Technical Analysis Compared to Mathematical Models under Misspecification

Benoîte de Saporta

INRIA Sophia Antipolis
Team OMEGA

In collaboration with Christophette Blanchet (University of Nice)
Rajna Gibson (University of Zurich)
Etienne Tanré and Denis Talay (INRIA Sophia Antipolis)

Numerical Methods in Finance, February 2006
Outline

1. Introduction
2. Our Model
3. Optimal Portfolio Allocation
 - Mathematical Results
 - Numerical Results
4. Comparisons of Strategies
Outline

1. Introduction
2. Our Model
3. Optimal Portfolio Allocation
 - Mathematical Results
 - Numerical Results
4. Comparisons of Strategies

Benoîte de Saporta Technical Analysis vs Mathematical Models
Technical Analysis
- avoids model specification and calibration problems

Mathematical Models
- theoretically better
- liable to miscalibration
Framework

Bond \quad dS^0_t = S^0_t r dt,

Stock \quad dS_t = \mu(t) S_t dt + \sigma S_t dB_t,

- \(B \) standard Brownian motion,
- \(\mu(t) \in \{\mu_1, \mu_2\} \) independent of \(B \),
- \(\pi_t \in \{0, 1\} \) proportion of the wealth invested in the stock
- terminal time \(T \)
Technical Analyst Strategy

Technical analyst: moving average strategy

\[M_t^\delta = \frac{1}{\delta} \int_{t-\delta}^{t} S_u du \]

If \(S_t > M_t^\delta \) buy

If \(S_t < M_t^\delta \) sell

\[\mu_1 = -0.2, \ \mu_2 = 0.2, \ \sigma = 0.15, \ \delta = 0.8. \]
Previous work

Blanchet, Diop, Gibson, Kaminski, Talay, Tanré (2005)

One change of drift:
- $\mu(t) = \mu_1$ if $t < \tau$
- $\mu(t) = \mu_2$ if $t \geq \tau$

with $\mathbb{P}(\tau > t) = e^{-\lambda t}$

Optimal strategy: detect τ.
Outline

1. Introduction
2. Our Model
3. Optimal Portfolio Allocation
 - Mathematical Results
 - Numerical Results
4. Comparisons of Strategies

Benoîte de Saporta

Technical Analysis vs Mathematical Models
Several changes of drift

\((\xi_{2n+1}) \, \text{iid Exp}(\lambda_1), \, (\xi_{2n}) \, \text{iid Exp}(\lambda_2)\)

\(\tau_0 = 0, \ \tau_n = \xi_1 + \cdots + \xi_n\)

\[\mu(t) = \begin{cases}
\mu_1 & \text{if } \tau_{2n} \leq t < \tau_{2n+1} \\
\mu_2 & \text{if } \tau_{2n+1} \leq t < \tau_{2n+2}
\end{cases}\]

Transaction costs
- \(g_{01}\) buying cost
- \(g_{10}\) selling cost
Admissible Strategies

\(\pi_t \in \{0, 1\} \) proportion of the wealth invested in the stock

\[\mathcal{F}^S_t = \sigma(S_u, u \leq t) \neq \mathcal{F}^B_t = \sigma(B_u, u \leq t) \]

We want \(\pi_t \) measurable w.r.t. \(\mathcal{F}^S_t \)

\(\implies \) change of framework
Filtering Theory

Optional projection: $F_t = \mathbb{P}(\mu(t) = \mu_1 \mid \mathcal{F}^S_t)$

$$
\overline{B}_t = \frac{1}{\sigma} \left(\log \frac{S_t}{S_0} - \int_0^t \left(\mu_1 F_s + \mu_2 (1 - F_s) - \frac{\sigma^2}{2} \right) ds \right)
$$

Proposition (Martinez, Rubenthaler, Tanré 2005)

- \overline{B} is a (\mathcal{F}^S) Brownian Motion
- $\mathcal{F}^S = \mathcal{F}^{\overline{B}}$

$$
\frac{dS_t}{S_t} = \left(\mu_1 F_t + \mu_2 (1 - F_t) \right) dt + \sigma d\overline{B}_t
$$

