étale
topology, we say that f has branch degree d if the sheaf £ has degree d on any fiber
over S.

We denote by H(n,r,d) the stack of uniform cyclic covers of degree r and branch
degree d of Brauer-Severi schemes of relative dimension n. The morphisms are p,.-
equivariant isomorphisms. We denote by Hgm(n, 7, d) the substack of uniform cyclic
covers such that X is a smooth S-scheme.

Example 6.3 — Let X be a smooth hyperelliptic curve over S, in the usual sense.
There is given an involution 7 : X — X, and the quotient Y = X/7 is a curve over
S whose geometric fibres are projective lines. The branch divisor of 7: X — Y has
degree equal to g+1 where g is the genus of X. Thus (X, 7) belongs to Hgm (1,2, g+1).
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When Y = P%, thanks to the u, action we can write down an equation for a
uniform cyclic cover. The coefficients of the equation lie in an affine space. This is
the key point of the result.

More precisely, let

A(n,rd) := set of homogeneous forms of degree rd in n + 1 variables

Agm(n,rd) := open set of smooth forms, i.e. with nonzero discriminant

Thus A(n,rd) is just affine space of dimension (Td: "

group GL,41 on A(n,rd) by changes of variables, factors through GL,,4+1/pq. (The

). The natural action of the linear

d-th roots of unity are viewed as scalar diagonal matrices.) This action stabilizes
Ay (0, rd).

Lemma 6.4 — The discriminant of the generic form in A(n,rd) defines an irreducible
hypersurface A of degree (n + 1)(rd — 1)™. Moreover, Agm(n,rd) is the complement
in A(n,rd) of A.

This is classical; see e.g. [GKZ94], chap. 1, 1.3 and 4.15.

Theorem 6.5 — H(n,r,d) is isomorphic to the quotient stack
[A(n,rd)/(GLnt1/ pa)]

The same holds with "sm” subscripts.

Proof. — The proof is similar to the classical construction of My as the quotient
[Hilbpsy—s /PGLs,_g]. Precisely, one introduces a stack whose objects are the objects
of H(n,r,d) together with a rigidification ¢ : (Y, L) ~ (P%,O(—d)). This stack is
isomorphic to A(n,rd) : intuitively the uniform cyclic covers in here are given by an

equation y" = F(xg,...,2,) where F' is a homogeneous form. Then one identifies the
automorphism group of (P%, O(—d)) (the model of the rigidification) with GLj,,11/ptq.
The result follows. O

Theorem 6.6 — The Picard group of Hsm(n,r,d) is finite cyclic of order

r(rd —1)"ged(n + 1,d)
Proof. — From now on we set G = GL,,+1/ 114 and we denote by A the polynomial ring
of functions of A(n, rd). By theorem 6.5 we have Pic(Hgm (n, 7, d)) =~ Picg(Asm (n, rd)).
We use the surjective restriction map r : Picg(A(n,rd)) — Picg(Asm(n,rd)). When

the non-equivariant Picard group is trivial, Picg is just the set of isomorphism classes
of G-linearizations of the structure sheaf. Thus

Picg(A(n, rd)) ~ HY(G, A*) = HY(G, k*) = Hom(G, k*) = G

The epimorphism GL,,+1; — G induces an injection on character groups G— C/}inﬂ.
Since GL,41 is generated by the determinant, a suitable power generates G. One
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finds immediately that the generator is det such that
vet(g) = (det(g))¥/ecdnt1.d) where g € GLy41 is a lift of g € G

It remains to identify the kernel of . Let f = 0 be an equation for A. By deﬁnit&g,/if
a linearization of Oy ra) = A induces the trivial linearization of Opon(nray = A1/ f]
then it is conjugated to the trivial linearization by an element A € A[1/f]*. As f is
irreducible (lemma 6.4) we have A[1/f]* = {af™,a € k*,n € Z} ~ k> X Z so it only
remains to compute the "weight” of f. One checks that

_ _\\—r(rd—1)"gcd(n+1,d
3.f = (vet()) T g

(it is enough to check this for g a homothety; then use lemma 6.4). The result
follows. -

The proof above is slightly different from the one in [AV04], although it essentially
amounts to the same thing. Arsie and Vistoli use the equivariant cycle groups of
[EG98]. In any case we recognize an equivariant analog of the classical exact sequence
Z — Pic(X) — Pic(U) — 0 ([Har77], I1, 6.5 and 6.16).

Corollary 6.7. — The Picard group of the stack Hen(1,2,9 + 1) (the stack of smooth
hyperelliptic curves) over a field of characteristic prime to 2(g+1), is cyclic of order
49+ 2 if g is even, and 8g + 4 if g is odd.

