A Problem of Optimal Portfolio Allocation with Transaction Costs

Benoîte de Saporta

INRIA Sophia Antipolis
Team OMEGA

CHRISTOPHETTE BLANCHET (University of Nice)
RAJNA GIBSON (University of Zurich)
ETIENNE TANRÉ and DENIS TALAY (INRIA Sophia Antipolis)

Groupe de Travail Finance, march 2 2006
Outline

1. Introduction to Stochastic Control
2. Motivation
3. Framework
4. Study of the Value Function
 - Dynamic Programming Principle
 - Hamilton Jacobi Bellman Equations
5. Numerical Results
 - Value Function
 - An Efficient Strategy
 - Comparison of Strategies
Outline

1. Introduction to Stochastic Control
2. Motivation
3. Framework
4. Study of the Value Function
 - Dynamic Programming Principle
 - Hamilton Jacobi Bellman Equations
5. Numerical Results
 - Value Function
 - An Efficient Strategy
 - Comparison of Strategies
Stochastic Control Problem

- **State** of the system W_t subject to stochastic dynamics
- **Control** process π_t
 - value chosen at each time depending on the available information: adapted
 - influence the dynamics of W_t
- Performance **Criterion** $J(W, \pi)$ to be maximised

Value Function

$$V = \sup_{\pi} J(W, \pi)$$

Aim

- Compute or identify the value function
- Find an optimal strategy (if it exists)
Example: Merton’s Problem
Statement I

Market:
- risk-free asset
- risky asset

\[
\begin{align*}
 dS^0_t &= S^0_t r dt \\
 dS_t &= \mu S_t dt + \sigma S_t dB_t
\end{align*}
\]

- **Control** process \(\pi_t \in [0; 1] \): proportion of the wealth invested in the risky asset

- **State** \(W_t \): wealth process

\[
\frac{dW^\pi_t}{W^\pi_t} = \pi_t \frac{dS_t}{S_t} + (1 - \pi_t) \frac{dS^0_t}{S^0_t} = \left(\pi_t \mu + (1 - \pi_t) r \right) dt + \pi_t \sigma dB_t
\]
Example: Merton’s Problem

Statement II

- **Criterion**: expected utility of the terminal wealth

\[U(x) = x^\alpha, \quad 0 < \alpha < 1 \]

- **Value Function**

\[V(t, x) = \sup_{\pi} \mathbb{E}[U(W_t^{x, \pi})] \]

- **Aim**

 - Compute or identify the value function
 - Find an optimal strategy (if it exists)
Example: Merton’s Problem
Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman (HJB) Equation

\[
\frac{\partial \Phi}{\partial t}(t, x) + \sup_{p \in [0;1]} \mathcal{L}^p \Phi(t, x) = 0
\]

\[
\Phi(T, x) = U(x) = x^\alpha
\]

\[
\mathcal{L}^p \Phi(t, x) = x(p \mu + (1 - p)r) \frac{\partial \Phi}{\partial x}(t, x) + \frac{1}{2} \sigma^2 p^2 x^2 \frac{\partial^2 \Phi}{\partial x^2}(t, x)
\]

As \(U(W_T^{x, \pi}) = U(x W_T^{x, 1, \pi}) = x^\alpha U(W_T^{x, 1, \pi}) \), we’re searching for a factorized solution \(\Phi(t, x) = x^\alpha \varphi(t) \)

\[
0 = \varphi'(t) + \varphi(t) \sup_{p \in [0;1]} \{ \alpha(p \mu + (1 - p)r) + \frac{\alpha(\alpha - 1)}{2} p^2 \sigma^2 \}
\]

\[
1 = \varphi(T)
\]
Example: Merton’s Problem
Solution of HJB Equation

\[\Phi(t, x) = x^\alpha e^{\beta(T-t)} \]

with

\[\beta = \sup_{p \in [0;1]} \{ \alpha(p\mu + (1-p)r) + \frac{\alpha(\alpha - 1)}{2} p^2 \sigma^2 \} \]

\[= \alpha r + \frac{\alpha(\mu - r)^2}{2(1 - \alpha)\sigma^2} \]

reached at \(p^* = \frac{\mu - r}{(1 - \alpha)\sigma^2} \)
Example: Merton’s Problem

Interpretation of HJB Equation

Itô formula for \(\Phi \) between \(t \) and \(T \):

\[
\Phi(T, W_T^{t,x,\pi}) = \Phi(t, x) + \int_t^T \left(\frac{\partial \Phi}{\partial u} + \mathcal{L}^{\pi_u \Phi}(u, W_u^{t,x,\pi}) \right) du + \text{martingale}
\]

\[
U(W_T^{t,x,\pi}) \leq \Phi(t, x) + \int_t^T \left(\frac{\partial \Phi}{\partial u} + \sup_{p \in [0;1]} \mathcal{L}^p \Phi(u, W_u^{t,x,\pi}) \right) du + \text{martingale}
\]

\[
\leq \Phi(t, x) + \text{martingale}
\]