Theorem (Kurtz, Ocone 1988)
New Framework

W_t^π : Wealth process with strategy π

\[
\frac{dW_t^\pi}{W_t^\pi} = \pi_t \frac{dS_t}{S_t} + (1 - \pi_t) \frac{dS_0^0}{S_0^0}
- g_{01} \delta(\Delta \pi_t = 1) - g_{10} \delta(\Delta \pi_t = -1)
= \left(\pi_t (\mu_1 F_t + \mu_2 (1 - F_t)) + (1 - \pi_t) r\right) dt + \pi_t \sigma d\tilde{B}_t
- g_{01} \delta(\Delta \pi_t = 1) - g_{10} \delta(\Delta \pi_t = -1)
\]

\[dF_t = \left(-\lambda_1 F_t + \lambda_2 (1 - F_t)\right) dt + \frac{\mu_1 - \mu_2}{\sigma} F_t (1 - F_t) d\tilde{B}_t,\]
Outline

1. Introduction
2. Our Model
3. Optimal Portfolio Allocation
 - Mathematical Results
 - Numerical Results
4. Comparisons of Strategies
Utility: $U(x) = x^\alpha$, $\alpha \in]0, 1[$

Value functions:

\[
V^0(t, x, f) = \sup_{\pi} \mathbb{E}[U(W^\pi_T) | \pi_{t^-} = 0, W^\pi_{t^-} = x, F_t = f]
\]

\[
V^1(t, x, f) = \sup_{\pi} \mathbb{E}[U(W^\pi_T) | \pi_{t^-} = 1, W^\pi_{t^-} = x, F_t = f]
\]
Properties of V

Proposition (Continuity)

For all $i \in \{0; 1\}$, $0 \leq t \leq \hat{t} \leq T$, $x, \hat{x} > 0$, $0 \leq f, \hat{f} \leq 1$:

$$|V^i(\hat{t}, \hat{x}, \hat{f}) - V^i(t, x, f)| \leq C(1 + x^{\alpha - 1} + \hat{x}^{\alpha - 1})(|\hat{x} - x| + x(|\hat{f} - f| + |\hat{t} - t|^{1/2}))$$

Theorem (Dynamic Programming Principle)

For all $0 \leq s \leq t \leq T$ and x, f, i:

$$V^i(s, x, f) = \sup_{\pi} \mathbb{E}[V^{\pi_{t-}}(t, W^{s,x,f,\pi}_t, F^{s,f}_t)]$$
Hamilton Jacobi Bellman Equations

\(\mathcal{V}_\alpha \) : set of continuous functions \(\varphi \) on \([0; T] \times [0; +\infty[\times [0; 1] \) satisfying \(\varphi(t, 0, f) = 0 \) and

\[
\sup_{[0; T] \times [0; +\infty[\times [0; 1]^2} \frac{|\varphi(t, x, f) - \varphi(t, \hat{x}, \hat{f})|}{(1 + x^{\alpha-1} + \hat{x}^{\alpha-1})(|x - \hat{x}| + x|f - \hat{f}|)} < \infty.
\]

Theorem

\((V^0, V^1)\) is the unique viscosity solution of

\[
\begin{align*}
\min \left\{ -\frac{\partial \varphi^0}{\partial t} - \mathcal{L}^0 \varphi^0; \quad \varphi^0(t, x, f) - \varphi^1(t, x(1 - g_{01}), f) \right\} &= 0 \\
\min \left\{ -\frac{\partial \varphi^1}{\partial t} - \mathcal{L}^1 \varphi^1; \quad \varphi^1(t, x, f) - \varphi^0(t, x(1 - g_{10}), f) \right\} &= 0
\end{align*}
\]

in \(\mathcal{V}_\alpha \times \mathcal{V}_\alpha \) such that \(V^0(T, x, f) = V^1(T, x, f) = U(x) = x^\alpha \)
Discretization Scheme

