Change-point detection for Piecewise Deterministic Markov Processes

Alice Cleynen, Benoîte de Saporta
Institut Montpelliérain Alexander Grothendieck
CNRS, Univ. Montpellier, France

Outline

Motivation: Stochastic control
Dynamic optimization
Examples
Piecewise deterministic Markov Processes Impulse control

Change-point detection problem

Numerical approximation

Simulation study

Conclusion and perspectives

Stochastic control problems

Definition

Dynamic decision making problems

Stochastic control problems

Definition

Dynamic decision making problems

- act on a time-dependent process to change its dynamics

Stochastic control problems

Definition

Dynamic decision making problems

- act on a time-dependent process to change its dynamics
- continuously: use the accelerator pedal in a car
- punctually: change gear

Stochastic control problems

Definition

Dynamic decision making problems

- act on a time-dependent process to change its dynamics
- continuously: use the accelerator pedal in a car
- punctually: change gear
- in order to fulfill some objective: minimize/maximize some crtiterion

Stochastic control problems

Definition

Dynamic decision making problems

- act on a time-dependent process to change its dynamics
- continuously: use the accelerator pedal in a car
- punctually: change gear
- in order to fulfill some objective: minimize/maximize some crtiterion
- drive at the maximum authorized speed
- minimize fuel consumption

Stochastic control problems

Definition

Dynamic decision making problems under uncertainty

- act on a time-dependent process to change its dynamics
- continuously: use the accelerator pedal in a car
- punctually: change gear
- in order to fulfill some objective: minimize/maximize some crtiterion
- drive at the maximum authorized speed
- minimize fuel consumption
- in the presence of randomness

Stochastic control problems

Definition

Dynamic decision making problems under uncertainty

- act on a time-dependent process to change its dynamics
- continuously: use the accelerator pedal in a car
- punctually: change gear
- in order to fulfill some objective: minimize/maximize some crtiterion
- drive at the maximum authorized speed
- minimize fuel consumption
- in the presence of randomness
- other cars
- unknown route

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

- value function: best mean performance

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

- value function: best mean performance
- regularity properties: continuity, differentiability, convexity
- characterization as the unique solution to some explicit equation

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

- value function: best mean performance
- regularity properties: continuity, differentiability, convexity
- characterization as the unique solution to some explicit equation
- numerical approximation

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

- value function: best mean performance
- regularity properties: continuity, differentiability, convexity
- characterization as the unique solution to some explicit equation
- numerical approximation
- (near) optimal strategy

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

- value function: best mean performance
- regularity properties: continuity, differentiability, convexity
- characterization as the unique solution to some explicit equation
- numerical approximation
- (near) optimal strategy
- existence? in which form?
- properties, sensitivity analysis

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

- value function: best mean performance
- regularity properties: continuity, differentiability, convexity
- characterization as the unique solution to some explicit equation
- numerical approximation
- (near) optimal strategy
- existence? in which form?
- properties, sensitivity analysis
- numerical approximation

Example 1: Medical treatment optimization

[Pasin 18]

- Population: HIV patients

Example 1: Medical treatment optimization

[Pasin 18]

- Population: HIV patients
- Possible actions: cycles of injections of IL
- number of injections
- dose
- dates of injection

Example 1: Medical treatment optimization

[Pasin 18]

- Population: HIV patients
- Possible actions: cycles of injections of IL
- number of injections
- dose
- dates of injection
- Objective: minimize the time spent with low CD4+ T lymphocytes count

Example 1: Medical treatment optimization

[Pasin 18]

- Population: HIV patients
- Possible actions: cycles of injections of IL
- number of injections
- dose
- dates of injection
- Objective: minimize the time spent with low CD4+ T lymphocytes count
- Sources of randomness
- random response to injections
- individual variability between patients

Example 1: Medical treatment optimization

[Pasin 18]

Examples of optimally controlled CD4 ${ }^{+}$T trajectories

Example 2: Maintenance optimization

[Geeraert 17]

- Object of interrest: multi-component optronic camera

Example 2: Maintenance optimization

[Geeraert 17]

