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Motivation

Piecewise deterministic Markov processes

Davis (80's)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Starting point

Xo = (m, X)

SIAM Conference on Control and Its Applications Pittsburgh, USA July 2017 3/26



Motivation

Piecewise deterministic Markov processes

Davis (80's)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

X; follows the deterministic flow until the first jump time 71 = 5

X; = (m’ ¢m(X, t)), P(m,x)(sl > t) —e” fot Am (¢m(x,s)) ds
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Motivation

Piecewise deterministic Markov processes

Davis (80's)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Post-jump location (my, x7,) selected by the Markov kernel

Qm (dm(x, T1), ")

Em,
En
Qu (¢m(x, 1), -)
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Motivation

Piecewise deterministic Markov processes

Davis (80's)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

X follows the flow until the next jump time To = T1 + 5

XT1+t = (mla ¢m1(XT17 t))v t<5
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Motivation

Piecewise deterministic Markov processes

DEVEREIY
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Post-jump location (my, xT,) selected by Markov kernel

le (¢m1 (XT17 52), ) e
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Motivation

Applications

Applications of PDMPs

Engineering systems, operations research, management science,
economics, internet traffic, dependability and safety, neurosciences,
biology, ...

» mode: nominal, failures, breakdown, environment, number of
individuals, response to a treatment, ...

» Euclidean variable: pressure, temperature, time, size,
potential, protein level, ...
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Motivation

Impulse control problem

Impulse control

Select
> intervention dates
> new starting point for the process at interventions

to minimize a cost function

> repair a component before breakdown
» change treatment before relapse

> ..

[CD 89], [Davis 93], [dSDZ 14], ...
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Motivation

If the jump times are not observed?

» [BdSD 12] Optimal stopping

> jump times observed
» post-jump locations observed through noise

Numerical approximation of the value function and e-optimal
stopping time

» [BL 17] Continuous control

» jump times and post-jump locations observed through noise
Optimality equation, existence of optimal policies
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Motivation

If the jump times are not observed?

» [BdSD 12] Optimal stopping

> jump times observed
» post-jump locations observed through noise

Numerical approximation of the value function and e-optimal
stopping time
» [BL 17] Continuous control

» jump times and post-jump locations observed through noise
Optimality equation, existence of optimal policies

No information on the jump times = very difficult problem
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Motivation

Change-point detection

Simplest special case
» only one jump of the mode variable

» discrete noisy observations of the continuous variable on a
regular time grid

Optimal stopping = Change-point detection

Aim: numerical approximation to
» detect the change-point at best (not too early/late)

» estimate the new mode after the jump
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Change-point detection problem

Simple PDMP model

» State space £ x R=1{0,1,...,d} x R x R: mode, position,
time

» Starting point Xy = (0, x, 0), flow ®g

> time-dependent Jump intensity Ao(x, ) = ()

» Jump kernel: position and time continuous, switch to mode i
with probability p;
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Change-point detection problem

Observations

» Observation times t, = dn

» Noisy observations of the positions Y, = F(x:,) + €p
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Change-point detection problem

Observations

» Observation times t, = dn

» Noisy observations of the positions Y, = F(x;,) + €p
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Change-point detection problem

Partially observed optimal stopping problem

» Finite horizon oV
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Change-point detection problem

Partially observed optimal stopping problem

» Finite horizon §/V
» Admissible stopping times 7: FY-measurable
» Admissible decisions A: {0,1,...,d} valued, F,Y-measurable
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Change-point detection problem

Partially observed optimal stopping problem

» Finite horizon 6V
» Admissible stopping times 7: FY-measurable
> Admissible decisions A: {0,1,...,d} valued, F.Y-measurable
» Cost per stage before stopping
» ¢(0,x,y) = 0 rightfully not stopped
» c(m#£0,x,y) = ;0 lateness penalty
» Terminal cost at stopping

v

C(m,x,y,0) = c(m, x,y) no stopping before the horizon
C(0,x,y,a # 0) = « early stopping penalty
C(m+#0,x,y,a=m) =0 good mode selection
C(m+#0,x,y,a# 0,m) =~ wrong mode penalty

v vy
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Change-point detection problem

