Optimal stopping for change-point detection of Piecewise Deterministic Markov Processes

Alice Cleynen, Benoîte de Saporta Institut Montpelliérain Alexander Grothendieck CNRS, Univ. Montpellier, France

Outline

Motivation

Change-point detection problem

Numerical approximation

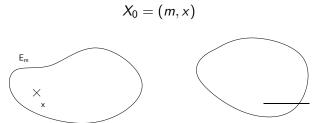
Numerical results

Conclusion and perspectives

Davis (80's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

Starting point

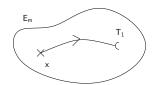


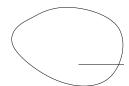
Davis (80's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

 X_t follows the deterministic flow until the first jump time $T_1 = S_1$

$$X_t = (m, \phi_m(x, t)), \quad \mathbb{P}_{(m, x)}(S_1 > t) = e^{-\int_0^t \lambda_m (\phi_m(x, s)) ds}$$



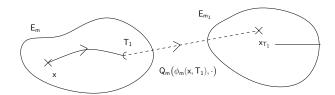


Davis (80's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

Post-jump location (m_1, x_{T_1}) selected by the Markov kernel

$$Q_m(\phi_m(x,T_1),\cdot)$$

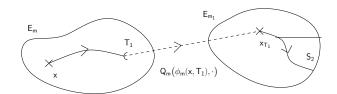


Davis (80's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

 X_t follows the flow until the next jump time $T_2 = T_1 + S_2$

$$X_{T_1+t} = (m_1, \phi_{m_1}(x_{T_1}, t)), \quad t < S_2$$

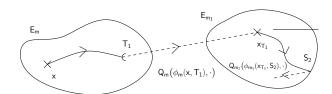


Davis (80's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

Post-jump location (m_2, x_{T_2}) selected by Markov kernel

$$Q_{m_1}(\phi_{m_1}(x_{T_1},S_2),\cdot)\dots$$



Applications

Applications of PDMPs

Engineering systems, operations research, management science, economics, internet traffic, dependability and safety, neurosciences, biology, . . .

- mode: nominal, failures, breakdown, environment, number of individuals, response to a treatment, . . .
- ► Euclidean variable: pressure, temperature, time, size, potential, protein level, . . .

Impulse control problem

Impulse control

Select

- intervention dates
- new starting point for the process at interventions

to minimize a cost function

- repair a component before breakdown
- change treatment before relapse
- **.** . . .

[CD 89], [Davis 93], [dSDZ 14], ...

If the jump times are not observed?

- ► [BdSD 12] Optimal stopping
 - jump times observed
 - post-jump locations observed through noise

Numerical approximation of the value function and ϵ -optimal stopping time

- ► [BL 17] Continuous control
 - ▶ jump times and post-jump locations observed through noise Optimality equation, existence of optimal policies

If the jump times are not observed?

- ► [BdSD 12] Optimal stopping
 - jump times observed
 - post-jump locations observed through noise

Numerical approximation of the value function and ϵ -optimal stopping time

- ► [BL 17] Continuous control
 - ▶ jump times and post-jump locations observed through noise Optimality equation, existence of optimal policies

No information on the jump times \Rightarrow very difficult problem

Change-point detection

Simplest special case

- only one jump of the mode variable
- discrete noisy observations of the continuous variable on a regular time grid

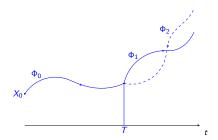
Optimal stopping = Change-point detection

Aim: numerical approximation to

- detect the change-point at best (not too early/late)
- estimate the new mode after the jump

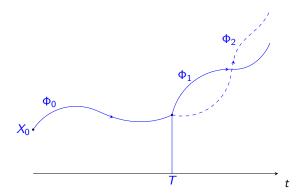
Simple PDMP model

- State space $E \times \mathbb{R} = \{0, 1, \dots, d\} \times \mathbb{R} \times \mathbb{R}$: mode, position, time
- Starting point $X_0 = (0, x, 0)$, flow Φ_0
- ▶ time-dependent Jump intensity $\lambda_0(x, u) = \lambda(u)$
- Jump kernel: position and time continuous, switch to mode i with probability p_i