- Object of interrest: multi-component optronic camera
- Possible actions: maintenance
- repair or replace
- which components
- dates of intervention

Example 2: Maintenance optimization

[Geeraert 17]

- Object of interrest: multi-component optronic camera
- Possible actions: maintenance
- repair or replace
- which components
- dates of intervention
- Objective: minimize the unavailability + maintenance cost

Example 2: Maintenance optimization

[Geeraert 17]

- Object of interrest: multi-component optronic camera
- Possible actions: maintenance
- repair or replace
- which components
- dates of intervention
- Objective: minimize the unavailability + maintenance cost
- Sources of randomness
- random degradation or failure times for each component

Example 2: Maintenance optimization

[Geeraert 17]
Reference policy

- send camera to the workshop one day after failure or deterioration
- replace failed components, repair degraded components

Example 2: Maintenance optimization

[Geeraert 17]
Reference policy

- send camera to the workshop one day after failure or deterioration
- replace failed components, repair degraded components

Minimal cost (value function)

- maintenance authorized only after failure or deterioration: 20\% lower
- maintenance authorized at all times: 38\% lower

Common points

- family of underlying stochastic models PDMPs
- type of optimization problem: impulse control

Piecewise deterministic Markov processes

Davis (80 's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

Starting point

$$
X_{0}=(m, x)
$$

Piecewise deterministic Markov processes

Davis (80's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.
X_{t} follows the deterministic flow until the first jump time $T_{1}=S_{1}$

$$
X_{t}=\left(m, \phi_{m}(x, t)\right), \quad \mathbb{P}_{(m, x)}\left(S_{1}>t\right)=\mathrm{e}^{-\int_{0}^{t} \lambda_{m}\left(\phi_{m}(x, s)\right) d s}
$$

Piecewise deterministic Markov processes

Davis (80 's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

Post-jump location ($m_{1}, x_{T_{1}}$) selected by the Markov kernel

$$
Q_{m}\left(\phi_{m}\left(x, T_{1}\right), \cdot\right)
$$

Piecewise deterministic Markov processes

Davis (80 's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.
X_{t} follows the flow until the next jump time $T_{2}=T_{1}+S_{2}$

$$
X_{T_{1}+t}=\left(m_{1}, \phi_{m_{1}}\left(x_{T_{1}}, t\right)\right), \quad t<S_{2}
$$

Piecewise deterministic Markov processes

Davis (80 's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

Post-jump location ($m_{2}, x_{T_{2}}$) selected by Markov kernel

$$
Q_{m_{1}}\left(\phi_{m_{1}}\left(x_{T_{1}}, S_{2}\right), \cdot\right) \ldots
$$

Applications

Applications of PDMPs

Engineering systems, operations research, management science, economics, internet traffic, dependability and safety, neurosciences, biology, ...

- mode: nominal, failures, breakdown, environment, number of individuals, response to a treatment, ...
- Euclidean variable: pressure, temperature, time, size, potential, protein level, ...

Impulse control problem

Impulse control

Select

- intervention dates
- new starting point for the process at interventions to minimize a cost function
- repair a component before breakdown
- change treatment before relapse

Impulse control - State of the art

Lots of works on theoretical problems

Impulse control - State of the art

Lots of works on theoretical problems
Few works on numerical approximations

- [CD 89] Numerical approximation of the value function and ϵ-optimal strategy
- based on a discretization of the state space and Markov kernel
- requires solving multiple optimal stopping problems

Impulse control - State of the art

Lots of works on theoretical problems
Few works on numerical approximations

- [CD 89] Numerical approximation of the value function and ϵ-optimal strategy
- based on a discretization of the state space and Markov kernel
- requires solving multiple optimal stopping problems
- [dSDZ 14] Numerical approximation of the value function
- based on a time-dependent discretization of an underlying Markov chain
- work in progress for ϵ-optimal strategy

