Numerical Approximation of Optimal Strategies for Impulse Control of Piecewise Deterministic Markov Processes Application to Maintenance Optimisation

> Benoîte de Saporta, François Dufour, Huilong Zhang Univ. Montpellier, Bordeaux INP, Univ. Bordeaux

SIMA-CT19-Chengdu

Outline

Introduction Motivation Piecewise deterministic Markov processes

Impulse control for PDMPs

Numerical implementation

Conclusion

Maintenance optimization

Equipments

- with several components
- subject to random degradation and failures

Maintenance optimization problem: find some optimal balance between

- repairing/changing components too often
- b do nothing and wait for the total failure of the system

Maintenance optimization

Equipments

- with several components
- subject to random degradation and failures

Maintenance optimization problem: find some optimal balance between

- repairing/changing components too often
- b do nothing and wait for the total failure of the system

Optimize some criterion

- minimize a cost: repair, maintenance, unavailability penalty, failure penalty, ...
- maximize a reward: availability, production, ...

Impulse control problem

Impulse control

Select

- intervention dates
- new starting point for the process at interventions

to minimize a cost function

Piecewise deterministic Markov processes

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps. [CD 89], [Davis 93], [dSDZ 14], ...

Starting point

 $X_0 = (m, x)$

 X_t follows the deterministic flow until the first jump time $T_1 = S_1$

$$X_t = (m, \phi_m(x, t)), \quad \mathbb{P}_{(m,x)}(T_1 > t) = \mathrm{e}^{-\int_0^t \lambda_m (\phi_m(x,s)) ds}$$

.

Post-jump location (m_1, x_{T_1}) selected by the Markov kernel

 $Q_m(\phi_m(x, T_1), \cdot)$

 X_t follows the flow until the next jump time $T_2 = T_1 + S_2$

$$X_{T_1+t} = \big(m_1, \phi_{m_1}(x_{T_1}, t)\big), \quad t < S_2$$

Post-jump location (m_2, x_{T_2}) selected by Markov kernel

 $Q_{m_1}(\phi_{m_1}(x_{T_1},S_2),\cdot)\ldots$

Embedded Markov chain

 $\{X_t\}$ strong Markov process [Davis 93]

Natural embedded Markov chain

- Z_0 starting point, $S_0 = 0$, $S_1 = T_1$
- ► Z_n new mode and location after *n*-th jump, $S_n = T_n T_{n-1}$, time between two jumps

Proposition

 (Z_n, S_n) is a discrete-time Markov chain Only source of randomness of the PDMP

Mathematical definition of impulse control

Strategy $\mathcal{S} = (\tau_n, R_n)_{n \geq 1}$

- τ_n intervention times
- ▶ *R_n* new positions after intervention

Value function

$$\mathcal{J}^{\mathcal{S}}(x) = E_x^{\mathcal{S}} \left[\int_0^\infty e^{-\alpha s} f(Y_s) ds + \sum_{i=1}^\infty e^{-\alpha \tau_i} c(Y_{\tau_i}, Y_{\tau_i^+}) \right]$$
$$\mathcal{V}(x) = \inf_{\mathcal{S} \in \mathbb{S}} \mathcal{J}^{\mathcal{S}}(x)$$

- f, c cost functions, α discount factor
- ▶ *Y_t* controlled process, S set of admissible strategies

SIAM-CT19-Chengdu

19/06/2019

Dynamic programming

Costa, Davis, 1988

For any function $g \ge \text{cost}$ of the no-impulse strategy

▶
$$v_0 = g$$

▶ $v_n = L(v_{n-1})$
 $v_n(x) \xrightarrow[n \to \infty]{} \mathcal{V}(x)$

dS, Dufour, Geeraert, 2017

Construction of $\epsilon\text{-optimal}$ strategies based on the dynamic programming operator

Dynamic programming

Jump-or-intervention operator

$$\begin{aligned} v_{n}(Z_{n}) &= L(Mv_{n+1}, v_{n+1})(Z_{n}) \\ &= \left(\inf_{t \leq t^{*}(Z_{n})} \mathbb{E} \Big[F(Z_{n}, t) + e^{-\alpha S_{n+1}} v_{n+1}(Z_{n+1}) \mathbb{1}_{\{S_{n+1} < t \wedge t^{*}(Z_{n})\}} \right. \\ &+ e^{-\alpha t \wedge t^{*}(Z_{n})} Mv_{n+1} \big(\phi(Z_{n}, t \wedge t^{*}(Z_{n})) \big) \mathbb{1}_{\{S_{n+1} \geq t \wedge t^{*}(Z_{n})\}} \mid Z_{n} \Big] \Big) \\ &\wedge \mathbb{E} \Big[F(Z_{n}, t^{*}(Z_{n})) + e^{-\alpha S_{n+1}} v_{n+1}(Z_{n+1}) \mid Z_{n} \Big] \end{aligned}$$

with

$$F(x,t) = \int_0^{t \wedge t^*(x)} e^{-\alpha s - \int_0^s \lambda(\phi(x,u)) du} f(\phi(x,s)) ds$$
$$Mv_{n+1}(x) = \inf_{y \in \mathbb{U}} \{ c(x,y) + v_{n+1}(y) \}$$