Partially observed optimal stopping problem

Finite horizon o /V
Admissible stopping times 7: FY-measurable
Admissible decisions A: {0,1,...,d} valued, F,Y-measurable
Cost per stage before stopping

» ¢(0,x,y) = 0 rightfully not stopped

» c(m#£0,x,y) = ;0 lateness penalty
Terminal cost at stopping
C(m,x,y,0) = c(m, x,y) no stopping before the horizon
C(0,x,y,a # 0) = « early stopping penalty
C(m+#0,x,y,a=m) =0 good mode selection
C(m+#0,x,y,a# 0,m) =~ wrong mode penalty

vy VYV

v

v

v vy

Cost of admissible strategy (7, A)

(T—1)AN

J(T«, A: (m X, )/)) = IE’(m,x,y) Z C(Xna Yn) + C(XT/\N7 YT/\N7 A)
n=0
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Change-point detection problem

Fully observed optimal stopping problem

> Filter process ©,(A x B) = P(g ,,)(Xsn € A x B|F))
» (©,,Y,) time inhomogeneous Markov chain with explicit
transition kernels 7, on P(E) x R

» cost functions ¢’(6,y) = [ ¢(m,x,y)df(m,x),
C'(0,y,a) = [ C(m,x,y,a)dd(m,x)

Fully observed optimal stopping problem
Minimize over all admissible strategies (7, a)

(T—1)AN
J/(T‘/ A7 (9/ y)) = E(e,}’) Cl(em Y") + C,(e"'/\/\h Y”'/\N’ A)

=
Il
o
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Change-point detection problem

Aim of the talk

» numerical approximation of the value function

» computable strategy

Difficulties
» measure-valued filter process

» curse of dimensionality
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Numerical approximation

Dynamic programming

Value function

V(0,y) = inf J(r, A, (0,
6,y) [t (1,A,(0,y))

(r—=1)AN

= inf By | D €O Ya) + €O, Yorr: A
T n=0

Dynamic programming

V[/\[(eay) = minOSan C/(97y7 a)
v/(6,y) = min {minlgagd C'(0,y,a);c'(0,y) + R,/(v,’(+1(0,y)}

Y
vp=V
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Numerical approximation

Discretization

Xt = (my,xt, t)
ExR, P
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Numerical approximation

Discretization

Xt = (myvxtv t)
ExR, P

J

Xn = (mtn’th)
E Py

observations J Yo = F(Xy) +¢n

(Xn, Yn)
E xR, R,
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Numerical approximation

Discretization

Xt = (myvxtv t)
ExR, P

Xn = (mtn’th)
E Py

observations Yo = F(Xy) +¢n

(Xns Ya)
E xR, R,
filtering | W
(©n; Ya)
P(E) xR, R,
dynamic
programming
v(©n, Yn)
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Numerical approximation

Discretization

Xt = (myvxtv t)
ExR, P

Xn = (Me,s Xt,) (Me,, Xe,) = Xn

EyPn—’Qn:Pn

quantization
observations | Yi= F(Xy) +¢n

(Xn, Yn)
E xR, R,
filtering | W
(©n; Ya)
P(E) xR, R,
dynamic
programming
v(©n, Yn)
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Numerical approximation

Discretization

Xt = (myvxtv t)
ExR, P

Xn = (me,, xt,) (M, Xe,) = Xn
E: Pn —_— Qn 'Dn

quantization
observations Yo = F(Xy) +¢n

(Xn, Yn) (Xa, Yn)
EXR, Ry o ' Q% Y, R,
filtering | W
(©n; Ya) (©n, Ya)
P(E) x R, R oo » P(Q) x Y, R,
dynamic
programming :
V,",(ena Yn) """""""""" > V:,(ém \_/n)
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Numerical approximation