Impulse control - State of the art

Lots of works on theoretical problems
Few works on numerical approximations

- [CD 89] Numerical approximation of the value function and ϵ-optimal strategy
- based on a discretization of the state space and Markov kernel
- requires solving multiple optimal stopping problems
- [dSDZ 14] Numerical approximation of the value function
- based on a time-dependent discretization of an underlying Markov chain
- work in progress for ϵ-optimal strategy
- [Pasin 18] Numerical approximation of the value function and ϵ-optimal strategy
- based on a discretization of the state space and Markov kernel
- actions can be taken only at the boundary of the state space
- heuristics, no mathematical proof

Impulse control - State of the art

Lots of works on theoretical problems
Few works on numerical approximations

- [CD 89] Numerical approximation of the value function and ϵ-optimal strategy
- based on a discretization of the state space and Markov kernel
- requires solving multiple optimal stopping problems
- [dSDZ 14] Numerical approximation of the value function
- based on a time-dependent discretization of an underlying Markov chain
- work in progress for ϵ-optimal strategy
- [Pasin 18] Numerical approximation of the value function and ϵ-optimal strategy
- based on a discretization of the state space and Markov kernel
- actions can be taken only at the boundary of the state space
- heuristics, no mathematical proof

In all cases, the process is perfectly observed at all times

If the jump times are not observed?

Jump times can be

- date when CD4 ${ }^{+}$T count reach 500 threshold
- random failure/deterioration dates

Not observed!

If the jump times are not observed?

Jump times can be

- date when CD4+ ${ }^{+}$count reach 500 threshold
- random failure/deterioration dates

Not observed!

- [BdSD 12] Optimal stopping
- jump times observed
- post-jump locations observed through noise

Numerical approximation of the value function and ϵ-optimal stopping time

- [BL 17] Continuous control
- jump times observed
- post-jump locations observed through noise

Optimality equation, existence of optimal policies

If the jump times are not observed?

Jump times can be

- date when CD4 ${ }^{+}$T count reach 500 threshold
- random failure/deterioration dates

Not observed!

- [BdSD 12] Optimal stopping
- jump times observed
- post-jump locations observed through noise

Numerical approximation of the value function and ϵ-optimal stopping time

- [BL 17] Continuous control
- jump times observed
- post-jump locations observed through noise

Optimality equation, existence of optimal policies
No information on the jump times \Rightarrow very difficult problem

Change-point detection

Simplest special case

- only one jump of the mode variable
- discrete noisy observations of the continuous variable on a regular time grid

Optimal stopping $=$ Change-point detection

Aim: numerical approximation to

- detect the change-point at best (not too early/late)
- estimate the new mode after the jump

Typical example

- Population: cancer patients

Typical example

- Population: cancer patients
- Possible actions: change treatment
- treatment 1
- treatment 2
- dates of change

Typical example

- Population: cancer patients
- Possible actions: change treatment
- treatment 1
- treatment 2
- dates of change
- Objective: maximize life time of the patient with minimal secondary effect

Typical example

- Population: cancer patients
- Possible actions: change treatment
- treatment 1
- treatment 2
- dates of change
- Objective: maximize life time of the patient with minimal secondary effect
- Sources of randomness
- relapse date
- relapse type
- Observations: cancer cell loads (or proxy) at some regularly spaced measurement times, e.g. every 3 month

Outline

> Motivation: Stochastic control

> Change-point detection problem
> PDMP model
> State of the art on change-point detection MDP model

Numerical approximation

Simulation study

Conclusion and perspectives

Simple PDMP model

- State space $E \times \mathbb{R}=\{0,1, \ldots, d\} \times \mathbb{R} \times \mathbb{R}$: mode, position, time
- Starting point $X_{0}=(0, x, 0)$, flow Φ_{0}
- time-dependent Jump intensity $\lambda_{0}(x, u)=\lambda(u)$
- Jump kernel: position and time continuous, switch to mode i with probability p_{i}

Observations

- Observation times $t_{n}=\delta n$
- Noisy observations of the positions $Y_{n}=F\left(x_{t_{n}}\right)+\epsilon_{n}$

Observations

- Observation times $t_{n}=\delta n$
- Noisy observations of the positions $Y_{n}=F\left(x_{t_{n}}\right)+\epsilon_{n}$

