Canonicité

En mathématiques on utilise le mot *canonique* comme un mot magique. Demandez autour de vous qu'est-ce qu'il veut dire, et personne ne saura vous donner de définition. Il est bien connu qu'un espace vectoriel de dimension finie n'est pas canoniquement isomorphe à son dual (alors qu'il est canoniquement isomorphe à son bidual), cependant cet énoncé n'est jamais écrit sous une forme précise.

En fait le terme *canonique* signifie simplement *fonctoriel*. Voyons voir ce que cela veut dire, pour l'exemple du dual d'un espace vectoriel (1).

Le dual d'un espace vectoriel

"Un espace vectoriel n'est pas canoniquement isomorphe à son dual" veut simplement dire qu'il n'y a pas de manière fonctorielle d'associer un isomorphisme $V \stackrel{\sim}{\longrightarrow} V^*$ à un espace vectoriel V. Pour mettre cela en forme on doit considérer

- la catégorie & des espaces vectoriels (sur un corps fixé), avec pour morphismes les isomorphismes linéaires.
- la catégorie \mathscr{I} des isomorphismes entre espaces vectoriels, avec pour morphismes les carrés commutatifs qu'on imagine.

Il y a un foncteur contravariant D qui à un espace vectoriel V associe son dual, c'est-à-dire

$$D:\mathscr{E}\to\mathscr{E}^\circ$$

où \mathscr{E}° désigne la catégorie opposée, avec $D(V)=V^*$. Il est involutif en un sens évident, c'està-dire $D^{\circ} \circ D=\mathrm{id}_{\mathscr{E}}$. Le fait de considérer pour seuls morphismes dans \mathscr{E} les isomorphismes est crucial ; cela a pour conséquence qu'il y a un autre foncteur involutif $I\colon \mathscr{E}^{\circ} \to \mathscr{E}$, défini par I(V)=V et $I(f)=f^{-1}$ pour tout $f\colon V\to W$. Il y a aussi deux foncteurs $S,B\colon \mathscr{I}\to\mathscr{E}$ qui à un isomorphisme associent sa source et son but.

Proposition 1 *Il n'existe par de foncteur* $F: \mathscr{E} \to \mathscr{I}$ *tel que* $S \circ F = \mathrm{id}_{\mathscr{E}}$ *et* $B \circ F = I \circ D$.

Démonstration : Soit F un tel foncteur. On note qu'un isomorphisme $f: V \to W$ donne lieu à deux isomorphismes $\alpha = F(V)$ et $\beta = F(W)$ formant un carré commutatif

$$\begin{array}{c|c}
V & \xrightarrow{\alpha} V^* \\
f & & \uparrow f^* \\
W & \xrightarrow{\beta} W^*
\end{array}$$

Prenons V = W, donc $\alpha = \beta$. La commutativité ci-dessus dit que pour tous $x,y \in V$ on a $\alpha(f(x)).f(y) = \alpha(x).y$. Si on choisit y_1 et y_2 dans V, différents de x, tels que $\alpha(x).y_1 = 0$ et $\alpha(x).y_2 \neq 0$, et si on choisit f qui fixe x et envoie y_1 sur y_2 , on a une contradiction.

La puissance extérieure maximale d'un espace vectoriel

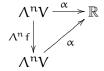
¹C'est après que PE a posé la question qu'on a décidé d'y répondre.

Dans la même veine que précédemment on peut remarquer qu'il n'existe pas d'isomorphisme canonique entre $\Lambda^{\max}V$ et \mathbb{R} .

On note \mathscr{E}_n la sous-catégorie pleine de \mathscr{E} formée des espaces vectoriels de dimension n. Il y a un foncteur $\Lambda^n\colon \mathscr{E}_n \to \mathscr{E}$ qui à V associe $\Lambda^n V$. On note aussi $\mathbb R$ la sous-catégorie ponctuelle de \mathscr{E} dont le seul objet est $\mathbb R$ et le seul morphisme est l'identité de $\mathbb R$.

Proposition 2 Il n'existe par de foncteur $F: \mathscr{E} \to \mathscr{I}$ tel que $S \circ F = \Lambda^n$ et $B \circ F$ se factorise par \mathbb{R} .

Démonstration : Soit F un tel foncteur, pour tout $f: V \to V$ on doit avoir un isomorphisme $\alpha = F(V)$ dans un triangle commutatif



Ceci n'est possible que si $\Lambda^n f = \det(f) = 1$.

On note qu'on aurait un énoncé plus simple en remplaçant la catégorie \mathscr{I} par la catégorie $\mathscr{I}_{\mathbb{R}}$ des isomorphismes $V \overset{\sim}{\longrightarrow} \mathbb{R}$ entre un espace vectoriel et \mathbb{R} , les morphismes étant les isomorphismes formant un triangle commutatif.

On voit aussi que si on regarde au lieu de \mathscr{E}_n la catégorie $\mathscr{E}u_n^+$ des espaces euclidiens orientés de dimension n (i.e. les e.v. munis d'un produit scalaire et d'une orientation), alors il existe canoniquement un isomorphisme $\Lambda^n V \xrightarrow{\sim} \mathbb{R}$.

Proposition 3 Il existe un foncteur $F \colon \mathscr{E}u_n^+ \to \mathscr{I}_\mathbb{R}$ tel que $S \circ F = \Lambda^n$.

Démonstration : Soit V un e.v.e.o., on choisit une base orthonormée positive (e_i) et on définit un isomorphisme α : $\Lambda^n V \xrightarrow{\sim} V$ par $\alpha(e_1 \wedge \cdots \wedge e_n) = 1$. Cette définition ne dépend pas du choix de (e_i) car si on change de base alors la matrice de passage est de déterminant 1.

Il découle par exemple de cette remarque que pour tout fibré en espaces euclidiens orientés $V \to X$ sur un espace topologique X, on a $\Lambda^n V \simeq \mathbb{R} \times X$ canoniquement. (Un tel fibré est équivalent à un $\mathrm{SO}_n(\mathbb{R})$ -fibré principal sur X, à isomorphisme près.)