Discretization

Xt = (myvxtv t)
ExR, P

Xn = (me,, xt,) (M, Xe,) = Xn
E: Pn —_— Qn 'Dn

quantization
observations Yo = F(Xy) +¢n

(X'H Y") ()_<m ?n)
EXR, Ry o » Q. x Y, R,
filtering | W
(@na Yn) (ém ?n) _ (éna S\/n)
P(E) X R, Rp oo »P(Q) x Y, R, ——— T, R/
. quantization
dynamic
programming :
Vll‘l(env Yn) """""""""" > V,’y(ém ?n)
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Numerical approximation

Discretization

Xt = (myvxtv t)
ExR, P

Xn = (me,, xt,) (M, Xe,) = Xn
E: Pn —_— Qn 'Dn

quantization
observations Yo = F(Xy) +¢n

(X'H Y") ()_<m ?n)
EXR, Ry o » Q. x Y, R,
filtering | W
(@na Yn) (ém ?n) _ (éna S\/n)
P(E) X R, Rp oo »P(Q) x Y, R, ——— T, R/
. quantization .
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programming : H
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Numerical approximation

Quantization

[P 98], [PPP 04], [PRS05], ...

Quantization of a random variable X € L?(IR9)

Approximate X by X taking finitely many values such that
|X — X||2 is minimum
» Find a finite weighted grid I with || = K
> Set X = pr(X) closest neighbor projection
Asymptotic properties
If E[|X|?*"] < +o0 for some 1 > 0 then
lim K /q|m|n X — Xr||2—

K—oo
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Numerical approximation

Algorithms

There exist algorithms providing

>

> law of X

» transition probabilities for quantization of Markov chains
Example: N(0, h):
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Numerical approximation

Grids construction

Model — simulator of trajectories — grids
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Numerical approximation

Grids construction

Model — simulator of trajectories — grids
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Numerical approximation

Assets and drawbacks of quantization

» a simulator of the target law is enough to build the grids
» automatic construction of grids

> convergence rate for E[|f(X) — £(X)|] if f lipschitz

» empirical error measure by Monte Carlo

» computation time
» curse of dimension

» open questions of convergence of the algorithms
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Numerical approximation

Convergence

Technical assumptions

N—-1
|V6(6(0,Xo)7y0) - 96(5(0,x0),YO)| < anE“)_(n - Xn|]
n=0
= O(Ng")
190(0(0.50)1 ¥0) — 79(8(0,x0) Y0)!
N
< ZC,, (E H\A/,,— Vn ] +E [”én_én n,1:|)
n=0

— O(NFl//NQ)
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Numerical approximation

Candidate computable strategy

Dynamic programming
> 74,(0,9) = ming<a<q C'(D,

y
> (0,5) = min {mini<,ca C'(0,5,2): ¢'(0.9) + R, %.1(0.9)}

Set
> rv(-) =0, an() = 0if Uy (projry(+)) = C'(projry,(+), 0)
> rv() =1, an() = 7if Uy (projr, (1)) = C'(projry(+), 1)
> 1) = 0 if U(projr, () = Ry¥p.1(projr, ()
> ro(+) =1, an(+) = 7 if ¥(projr, (1)) = C'(projr,(-), 1)
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Numerical approximation

Candidate computable strategy

n < 0
—
a0
r o« n(0,y)
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Numerical approximation

Candidate computable strategy

Y < » .
7 b
.y

SIAM Conference on Control and Its Applications Pittsburgh, USA July 2017 21/26



Numerical approximation

Candidate computable strategy

n «< 0
—
a0
ro+ r(f,y)

yes Stop at time n
Choose decision a = a,(0, y)