Observations

- Observation times $t_{n}=\delta n$
- Noisy observations of the positions $Y_{n}=F\left(x_{t_{n}}\right)+\epsilon_{n}$

Example: flat/exponential model

- $d=3$ possible post-jump modes, same probability $p_{i}=1 / 3$, starting from $x_{0}=1$
$-\Phi_{0}(x, t)=x, \Phi_{1}(x, t)=x e^{0.1 t}, \Phi_{2}(x, t)=x e^{0.5 t}$, $\Phi_{3}(x, t)=x e^{1 t}$

Segmentation

- data collected until the time horizon
- a posteriori reconstruction of the change point

Segmentation

- data collected until the time horizon
- a posteriori reconstruction of the change point

Irrelevant in our medical context: change must be detected as soon as possible

Moving average

- compute the average of past data over a moving window
- detect rupture when the average exceeds some threshold

Moving average

- compute the average of past data over a moving window
- detect rupture when the average exceeds some threshold

Works well if

- data are centered before the rupture
- date have a positive trend after the rupture
- data have low variance
- small time interval between data

Kalman Filter

- discrete-time linear gaussian model observed throuh gaussian additive noise
- best mean squares approximation of the hidden variable given the observations
- small time interval between data

State of the art on change point detection

No generic method available if

- long interval between 2 observations
- non gaussian-linear model
- non additive noise
- aim is to detect rupture and new mode after rupture

Partially observed optimal stopping problem

- Finite horizon $\delta \mathrm{N}$

Partially observed optimal stopping problem

- Finite horizon $\delta \mathrm{N}$
- Admissible stopping times $\tau: \mathcal{F}^{Y}$-measurable
- Admissible decisions $A:\{0,1, \ldots, d\}$ valued, \mathcal{F}_{τ}^{Y}-measurable

Partially observed optimal stopping problem

- Finite horizon $\delta \mathrm{N}$
- Admissible stopping times $\tau: \mathcal{F}^{Y}$-measurable
- Admissible decisions $A:\{0,1, \ldots, d\}$ valued, \mathcal{F}_{τ}^{Y}-measurable
- Cost per stage before stopping
- $c(0, x, y)=0$ rightfully not stopped
- $c(m \neq 0, x, y)=\beta_{i} \delta$ lateness penalty
- Terminal cost at stopping
- $C(m, x, y, 0)=c(m, x, y)$ no stopping before the horizon
- $C(0, x, y, a \neq 0)=\alpha$ early stopping penalty
- $C(m \neq 0, x, y, a=m)=0 \operatorname{good}$ mode selection
- $C(m \neq 0, x, y, a \neq 0, m)=\gamma$ wrong mode penalty

Partially observed optimal stopping problem

- Finite horizon $\delta \mathrm{N}$
- Admissible stopping times $\tau: \mathcal{F}^{Y}$-measurable
- Admissible decisions $A:\{0,1, \ldots, d\}$ valued, \mathcal{F}_{τ}^{Y}-measurable
- Cost per stage before stopping
- $c(0, x, y)=0$ rightfully not stopped
- $c(m \neq 0, x, y)=\beta_{i} \delta$ lateness penalty
- Terminal cost at stopping
- $C(m, x, y, 0)=c(m, x, y)$ no stopping before the horizon
- $C(0, x, y, a \neq 0)=\alpha$ early stopping penalty
- $C(m \neq 0, x, y, a=m)=0 \operatorname{good}$ mode selection
- $C(m \neq 0, x, y, a \neq 0, m)=\gamma$ wrong mode penalty

Cost of admissible strategy (τ, A)
$J(\tau, A,(m, x, y))=\mathbb{E}_{(m, x, y)}\left[\sum_{n=0}^{(\tau-1) \wedge N} c\left(X_{n}, Y_{n}\right)+C\left(X_{\tau \wedge N}, Y_{\tau \wedge N}, A\right)\right]$