Dependence on x:

$$V^i(t, x, f) = \sup_{\pi} \mathbb{E}[U(W^\pi_T) \mid \pi_{t^-} = 0, W^\pi_{t^-} = x, F_t = f]$$

$$= x^\alpha V^i(t, 1, f)$$

- **First step**: compute $\hat{V}^0(t, \cdot)$ and $\hat{V}^1(t, \cdot)$ that solve HJB equation from $\hat{V}^0(t + dt, \cdot)$ and $\hat{V}^1(t + dt, \cdot)$

- **Second step**: comparison
 - if $\hat{V}^0(t, f) \geq (1 - g_{01})^\alpha \hat{V}^1(t, f)$, take $\hat{V}^0(t, f) = \overline{V}^0(t, f)$
 - otherwise take $\hat{V}^0(t, f) = (1 - g_{01})^\alpha \hat{V}^1(t, f)$
 - if $\hat{V}^1(t, f) \geq (1 - g_{10})^\alpha \hat{V}^0(t, f)$, take $\hat{V}^1(t, f) = \overline{V}^1(t, f)$
 - otherwise take $\hat{V}^1(t, f) = (1 - g_{10})^\alpha \hat{V}^0(t, f)$
Value Function V^0

Parameters: $T = 3$, $\mu_2 = -\mu_1 = 0.2$, $\lambda_1 = \lambda_2 = 2$, $\sigma = 0.15$, $g_{01} = g_{10} = 0.001$
Outline

1. Introduction
2. Our Model
3. Optimal Portfolio Allocation
 - Mathematical Results
 - Numerical Results
4. Comparisons of Strategies

Benoîte de Saporta

Technical Analysis vs Mathematical Models
An efficient strategy

- Compute \hat{V}^0 and \hat{V}^1
- Estimate \hat{F}_t from the stock
- Compare $\hat{V}^0(t, \hat{F}_t)$ and $\hat{V}^1(t, \hat{F}_t)$:
 - buy if $\hat{V}^0(t, \hat{F}_t) = (1 - g_{01})^\alpha \hat{V}^1(t, \hat{F}_t)$
 - sell if $\hat{V}^1(t, \hat{F}_t) = (1 - g_{10})^\alpha \hat{V}^0(t, \hat{F}_t)$

\[\mu_1 = -0.2, \mu_2 = 0.2, \]
\[\sigma = 0.15, \lambda_1 = 2, \]
\[\lambda_2 = 2, T = 3 \]
100000 Monte Carlo simulations of the efficient strategy

<table>
<thead>
<tr>
<th>F_0</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed V^0</td>
<td>1.061</td>
<td>1.057</td>
<td>1.053</td>
<td>1.049</td>
<td>1.045</td>
<td>1.043</td>
</tr>
<tr>
<td>Efficient strategy</td>
<td>1.061</td>
<td>1.057</td>
<td>1.052</td>
<td>1.049</td>
<td>1.045</td>
<td>1.043</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F_0</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed V^0</td>
<td>1.041</td>
<td>1.039</td>
<td>1.038</td>
<td>1.037</td>
<td>1.036</td>
</tr>
<tr>
<td>Efficient strategy</td>
<td>1.040</td>
<td>1.039</td>
<td>1.038</td>
<td>1.037</td>
<td>1.036</td>
</tr>
</tbody>
</table>
Misspecified Strategy vs Moving Average

Misspecified parameters:

\[\mu_1 = -1.8, \quad \mu_2 = 1.8, \quad \sigma = 0.15, \]
\[\lambda_1 = 4, \quad \lambda_2 = 4 \]

Real parameters:

\[\mu_1 = -0.2, \quad \mu_2 = 0.2, \quad \sigma = 0.15, \quad \lambda_1 = 2, \]
\[\lambda_2 = 2, \quad T = 3, \quad \delta = 0.8, \quad 100000 \text{ Monte Carlo simulations} \]