6.2. Hyperelliptic curves in char 2 after Bertin. — In the case where the field
k has characteristic 2, Bertin [Ber06] adapts the arguments in order to compute the
Picard group of the stack of hyperelliptic curves. The main change is that Z/27Z is
not anymore isomorphic to the diagonalizable ps. Therefore the description of Z/27Z-
covers of arbitrary schemes, in terms of invertible sheaves, is a little more complicated.
However, for covers of Brauer-Severi schemes, the situation is better locally on the
base.
In this subsection we put Hy := Hgn(1,2,9 4+ 1) ® Fo (definition 6.2).

Lemma6.8 — Letg > 1 andm = g+1. Let X — S be a smooth hyperelliptic curve of
genus g with involution 7. Let f: X — Y be the quotient by 7. Then, étale locally on
S, f can be described by a triple (Y, L, ) where f.Ox ~ Oy ®L and ¢: L? — Oy L.

Proof. — Let L be the cokernel of the natural injection Oy — f.Ox. Using x(£) =
X(f«Ox) — x(Oy) and the Riemann-Roch theorem, we have

deg(L) = x(£) —1=—g—1=-m
Hence after an étale extension S’ — S we can assume that Y ~ P} and £ ~ Op1 (—m).
Using Serre duality one shows Ext'(O(—m), ©) = 0 so the exact sequence 0 — Oy —
f«Ox — L — 0 splits. Thus f.Ox ~ Oy @& L. The multiplication in the sheaf of
algebras is known once we know how to multiply sections of £. This is given by a
morphism ¢: £2 — Oy @ L. O
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It is the same thing to consider ¢ as above, or two morphisms £2 — £ and £2 —
Oy. These correspond to global sections A € H°(O(m)) and B € H°(O(2m)).
Therefore, the analog of the affine space A(n,rd) in 6.1 is affine space A3™m+2 =
AMFTL 5 A?m+1 Intuitively, over the complement of oo in P! the curve described by
A, B has equation

y* = A(z, )y + B(z,1)

Lemma 6.9 — The locus in A3™*2 of the pairs of forms (A, B) such that the corre-
sponding curve is smooth and separable over P!, is the complement of an irreducible
hypersurface A.

We refer to [Ber06] for the proof. Note that it is more subtle in this case than
in the odd characteristic case. Now, in order to prove the analog of theorem 6.5 one
uses rigidifications ¢ : (Y, Oy & £) ~ (P, O @& O(—m)). It can be computed that
the automorphism group of the model is (G,)™ "t x (GLa/ ., ). Here, (G,)™ ! is the
group of global sections of O(m) and the action of GLy/fuy, is the natural action on
homogeneous coordinates. The result of this is the following :

Theorem 6.10 — We have an isomorphism of stacks H, ~ [A3™+2 — A/G] where
G = (Go)™ " % (GLa/pim)-

Corollary 6.11 — The Picard group of Hy is finite cyclic of order 49+ 2 if g is even,
and 8g + 4 is g is odd.

To prove this, one proceeds like in the proof of 6.6, using an exact sequence Z —
Picg(A3m+2) — Picg(A%™+2 — A) — 0. The character group of G is again generated
by a power of the determinant because the unipotent part (G,)™** has no characters.

It is remarkable that the result is the same, whether we are in odd characteristic
or in characteristic two.

6.3. An example with p > 2. — In this subsection, we content ourselves with
giving the Picard group of the stack of a family of covers of degree p of P!, the
so-called Potts curves. This shows that the coincidence of the Picard groups for
hyperelliptic curves in all characteristics is an exceptional phenomenon, not to be
expected in general.

Fix a prime p > 2 and a field k of characteristic different from 2. By definition, a
Potts curve is a hyperelliptic curve of genus p — 1 which is a Galois covering of degree
p of P1. The stack of Potts curves is a 1-dimensional algebraic stack over k, denoted
P. Its Picard group is as follows.

Theorem 6.12— (i) Assume char(k) # p. Then P has p — 1 smooth connected
components which are all isomorphic. The Picard group of any of them is iso-

morphic to Z/27 x Z/2pZ.
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(ii) Assume char(k) = p. Then P is irreducible and nonreduced. Let U be the
subset of k[ z | zP~D/2][X,1/X] consisting of elements that map to 1 under the
specialization z = 0. This is a multiplicative subgroup of the group of units of
k[z | 2P~1/2][X,1/X]. Then the Picard group of P is isomorphic to Z./27Z x U,
in particular it is infinite.

Here, the strategy of the proof is to relate invertible sheaves on the stack with

invertible sheaves on the coarse moduli space. This leads to the (nontrivial) result

even when the moduli space has trivial Picard group. This method and the one

used for hyperelliptic curves are somehow different, since in [AV04], [Ber06] one

compares sheaves on the stack with sheaves on an atlas, which ”covers” the stack, and

in [Rom] one compares sheaves on the stack with sheaves on the moduli space, which
”is covered” by the stack.
The details of the proof of theorem 6.12 can be found in [Rom)].
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