SIAM Conference on Control and Its Applications Pittsburgh, USA July 2017 21/26



Numerical approximation

Candidate computable strategy

Y < » .
7 b
Y

yes Stop at time n
Choose decision a = a,(0, y)

no
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Numerical approximation

Candidate computable strategy

Y < » .
7 e b
y

yes Stop at time n
Choose decision a = a,(0, y)

no

yes
Choose decision a2 = 0
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Numerical approximation

Candidate computable strategy

Y < » .
7 e b
y

yes Stop at time n
Choose decision a = a,(0, y)

no
yes
Choose decision 2 = 0
no
n < n+1
Y = W -
rr(0.y)
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Numerical approximation

Candidate computable strategy

Y < » .
7 e b
y

yes Stop at time n -
Choose decision a = a,(0, y)
no
yes
Choose decision a2 = 0
no
n < n+1
Y < ¥ .
e vy
r<+ ra(6,y)
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Numerical results

Example 1

s d=3p=1/3 x=1

> Oo(x, t) = x, P1(x,t) = xe”'t, &y(x, t) = xe"°F,
P3(x, t) = xe't

» B =1 (late detection), 7 = 1.5 (wrong mode), § =1/6

=
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Numerical results

Example 1

s d=3,p=1/3 x =1

> ®o(x,t) = x, P1(x,t) = xe 't
P3(x, t) = xe't

» B =1 (late detection),

, (DQ(X, t)

— xe05t,

1.5 (wrong mode), 6 =1/6

o A
+
N Observations .
- +
%)
© +
2 ° + + +
Q +
& - * *
o + +
P +
“7 L I
* true mode =2
o + ot
T T T T T T
o 1 2 3 4 5 6
time
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Numerical results

Example 1

> d:3,pi:1/3,X0:l

> do(x, t) = x, D1(x,t) = xe’ 1, Dy(x, t) = xe' -,

®3(x, t) = xe't

» B =1 (late detection),

= 1.5 (wrong mode), 6 =1/6

:
Mobile average »
% a
g 7 .
[ a
= a
T e L
2 s
8 - .o
£ soa s ®
AAA
R chosen mode =2
0 1 2 3 4 5 6
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Numerical results

Example 1

»d=3p=1/3 x=1

> do(x, t) = x, D1(x,t) = xe’ ', dy(x, t)

P3(x, t) = xe't

= xe”

0.5t

» (B =1 (late detection), v = 1.5 (wrong mode), § = 1/6

R . 0/ S
o \ Kalman filter o~or /|
0/0
e o2 O/D/ — P(M=0IY_11)
z / \ o — P(M=1IY_11)
= ooy . — P(M=2IY_11)
B\g;3>ﬁi?/°/u' \0\., P(M=3IY_1:t)
o Pl o, .
S o o° N o
VA =2 \ o/ \o\
o o7 Nz Y oo ime—._,_, Chosen mode =2
. ! 2 s : s .
time
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Numerical results

Example 1

s d=3,p=1/3 x=1
> dg(x, t) = x, D1(x,t) = xe’ !, Dy(x,t) = xe’t,
P3(x, t) = xe't

» B =1 (late detection), v = 1.5 (wrong mode), § = 1/6

PDMP

decision

chosen mode =2

T T T T T T T
0 1 2 3 4 5 6
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Example 1