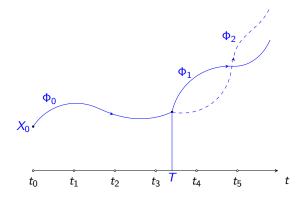
Observations

- Observation times $t_n = \delta n$
- Noisy observations of the positions $Y_n = F(x_{t_n}) + \epsilon_n$



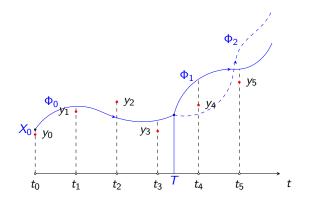
Observations

- ▶ Observation times $t_n = \delta n$
- Noisy observations of the positions $Y_n = F(x_{t_n}) + \epsilon_n$



Observations

- ▶ Observation times $t_n = \delta n$
- Noisy observations of the positions $Y_n = F(x_{t_n}) + \epsilon_n$



Finite horizon δN

- Finite horizon δN
- Admissible stopping times τ : \mathcal{F}^{Y} -measurable
- Admissible decisions A: $\{0,1,\ldots,d\}$ valued, \mathcal{F}_{τ}^{Y} -measurable

- Finite horizon δN
- Admissible stopping times τ : \mathcal{F}^{Y} -measurable
- ▶ Admissible decisions A: $\{0,1,\ldots,d\}$ valued, \mathcal{F}_{τ}^{Y} -measurable
- Cost per stage before stopping
 - c(0, x, y) = 0 rightfully not stopped
 - $c(m \neq 0, x, y) = \beta_i \delta$ lateness penalty
- Terminal cost at stopping
 - C(m, x, y, 0) = c(m, x, y) no stopping before the horizon
 - $C(0, x, y, a \neq 0) = \alpha$ early stopping penalty
 - $C(m \neq 0, x, y, a = m) = 0$ good mode selection
 - $C(m \neq 0, x, y, a \neq 0, m) = \gamma$ wrong mode penalty

- Finite horizon δN
- Admissible stopping times τ : \mathcal{F}^{Y} -measurable
- ▶ Admissible decisions A: $\{0,1,\ldots,d\}$ valued, \mathcal{F}_{τ}^{Y} -measurable
- Cost per stage before stopping
 - c(0, x, y) = 0 rightfully not stopped
 - $c(m \neq 0, x, y) = \beta_i \delta$ lateness penalty
- Terminal cost at stopping
 - \subset (m, x, y, 0) = c(m, x, y) no stopping before the horizon
 - $C(0, x, y, a \neq 0) = \alpha$ early stopping penalty
 - $C(m \neq 0, x, y, a = m) = 0$ good mode selection
 - \subset $(m \neq 0, x, y, a \neq 0, m) = \gamma$ wrong mode penalty

Cost of admissible strategy (τ, A)

$$J(\tau, A, (m, x, y)) = \mathbb{E}_{(m, x, y)} \left[\sum_{n=0}^{(\tau-1) \wedge N} c(X_n, Y_n) + C(X_{\tau \wedge N}, Y_{\tau \wedge N}, A) \right]$$

- ► Filter process $\Theta_n(A \times B) = \mathbb{P}_{(0,x,y)}(X_{\delta n} \in A \times B | \mathcal{F}_n^Y)$
- ▶ (Θ_n, Y_n) time inhomogeneous Markov chain with explicit transition kernels R'_n on $\mathcal{P}(E) \times \mathbb{R}$
- ► cost functions $c'(\theta, y) = \int c(m, x, y) d\theta(m, x)$, $C'(\theta, y, a) = \int C(m, x, y, a) d\theta(m, x)$