Fully observed optimal stopping problem

- Filter process $\Theta_{n}(A \times B)=\mathbb{P}_{(0, x, y)}\left(X_{\delta n} \in A \times B \mid \mathcal{F}_{n}^{Y}\right)$
- $\left(\Theta_{n}, Y_{n}\right)$ time inhomogeneous Markov chain with explicit transition kernels R_{n}^{\prime} on $\mathcal{P}(E) \times \mathbb{R}$
- cost functions $c^{\prime}(\theta, y)=\int c(m, x, y) d \theta(m, x)$, $C^{\prime}(\theta, y, a)=\int C(m, x, y, a) d \theta(m, x)$

Fully observed optimal stopping problem

Minimize over all admissible strategies (τ, a)
$J^{\prime}(\tau, A,(\theta, y))=\mathbb{E}_{(\theta, y)}\left[\sum_{n=0}^{(\tau-1) \wedge N} c^{\prime}\left(\Theta_{n}, Y_{n}\right)+C^{\prime}\left(\Theta_{\tau \wedge N}, Y_{\tau \wedge N}, A\right)\right]$

- numerical approximation of the value function
- computable (optimal ?) strategy

Difficulties

- measure-valued filter process: recursive equations but not simulatable
- curse of dimensionality

Outline

Motivation: Stochastic control

Change-point detection problem

Numerical approximation
Approach
Optimal quantization
Convergence results
Computable strategy

Simulation study

Conclusion and perspectives

Dynamic programming

Value function

$$
\begin{aligned}
V^{\prime}(\theta, y) & =\inf _{(\tau, A)} J^{\prime}(\tau, A,(\theta, y)) \\
& =\inf _{(\tau, A)} \mathbb{E}_{(\theta, y)}\left[\sum_{n=0}^{(\tau-1) \wedge N} c^{\prime}\left(\Theta_{n}, Y_{n}\right)+C^{\prime}\left(\Theta_{\tau \wedge N}, Y_{\tau \wedge N}, A\right)\right]
\end{aligned}
$$

Dynamic programming

$$
\begin{aligned}
& v_{N}^{\prime}(\theta, y)=\min _{0 \leq a \leq d} C^{\prime}(\theta, y, a) \\
& v_{k}^{\prime}(\theta, y)=\min \left\{\min _{1 \leq a \leq d} C^{\prime}(\theta, y, a) ; c^{\prime}(\theta, y)+R_{k}^{\prime} v_{k+1}^{\prime}(\theta, y)\right\}
\end{aligned}
$$

$$
v_{0}^{\prime}=V^{\prime}
$$

Approach

- Discretize the kernels R_{k}^{\prime} to discretize the Dynamic programming operators
based on simulation-based discretization grids of the chain $\left(\Theta_{n}, Y_{n}\right)$.

Approach

- Discretize the kernels R_{k}^{\prime} to discretize the Dynamic programming operators
based on simulation-based discretization grids of the chain $\left(\Theta_{n}, Y_{n}\right)$.

Problems

- Θ_{n} is not simulatable

$$
\Theta_{n+1}(A)=\frac{\int_{\mathbb{X}} P_{n}\left(H_{Y_{n+1}} \mathbb{1}_{A}\right)(m, x) d \Theta_{n}(m, x)}{\int_{\mathbb{X}} P_{n}\left(H_{Y_{n+1}}\right)(m, x) d \Theta_{n}(m, x)}
$$

- approximation in 2 steps: approximate simulation of $\Theta_{n}+$ discretization of the approximation

Discretization

$$
\begin{gathered}
X_{t}=\left(m_{y}, x_{t}, t\right) \\
E \times \mathbb{R}, P
\end{gathered}
$$

Discretization

$$
\begin{gathered}
\begin{array}{c}
X_{t}=\left(m_{y}, x_{t}, t\right) \\
E \times \mathbb{R}, P \\
X_{n}=\left(m_{t_{n}}, x_{t_{n}}\right) \\
E, P_{n} \\
\text { observations } \mid Y_{n}=F\left(X_{n}\right)+\varepsilon_{n} \\
\left(X_{n}, Y_{n}\right) \\
E \times \mathbb{R}, R_{n}
\end{array}
\end{gathered}
$$