Numerical results

»d=3p=1/3 x=1

> (Do(X, t)
(D3(X, t)
» [ =1 (late detection), 7y

Xelt

Moving Average
threshold=2

x, ®1(x,t) = xe”1t, ®y(x, t) = xe’°F,

1.5 (wrong mode), § =1/6

Kalman

PDMP

window

threshold

Nb grid points

2

3 4 5 0.5

075 0.9

cal

30

50 75

100

0.1

0.40
0.93
1.73

0.40 0.40 041
0.81 076 0.73
142 129 1.16

2.34
1.44
1.18

0.61 0.42
0.54 051
0.58 0.63

0.42
0.49
0.62

0.70
0.78
0.99

0.70 0.70
0.79 0.77
1.04 0.98

0.70
0.76
1.01

0.1

0.40
0.95
2.05

0.40 0.40 041
0.81 076 0.73
157 139 1.22

3.06
1.76
1.36

0.69 0.42
056 0.51
0.60 0.63

0.42
0.50
0.62

0.69
0.73
0.92

0.71 0.69
0.71 0.72
0.92 0.95

0.68
0.72
0.95

0.1

0.40
0.97
2.37

0.40 0.40 041
0.81 076 0.73
173 148 1.28

3.78
2.08
1.54

0.78 0.42
059 051
0.61 0.63

0.42
0.50
0.62

0.68
0.72
0.92

0.69 0.67
0.69 0.72
0.94 0.93

0.69
0.72
0.92

0.1

0.40
0.98
2.69

0.40 0.40 041
0.82 076 0.73
188 157 1.35

4.50
2.40
1.72

0.86 0.42
0.62 051
0.63 0.63

0.43
0.50
0.62

0.68
0.70
0.90

0.68 0.68
0.70 0.70
0.89 0091

0.69
0.69
0.89
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Numerical results

Example 2
> d=1, xo = (0,0)

> <D0(( u),t) = (sin(37(u+t)), u+t),
®1((x, u), t) = (sin(57(u +t)), u + t)

d= 1/6, noise variance 1

alpha=3beta=1.5

alpha =4 beta=2

© o © o
<4 <4
o XX X x o~ x
- i R qoxoxx x
" X" x ‘| x
o | X Yk T x| ° WX ) XXxxx
X % [3x | S X%
X% « P x| R
99 x X % g4 X
x
L e e AL L e LI
[ 3 4 5 6 0 1 2 3 4 5 6
t t
alpha =5beta=1 alpha =5 beta =0.5
© o © o
< o <+ o
x x
™ ~ o X %X X
‘P X
4 RS 4 - X/ 1%
o - m—X N o -| Mt X L]
% M x X g K X e 5 X X
Y9 = x ¥ x X x X x
x
T
1
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Example 3
> d:2, XOZ(O,O)

Numerical results

> Oo((x, u), t) = (sin(3(u + 1)), u + t),
®1((x, u), t) = (sin(3n(u+ t))+0.5t, u + t),
®y((x, u), t) = (sin(3n(u + t))+1.5t,u+ t)

» § =1/6, noise variance 1

alpha =5 beta=2

alpha = 4 beta =1

% x © xx
x X
<+ 4 xxxxxx <« - xxx&x
o " &
o~ o  AMAAMMAMAMAMAL | o~ LONMMNAANAMANAMN|
* “1 X = ® X x
o
o Jatiaend o
o %
7 true mode =2 ¥ X true mode =2
— — T
o 1 2 3 4 5 6 o 1 2 3 4 5 6
t t
alpha =6 beta=15 alpha=3beta=15
© " ©
%
+ <4
x x x X %
g 00 i« asang | ow X
® o possmctiiond ® x Aceseorersepernoriioeres
o fad ° d %
M x x
X % x
o o x
i true mode =2 i true mode = 1
— T — T
o 1 2 3 4 5 6 o 1 2 3 4 5 6
t t
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Conclusion and perspectives

Conclusion and perspectives

» Change-point detection method for continuous-time jump
dynamics, able to detect a jump and select the post-jump
mode

» For general flows but dimension 1 (4 time)
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Conclusion and perspectives

Conclusion and perspectives

» Change-point detection method for continuous-time jump
dynamics, able to detect a jump and select the post-jump
mode

» For general flows but dimension 1 (4 time)

To be done
» Real data applications
» Theoretical validity of the stopping rule
» Allow to stop between observations
» Several jumps

» Stop and restart the process from a new point
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Conclusion and perspectives
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