Fully observed optimal stopping problem

Minimize over all admissible strategies (τ, a)

$$J'(\tau, A, (\theta, y)) = \mathbb{E}_{(\theta, y)} \left[\sum_{n=0}^{(\tau-1) \wedge N} c'(\Theta_n, Y_n) + C'(\Theta_{\tau \wedge N}, Y_{\tau \wedge N}, A) \right]$$

Aim of the talk

- numerical approximation of the value function
- computable strategy

Difficulties

- measure-valued filter process
- curse of dimensionality

Dynamic programming

Value function

$$V'(\theta, y) = \inf_{(\tau, A)} J'(\tau, A, (\theta, y))$$

$$= \inf_{(\tau, A)} \mathbb{E}_{(\theta, y)} \left[\sum_{n=0}^{(\tau-1) \wedge N} c'(\Theta_n, Y_n) + C'(\Theta_{\tau \wedge N}, Y_{\tau \wedge N}, A) \right]$$

Dynamic programming

$$\begin{aligned} v_{\mathcal{N}}'(\theta,y) &= \mathsf{min}_{0 \leq a \leq d} \ C'(\theta,y,a) \\ v_{\mathcal{K}}'(\theta,y) &= \mathsf{min} \left\{ \mathsf{min}_{1 \leq a \leq d} \ C'(\theta,y,a); \ c'(\theta,y) + R_{\mathcal{K}}' v_{\mathcal{K}+1}'(\theta,y) \right\} \\ v_{0}' &= V' \end{aligned}$$

$$X_t = (m_y, x_t, t)$$

 $E \times \mathbb{R}, P$

$$X_{t} = (m_{y}, x_{t}, t)$$

$$E \times \mathbb{R}, P$$

$$\downarrow$$

$$X_{n} = (m_{t_{n}}, x_{t_{n}})$$

$$E, P_{n}$$
observations
$$\downarrow Y_{n} = F(X_{n}) + \varepsilon_{n}$$

$$(X_{n}, Y_{n})$$

$$E \times \mathbb{R}, R_{n}$$

$$X_{t} = (m_{y}, x_{t}, t)$$

$$E \times \mathbb{R}, P$$

$$\downarrow$$

$$X_{n} = (m_{t_{n}}, x_{t_{n}})$$

$$E, P_{n}$$
observations
$$V_{n} = F(X_{n}) + \varepsilon_{n}$$

$$(X_{n}, Y_{n})$$

$$E \times \mathbb{R}, R_{n}$$
filtering
$$\psi$$

$$(\Theta_{n}, Y_{n})$$

$$P(E) \times \mathbb{R}, R'_{n}$$

$$dynamic programming
$$V'_{n}(\Theta_{n}, Y_{n})$$$$

$$X_{t} = (m_{y}, x_{t}, t)$$

$$E \times \mathbb{R}, P$$

$$\downarrow$$

$$X_{n} = (m_{t_{n}}, x_{t_{n}}) \qquad (\bar{m}_{t_{n}}, \bar{x}_{t_{n}}) = \bar{X}_{n}$$

$$E, P_{n} \xrightarrow{\text{quantization}} \Omega_{n}, \bar{P}_{n}$$
observations
$$\downarrow Y_{n} = F(X_{n}) + \varepsilon_{n}$$

$$(X_{n}, Y_{n})$$

$$E \times \mathbb{R}, R_{n}$$

$$\text{filtering } \downarrow \Psi$$

$$(\Theta_{n}, Y_{n})$$

$$P(E) \times \mathbb{R}, R'_{n}$$

$$\text{dynamic } \downarrow$$

$$V'_{n}(\Theta_{n}, Y_{n})$$

$$V'_{n}(\Theta_{n}, Y_{n})$$

$$X_{t} = (m_{y}, x_{t}, t)$$

$$E \times \mathbb{R}, P$$

$$\downarrow$$

$$X_{n} = (m_{t_{n}}, x_{t_{n}}) \qquad (\bar{m}_{t_{n}}, \bar{x}_{t_{n}}) = \bar{X}_{n}$$