Discretization

$$
\begin{gathered}
X_{t}=\left(m_{y}, x_{t}, t\right) \\
E \times \mathbb{R}, P \\
X_{n}=\left(m_{t_{n}}, x_{t_{n}}\right) \\
E, P_{n} \\
\text { observations }\left.\right|_{Y_{n}=F\left(X_{n}\right)+\varepsilon_{n}}\left(X_{n}, Y_{n}\right) \\
E \times \mathbb{R}, R_{n} \\
\text { filtering } \mid \Psi \\
\left(\Theta_{n}, Y_{n}\right) \\
\mathcal{P}(E) \times \mathbb{R}, R_{n}^{\prime} \\
\text { dynamic } \\
\text { programming }
\end{gathered}
$$

Discretization

Discretization

Discretization

Discretization

Quantization

[P 98], [PPP 04], [PRS05], . .

Quantization of a random variable $X \in L^{2}\left(\mathbb{R}^{q}\right)$

Approximate X by \widehat{X} taking finitely many values such that $\|X-\widehat{X}\|_{2}$ is minimum

- Find a finite weighted grid Γ with $|\Gamma|=K$
- Set $\widehat{X}=p_{\Gamma}(X)$ closest neighbor projection

Asymptotic properties

If $E\left[|X|^{2+\eta}\right]<+\infty$ for some $\eta>0$ then

$$
\lim _{K \rightarrow \infty} K^{1 / q} \min _{|\Gamma| \leq K}\left\|X-\widehat{X}^{\ulcorner }\right\|_{2}=C
$$

Algorithms

There exist algorithms providing
-「

- law of \widehat{X}
- transition probabilities for quantization of Markov chains

Example: $\mathcal{N}\left(0, I_{2}\right)$:

Algorithms

There exist algorithms providing

- 「
- law of \widehat{X}
- transition probabilities for quantization of Markov chains

Example: $\mathcal{N}\left(0, I_{2}\right)$:

Grids construction

Model \longrightarrow simulator of trajectories \longrightarrow grids

Grids construction

Model \longrightarrow simulator of trajectories \longrightarrow grids

Grids construction

Model \longrightarrow simulator of trajectories \longrightarrow grids

Grids construction

Model \longrightarrow simulator of trajectories \longrightarrow grids

Assets and drawbacks of quantization

Assets

- a simulator of the target law is enough to build the grids
- automatic construction of grids
- convergence rate for $\mathbb{E}[|f(X)-f(\widehat{X})|]$ if f lipschitz
- empirical error measure by Monte Carlo

Drawbacks

- computation time
- curse of dimension
- open questions of convergence of the algorithms

Convergence

Technical assumptions

$$
\begin{aligned}
\left|v_{0}^{\prime}\left(\delta_{\left(0, x_{0}\right)}, y_{0}\right)-\bar{v}_{0}^{\prime}\left(\delta_{\left(0, x_{0}\right)}, y_{0}\right)\right| & \leq \sum_{n=0}^{N-1} a_{n} \mathbb{E}\left[\left|\bar{X}_{n}-X_{n}\right|\right] \\
& =O\left(N_{\Omega}^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mid \hat{v}_{0}^{\prime}\left(\delta_{\left(0, x_{0}\right)}, y_{0}\right) & -\bar{v}_{0}^{\prime}\left(\delta_{\left(0, x_{0}\right)}, y_{0}\right) \mid \\
& \leq \sum_{n=0}^{N} c_{n}\left(\mathbb{E}\left[\left|\hat{Y}_{n}-\bar{Y}_{n}\right|\right]+\mathbb{E}\left[\left\|\hat{\Theta}_{n}-\bar{\Theta}_{n}\right\|_{n, 1}\right]\right) \\
& =O\left(N_{\Gamma}^{-1 / N_{\Omega}}\right)
\end{aligned}
$$