SIAM-CT19-Chengdu

S
Ð
5
Ð
_
0
S
_
5
0
m.
Ň
÷.
Ψ.
5
x
\frown
_
S
Ps
ЛРs
MPs
OMPs
DMPs
PDMPs
PDMPs
or PDMPs
for PDMPs
for PDMPs
ol for PDMPs
ol for PDMPs
trol for PDMPs
ntrol for PDMPs
ontrol for PDMPs
control for PDMPs
control for PDMPs
e control for PDMPs
se control for PDMPs
lse control for PDMPs
ulse control for PDMPs
pulse control for PDMPs
npulse control for PDMPs

Based on time-dependent discretizations of the state space of (Z_n, S_n) Approximation scheme - ϵ -optimal strategy

Equipment model

Typical model with 4 components

- Component 2: 2 states stable $\xrightarrow{\text{Weibull}}$ failed
- Components 3 and 4: 3 states

stable $\xrightarrow{\text{Weibull}} \text{degraded} \xrightarrow{\text{Exponential}} \text{failed}$

Maintenance operations

Possible maintenance operations

- All components, all states: do nothing
- Components 1 and 2, all states: change
- Components 3 and 4: change in all states, repair only in stable or degraded states

Criterion to optimize

Minimize the maintenance + unavailability costs

- unavailability cost proportional to time spend in failed state
- ▶ fixed cost for going to the workshop + repair < change costs

PDMP model of the equipment

Euclidean variables: 5 time variables

- functioning time of components 2, 3 and 4
- calendar time
- time spent in the workshop

Discrete variables: 225 modes

state of the components / maintenance operations

Parameters to tune

- Number of points in the control grid (underlying continuous model)
- Number of point in the quantization grids for (Z_n, S_n)
- Approximation horizon N such that $v_N(x) \mathcal{V}(x)$ small enough \simeq allowed number of jumps + interventions
- bounding function g
- Time discretization step for inf

Step 1: Exact simulation of the PDMP

Implementation of an exact simulator for reference strategies to serve as benchmark

- Strategy 1: do nothing
- Strategy 2: send equipment to workshop 1 day after failure, change all degraded components, change all failed ones
- Strategy 3: send equipment to workshop 1 day after degradation, change all degraded components, change all failed ones

Strategy	1	2	3
Mean cost	19952	11389	8477

Step 1: Exact simulation of the PDMP

Implementation of an exact simulator for reference strategies to serve as benchmark

- Strategy 1: do nothing
- Strategy 2: send equipment to workshop 1 day after failure, change all degraded components, change all failed ones
- Strategy 3: send equipment to workshop 1 day after degradation, change all degraded components, change all failed ones

Strategy	1	2	3
Mean cost	19952	11389	8477

Step 2 and 3: Discretisation of the control set $\mathbb U$ and te embedded Markov chain

Tests on strategy 3

		Number	relative
	Grid	of points	error
Finite control set $\mathbb U$	$3 \times 3 \times 3 \times 5$	246	0.10344
\rightarrow discretize the functioning times	$4\times 4\times 4\times 5$	331	0.0241
	5 imes5 imes5 imes5	592	0.0062
at interventions	$3\times3\times3\times11$	615	0.0341
\implies project the real times on the	$4\times 4\times 4\times 11$	923	0.0819
	5 imes5 imes5 imes11	1855	0.0186
grid feasibly	6 imes 6 imes 6 imes 11	2110	0.0066
	7 imes 7 imes 7 imes 11	2617	0.0071
	$8\times8\times8\times11$	3359	0.0066
Compromise between precision and	$3\times 3\times 3\times 21$	1230	0.0034
computation time	4 imes 4 imes 4 imes 21	1899	0.0170
	$5\times5\times5\times21$	2960	0.0095
	6 imes 6 imes 6 imes 21	4220	0.0065
	$7\times7\times7\times21$	5536	0.0059
	$8 \times 8 \times 8 \times 21$	7111	0.0047

Step 4: Calibrating N the number of allowed jumps + interventions

Horizon N (number of iterations)

- 5 for Strategy 1
- up to 30 for Strategy 2 (mean 6)
- up to 25 for Strategy 3 (mean 6)

Step 5: Approximation of the value function

Strategy	Strategy	Strategy	Approx.
1	2	3	Value function
19952	11389	8477	7076

relative gain of 19.8% vs Strategy 5

Step 6: Optimally controlled trajectories

Strategy	Strategy	Strategy	Approx.	Optimally
1	2	3	Value function	controlled traj.
19952	11389	8477	7076	6733

numerical validation of the algorithm with various starting points: consistent results Conclusion

Conclusion

Numerical method to derive a feasible ϵ -optimal strategy

- ▶ rigorously validated [dSD 12, dSDG 17]
- with general error bounds for the approximation of the value function
- numerically demanding but viable in low dimensional examples

Conclusion

References

[CD 89] O. COSTA, M. DAVIS Impulse control of piecewise-deterministic processes
[Davis 93] M. DAVIS, Markov models and optimization
[dSD 12] B. DE SAPORTA, F. DUFOUR Numerical method for impulse control of piecewise deterministic Markov processes
[dSDG 17] B. DE SAPORTA, F. DUFOUR, A. GEERAERT Optimal strategies for impulse control of piecewise deterministic Markov processes
[dSDZ 14] B. DE SAPORTA, F. DUFOUR, H. ZHANG Numerical methods for simulation and optimization of PDMPs: application to reliability

[P 98] G. PAGÈS A space quantization method for numerical integration [PPP 04] G. PAGÈS, H. PHAM, J. PRINTEMS An optimal Markovian quantization algorithm for multi-dimensional stochastic control problems