$$E, P_{n} \xrightarrow{\text{quantization}} \Omega_{n}, \bar{P}_{n}$$
observations
$$\downarrow Y_{n} = F(X_{n}) + \varepsilon_{n}$$

$$(X_{n}, Y_{n}) \qquad (\bar{X}_{n}, \bar{Y}_{n})$$

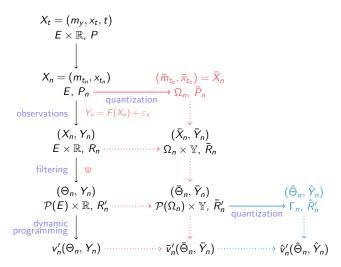
$$E \times \mathbb{R}, R_{n} \xrightarrow{\text{quantization}} \Omega_{n} \times \mathbb{Y}, \bar{R}_{n}$$
filtering
$$\downarrow \psi \qquad \qquad \vdots$$

$$(\Theta_{n}, Y_{n}) \qquad (\bar{\Theta}_{n}, \bar{Y}_{n})$$

$$\mathcal{P}(E) \times \mathbb{R}, R'_{n} \xrightarrow{\text{quantization}} \Gamma_{n}, \hat{R}'_{n}$$

$$\downarrow v'_{n}(\Theta_{n}, Y_{n}) \qquad (\bar{\Theta}_{n}, \bar{Y}_{n})$$

$$v'_{n}(\Theta_{n}, Y_{n}) \xrightarrow{\text{quantization}} \nabla_{n}, \hat{R}'_{n}$$



Quantization

[P 98], [PPP 04], [PRS05], ...

Quantization of a random variable $X \in L^2(\mathbb{R}^q)$

Approximate X by \widehat{X} taking finitely many values such that $\|X-\widehat{X}\|_2$ is minimum

- ▶ Find a finite weighted grid Γ with $|\Gamma| = K$
- ▶ Set $\widehat{X} = p_{\Gamma}(X)$ closest neighbor projection

Asymptotic properties

If $E[|X|^{2+\eta}]<+\infty$ for some $\eta>0$ then

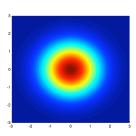
$$\lim_{K \to \infty} K^{1/q} \min_{|\Gamma| \le K} \|X - \widehat{X}^{\Gamma}\|_2 = C$$

Algorithms

There exist algorithms providing

- ▶ law of \widehat{X}
- transition probabilities for quantization of Markov chains

Example: $\mathcal{N}(0, I_2)$:

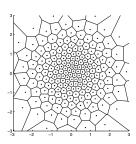


Algorithms

There exist algorithms providing

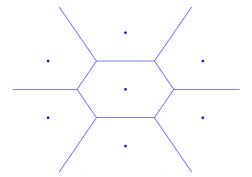
- ightharpoonup law of \widehat{X}
- transition probabilities for quantization of Markov chains

Example: $\mathcal{N}(0, I_2)$:



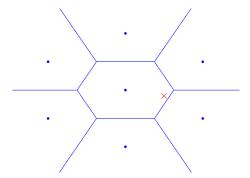
Grids construction

$\mathsf{Model} \longrightarrow \mathsf{simulator} \ \mathsf{of} \ \mathsf{trajectories} \longrightarrow \mathsf{grids}$



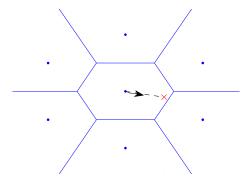
Grids construction

$\mathsf{Model} \longrightarrow \mathsf{simulator} \ \mathsf{of} \ \mathsf{trajectories} \longrightarrow \mathsf{grids}$



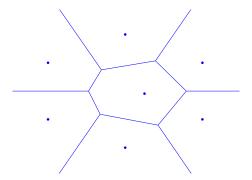
Grids construction

$\mathsf{Model} \longrightarrow \mathsf{simulator} \ \mathsf{of} \ \mathsf{trajectories} \longrightarrow \mathsf{grids}$