Candidate computable strategy

Dynamic programming

- $\hat{v}_{N}^{\prime}(\hat{\theta}, \hat{y})=\min _{0 \leq a \leq d} C^{\prime}(\hat{\theta}, \hat{y}, a)$
- $\hat{v}_{k}^{\prime}(\hat{\theta}, \hat{y})=\min \left\{\min _{1 \leq a \leq d} C^{\prime}(\hat{\theta}, \hat{y}, a) ; c^{\prime}(\hat{\theta}, \hat{y})+\hat{R}_{k}^{\prime} \hat{v}_{k+1}^{\prime}(\hat{\theta}, \hat{y})\right\}$

Set

- $r_{N}(\cdot)=0, a_{N}(\cdot)=0$ if $\hat{v}_{N}^{\prime}\left(\operatorname{proj}_{\Gamma_{N}}(\cdot)\right)=C^{\prime}\left(\operatorname{proj}_{N}(\cdot), 0\right)$
- $r_{N}(\cdot)=1, a_{N}(\cdot)=i$ if $\hat{v}_{N}^{\prime}\left(\operatorname{proj}_{\Gamma_{N}}(\cdot)\right)=C^{\prime}\left(\operatorname{proj}_{\Gamma_{N}}(\cdot), i\right)$

Candidate computable strategy

Dynamic programming

- $\hat{v}_{N}^{\prime}(\hat{\theta}, \hat{y})=\min _{0 \leq a \leq d} C^{\prime}(\hat{\theta}, \hat{y}, a)$
- $\hat{v}_{k}^{\prime}(\hat{\theta}, \hat{y})=\min \left\{\min _{1 \leq a \leq d} C^{\prime}(\hat{\theta}, \hat{y}, a) ; c^{\prime}(\hat{\theta}, \hat{y})+\hat{R}_{k}^{\prime} \hat{v}_{k+1}^{\prime}(\hat{\theta}, \hat{y})\right\}$

Set

- $r_{N}(\cdot)=0, a_{N}(\cdot)=0$ if $\hat{v}_{N}^{\prime}\left(\operatorname{proj}_{\Gamma_{N}}(\cdot)\right)=C^{\prime}\left(\operatorname{proj}_{\Gamma_{N}}(\cdot), 0\right)$
- $r_{N}(\cdot)=1, a_{N}(\cdot)=i$ if $\hat{v}_{N}^{\prime}\left(\operatorname{proj}_{\Gamma_{N}}(\cdot)\right)=C^{\prime}\left(\right.$ proj $\left._{\Gamma_{N}}(\cdot), i\right)$
- $r_{n}(\cdot)=0$ if $\hat{v}_{n}^{\prime}\left(\operatorname{proj}_{\Gamma_{n}}(\cdot)\right)=\hat{R}_{n}^{\prime} \hat{v}_{n+1}^{\prime}\left(\operatorname{proj}_{\Gamma_{n}}(\cdot)\right)$
- $r_{n}(\cdot)=1, a_{n}(\cdot)=i$ if $\hat{v}_{n}^{\prime}\left(\operatorname{proj}_{\Gamma_{n}}(\cdot)\right)=C^{\prime}\left(\operatorname{proj}_{n}(\cdot), i\right)$

Path-adapted computable strategy

Outline

Motivation: Stochastic control

Change-point detection problem

Numerical approximation

Simulation study
Linear model
Non linear model

Conclusion and perspectives

Flat/exponential model

- $d=3, p_{i}=1 / 3, x_{0}=1$
$-\Phi_{0}(x, t)=x, \Phi_{1}(x, t)=x e^{0.1 t}, \Phi_{2}(x, t)=x e^{0.5 t}$, $\Phi_{3}(x, t)=x e^{1 t}$
- $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1 / 6$

Flat/exponential model

- $d=3, p_{i}=1 / 3, x_{0}=1$
$-\Phi_{0}(x, t)=x, \Phi_{1}(x, t)=x e^{0.1 t}, \Phi_{2}(x, t)=x e^{0.5 t}$, $\Phi_{3}(x, t)=x e^{1 t}$
- $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1 / 6$

Flat/exponential model

- $d=3, p_{i}=1 / 3, x_{0}=1$
$-\Phi_{0}(x, t)=x, \Phi_{1}(x, t)=x e^{0.1 t}, \Phi_{2}(x, t)=x e^{0.5 t}$, $\Phi_{3}(x, t)=x e^{1 t}$
- $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1 / 6$