Grids construction

$\mathsf{Model} \longrightarrow \mathsf{simulator} \ \mathsf{of} \ \mathsf{trajectories} \longrightarrow \mathsf{grids}$



Assets and drawbacks of quantization

Assets

- ▶ a simulator of the target law is enough to build the grids
- automatic construction of grids
- ▶ convergence rate for $\mathbb{E}[|f(X) f(\widehat{X})|]$ if f lipschitz
- empirical error measure by Monte Carlo

Drawbacks

- computation time
- curse of dimension
- open questions of convergence of the algorithms

Convergence

Technical assumptions

$$|v_0'(\delta_{(0,x_0)},y_0) - \bar{v}_0'(\delta_{(0,x_0)},y_0)| \le \sum_{n=0}^{N-1} a_n \mathbb{E}[|\bar{X}_n - X_n|]$$

$$= O(N_{\Omega}^{-1})$$

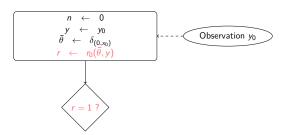
$$\begin{split} |\hat{v}_0'(\delta_{(0,x_0)},y_0) - \bar{v}_0'(\delta_{(0,x_0)},y_0)| \\ &\leq \sum_{n=0}^N c_n \left(\mathbb{E}\left[\left| \hat{Y}_n - \bar{Y}_n \right| \right] + \mathbb{E}\left[\|\hat{\Theta}_n - \bar{\Theta}_n\|_{n,1} \right] \right) \\ &= O(N_{\Gamma}^{-1/N_{\Omega}}) \end{split}$$

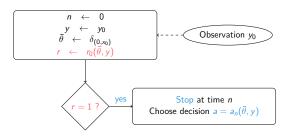
Dynamic programming

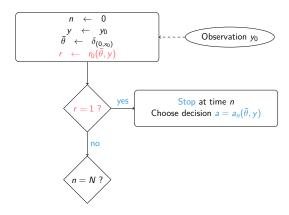
- $\hat{\mathbf{v}}'_{N}(\hat{\theta}, \hat{\mathbf{y}}) = \min_{0 < a < d} C'(\hat{\theta}, \hat{\mathbf{y}}, a)$
- $\hat{v}_k'(\hat{\theta},\hat{y}) = \min \left\{ \min_{1 \leq a \leq d} C'(\hat{\theta},\hat{y},a); c'(\hat{\theta},\hat{y}) + \hat{R}_k' \hat{v}_{k+1}'(\hat{\theta},\hat{y}) \right\}$

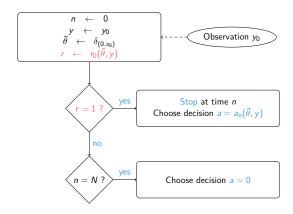
Set

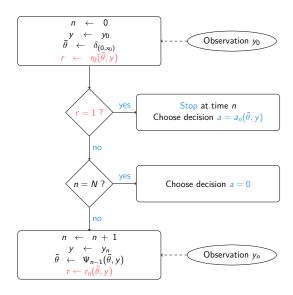
- $r_N(\cdot) = 0$, $a_N(\cdot) = 0$ if $\hat{v}'_N(proj_{\Gamma_N}(\cdot)) = C'(proj_{\Gamma_N}(\cdot), 0)$
- $r_N(\cdot) = 1$, $a_N(\cdot) = i$ if $\hat{v}'_N(proj_{\Gamma_N}(\cdot)) = C'(proj_{\Gamma_N}(\cdot), i)$
- $r_n(\cdot) = 0$ if $\hat{v}'_n(proj_{\Gamma_n}(\cdot)) = \hat{R}'_n\hat{v}'_{n+1}(proj_{\Gamma_n}(\cdot))$
- ho $r_n(\cdot) = 1$, $a_n(\cdot) = i$ if $\hat{v}'_n(proj_{\Gamma_n}(\cdot)) = C'(proj_{\Gamma_n}(\cdot), i)$

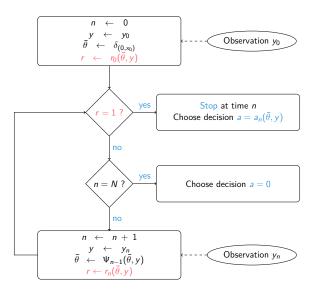




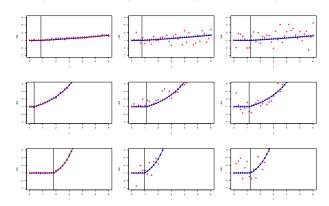




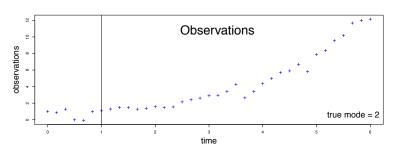




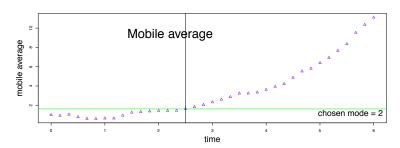
- \rightarrow d = 3, $p_i = 1/3$, $x_0 = 1$
- $\Phi_0(x,t) = x$, $\Phi_1(x,t) = xe^{0.1t}$, $\Phi_2(x,t) = xe^{0.5t}$, $\Phi_3(x,t) = xe^{1t}$
- ho $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1/6$



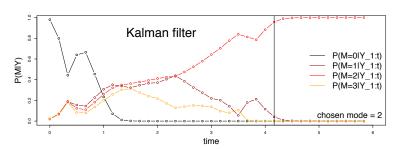
- \rightarrow d=3, $p_i=1/3$, $x_0=1$
- $\Phi_0(x,t) = x$, $\Phi_1(x,t) = xe^{0.1t}$, $\Phi_2(x,t) = xe^{0.5t}$, $\Phi_3(x,t) = xe^{1t}$
- ho $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1/6$



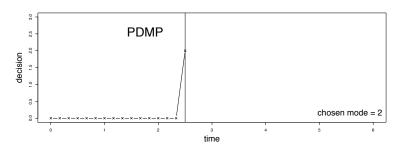
- \rightarrow d = 3, $p_i = 1/3$, $x_0 = 1$
- $\Phi_0(x,t) = x$, $\Phi_1(x,t) = xe^{0.1t}$, $\Phi_2(x,t) = xe^{0.5t}$, $\Phi_3(x,t) = xe^{1t}$
- ho eta=1 (late detection), $\gamma=1.5$ (wrong mode), $\delta=1/6$



- \rightarrow d = 3, $p_i = 1/3$, $x_0 = 1$
- $\Phi_0(x,t) = x$, $\Phi_1(x,t) = xe^{0.1t}$, $\Phi_2(x,t) = xe^{0.5t}$, $\Phi_3(x,t) = xe^{1t}$
- ho $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1/6$



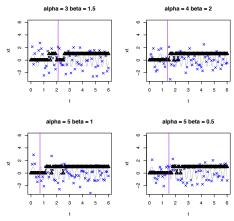
- \rightarrow d = 3, $p_i = 1/3$, $x_0 = 1$
- $\Phi_0(x,t) = x$, $\Phi_1(x,t) = xe^{0.1t}$, $\Phi_2(x,t) = xe^{0.5t}$, $\Phi_3(x,t) = xe^{1t}$
- ho $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1/6$



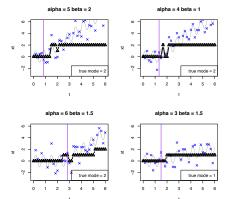
- $ightharpoonup d = 3, p_i = 1/3, x_0 = 1$
- $\Phi_0(x,t) = x$, $\Phi_1(x,t) = xe^{0.1t}$, $\Phi_2(x,t) = xe^{0.5t}$, $\Phi_3(x,t) = xe^{1t}$
- ho $\beta=1$ (late detection), $\gamma=1.5$ (wrong mode), $\delta=1/6$