Flat/exponential model

- $d=3, p_{i}=1 / 3, x_{0}=1$
- $\Phi_{0}(x, t)=x, \Phi_{1}(x, t)=x e^{0.1 t}, \Phi_{2}(x, t)=x e^{0.5 t}$, $\Phi_{3}(x, t)=x e^{1 t}$
- $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1 / 6$

Flat/exponential model

- $d=3, p_{i}=1 / 3, x_{0}=1$
$-\Phi_{0}(x, t)=x, \Phi_{1}(x, t)=x e^{0.1 t}, \Phi_{2}(x, t)=x e^{0.5 t}$, $\Phi_{3}(x, t)=x e^{1 t}$
- $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1 / 6$

Flat/exponential model

- $d=3, p_{i}=1 / 3, x_{0}=1$
$-\Phi_{0}(x, t)=x, \Phi_{1}(x, t)=x e^{0.1 t}, \Phi_{2}(x, t)=x e^{0.5 t}$, $\Phi_{3}(x, t)=x e^{1 t}$
- $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1 / 6$

	MA	KF	PDMP
linear link function $F(x)=x$	1.42	1.60	1.00
inverse link function $F(x)=1 / x$	2.17	1.81	1.17

Non-linear model

- $d=1, x_{0}=(0,0)$
- $\Phi_{0}((x, u), t)=(\sin (3 \pi(u+t)), u+t)$, $\Phi_{1}((x, u), t)=(\sin (5 \pi(u+t)), u+t)$
- $\delta=1 / 6$, noise variance 1

Non-linear model

- $d=1, x_{0}=(0,0)$
- $\Phi_{0}((x, u), t)=(\sin (3 \pi(u+t)), u+t)$, $\Phi_{1}((x, u), t)=(\sin (5 \pi(u+t)), u+t)$
- $\delta=1 / 6$, noise variance 1

Boxplot of time to jump detection for different values of δ over 10000 simulation

Outline

Motivation: Stochastic control

Change-point detection problem

Numerical approximation

Simulation study

Conclusion and perspectives

Conclusion and perspectives

- Change-point detection method for continuous-time jump dynamics, able to detect a jump and select the post-jump mode
- For general flows but dimension 1

Conclusion and perspectives

- Change-point detection method for continuous-time jump dynamics, able to detect a jump and select the post-jump mode
- For general flows but dimension 1

To be done

- Real data applications
- Theoretical validity of the stopping rule
- Allow to stop between observations

Conclusion and perspectives

- Change-point detection method for continuous-time jump dynamics, able to detect a jump and select the post-jump mode
- For general flows but dimension 1

To be done

- Real data applications
- Theoretical validity of the stopping rule
- Allow to stop between observations
- Several jumps and detections
- Impulse control: select an action that changes the dynamics
- Optimally decide the next observation date

Reference

[BL 17] N. Bäuerle, D. Lange Optimal control of partially observed PDMPs [BdSD 12] A. Brandejsky, B. de Saporta, F. Dufour Optimal stopping for partially observed PDMPs
[CD 89] O. Costa, M. Davis Impulse control of piecewise-deterministic processes [Davis 93] M. Davis, Markov models and optimization [dSDZ 14] B. de Saporta, F. Dufour, H. Zhang Numerical methods for simulation and optimization of PDMPs: application to reliability [Geeraert 17] A. Geeraert Contrôle optimal stochastique des processus de Markov déterministes par morceaux et application à l'optimisation de maintenance PhD thesis
[P 98] G. Pagès A space quantization method for numerical integration
[PPP 04] G. Pagès, H. Pham, J. Printems An optimal Markovian quantization algorithm for multi-dimensional stochastic control problems
[Pasin 18] C. Pasin Modélisation et optimisation de la réponse à des vaccins et à des interventions immunothérapeutiques PhD thesis
[PRS 05] H. Pham, W. Runggaldier, A. Sellami Approximation by quantization of the filter process and applications to optimal stopping problems under partial observation