		Moving Average				Kalman				PDMP			
α	σ^2	threshold=2											
		window				threshold				Nb grid points			
		2	3	4	5	0.5	0.75	0.9	cal	30	50	75	100
3	0.1	0.40	0.40	0.40	0.41	2.34	0.61	0.42	0.42	0.70	0.70	0.70	0.70
	0.5	0.93	0.81	0.76	0.73	1.44	0.54	0.51	0.49	0.78	0.79	0.77	0.76
	1	1.73	1.42	1.29	1.16	1.18	0.58	0.63	0.62	0.99	1.04	0.98	1.01
4	0.1	0.40	0.40	0.40	0.41	3.06	0.69	0.42	0.42	0.69	0.71	0.69	0.68
	0.5	0.95	0.81	0.76	0.73	1.76	0.56	0.51	0.50	0.73	0.71	0.72	0.72
	1	2.05	1.57	1.39	1.22	1.36	0.60	0.63	0.62	0.92	0.92	0.95	0.95
5	0.1	0.40	0.40	0.40	0.41	3.78	0.78	0.42	0.42	0.68	0.69	0.67	0.69
	0.5	0.97	0.81	0.76	0.73	2.08	0.59	0.51	0.50	0.72	0.69	0.72	0.72
	1	2.37	1.73	1.48	1.28	1.54	0.61	0.63	0.62	0.92	0.94	0.93	0.92
6	0.1	0.40	0.40	0.40	0.41	4.50	0.86	0.42	0.43	0.68	0.68	0.68	0.69
	0.5	0.98	0.82	0.76	0.73	2.40	0.62	0.51	0.50	0.70	0.70	0.70	0.69
	1	2.69	1.88	1.57	1.35	1.72	0.63	0.63	0.62	0.90	0.89	0.91	0.89

- \rightarrow $d=1, x_0=(0,0)$
- $\Phi_0((x,u),t) = (\sin(3\pi(u+t)), u+t),$ $\Phi_1((x,u),t) = (\sin(5\pi(u+t)), u+t)$
- $\delta = 1/6$, noise variance 1



- \rightarrow d=2, $x_0=(0,0)$
- $\Phi_0((x,u),t) = (\sin(3\pi(u+t)), u+t),$ $\Phi_1((x,u),t) = (\sin(3\pi(u+t)) + 0.5t, u+t),$ $\Phi_2((x,u),t) = (\sin(3\pi(u+t)) + 1.5t, u+t)$
- $ightharpoonup \delta = 1/6$, noise variance 1



Conclusion and perspectives

- Change-point detection method for continuous-time jump dynamics, able to detect a jump and select the post-jump mode
- ► For general flows but dimension 1 (+ time)

Conclusion and perspectives

- Change-point detection method for continuous-time jump dynamics, able to detect a jump and select the post-jump mode
- ► For general flows but dimension 1 (+ time)

To be done

- Real data applications
- Theoretical validity of the stopping rule
- Allow to stop between observations
- Several jumps
- Stop and restart the process from a new point

Reference

[BL 17] N. Bäuerle, D. Lange Optimal control of partially observed PDMPs

[BdSD 12] A. Brandejsky, B. de Saporta, F. Dufour *Optimal stopping for partially observed PDMPs*

[CD 89] O. Costa, M. Davis Impulse control of piecewise-deterministic processes

[Davis 93] M. Davis, Markov models and optimization [dSDZ 14] B. de Saporta, F. Dufour, H. Zhang Numerical methods for simulation and optimization of PDMPs: application to reliability [P 98] G. Pagès A space quantization method for numerical integration [PPP 04] G. Pagès, H. Pham, J. Printems An optimal Markovian quantization algorithm for multi-dimensional stochastic control problems [PRS 05] H. Pham, W. Runggaldier, A.f Sellami Approximation by quantization of the filter process and applications to optimal stopping problems under partial observation