Hence

\[
\Phi(t, x) \geq \mathbb{E}[U(W_T^{t,x,\pi})]
\]

with equality when \(\pi_t = p^* \).
Example: Merton’s Problem

Conclusion

- \(V(t, x) = x^\alpha e^{\beta(T-t)} \)

- Constant optimal strategy \(\pi_t = \frac{\mu - r}{(1 - \alpha)\sigma^2} \)

- \(V \) is a solution of Hamilton Jacobi Bellman equation
Example: Merton’s Problem

Conclusion

- \(V(t, x) = x^\alpha e^{\beta(T-t)} \)
- Constant optimal strategy \(\pi_t = \frac{\mu - r}{(1-\alpha)\sigma^2} \)
- \(V \) is a solution of Hamilton Jacobi Bellman equation
Our Problem

Market:

- risk-free asset
- risky asset

\[
\begin{align*}
\text{risksfree asset:} & \quad dS_t^0 = S_t^0 r dt \\
\text{risky asset:} & \quad dS_t = \mu(t) S_t dt + \sigma S_t dB_t
\end{align*}
\]

- the drift alternately takes two different values
 \(\mu_1 < 0 \) and \(\mu_2 > 0 \)

- transaction costs
Outline

1. Introduction to Stochastic Control

2. Motivation

3. Framework

4. Study of the Value Function
 - Dynamic Programming Principle
 - Hamilton Jacobi Bellman Equations

5. Numerical Results
 - Value Function
 - An Efficient Strategy
 - Comparison of Strategies
Motivation

Main approaches to investment

- Fundamental approach
 - fundamental economic principles

- Technical Analysis approach
 - past prices behaviour

- Mathematical Approach
 - mathematical models

Aim

Compare the performance of technical analysis and miscalibrated mathematical models
Framework

Market: risk-free asset
 risky asset

\[dS_t^0 = S_t^0 r dt \]
\[dS_t = \mu(t) S_t dt + \sigma S_t dB_t \]

- \(B \) standard Brownian motion,
- \(\mu(t) \in \{\mu_1, \mu_2\} \) independent of \(B \),
- control process \(\pi_t \in \{0, 1\} \) proportion of the wealth invested in the risky asset
- state \(W_t^\pi \) wealth when strategy \(\pi \) is applied
- criterion expected utility of the terminal wealth

Aim
Maximise the expected utility of the terminal wealth
Technical Analyst strategy

Moving average

\[M_t^\delta = \frac{1}{\delta} \int_{t-\delta}^{t} S_u du \]

- If \(S_t > M_t^\delta \) buy
- If \(S_t < M_t^\delta \) sell

\(\mu_1 = -0.2, \mu_2 = 0.2, \sigma = 0.15, \delta = 0.8. \)
BLANCHET, DIOP, GIBSON, KAMINSKI, TALAY, TAMRÉ (2005)

risk-free asset \[dS^0_t = S^0_0 rdt, \]
risky asset \[dS_t = \mu(t)S_t dt + \sigma S_t dB_t, \]

One change of drift
- \(\mu(t) = \mu_1 \) if \(t < \tau \)
- \(\mu(t) = \mu_2 \) if \(t \geq \tau \)

with \(\mathbb{P}(\tau > t) = e^{-\lambda t} \)

Strategy
detect \(\tau \)

\(\mu_1 = -0.2, \mu_2 = 0.2, \sigma = 0.15, \lambda = 2. \)
Previous Work

Results

- theoretical study of the value function
- theoretical study of detecting the change of drift
- numerical comparisons of strategies
 - well calibrated detection
 - miscalibrated detection
 - moving average

Conclusion

- Moving average strategy can overperform miscalibrated mathematical strategies
- Range of misspecifications for which this is true
Outline

1 Introduction to Stochastic Control

2 Motivation

3 Framework

4 Study of the Value Function
 - Dynamic Programming Principle
 - Hamilton Jacobi Bellman Equations

5 Numerical Results
 - Value Function
 - An Efficient Strategy
 - Comparison of Strategies
New Model

- Several changes of drift
 \((\xi_{2n+1}) \text{ iid Exp}(\lambda_1)\)
 \((\xi_{2n}) \text{ iid Exp}(\lambda_2)\)
 \(\tau_0 = 0, \tau_n = \xi_1 + \cdots + \xi_n\)

- Transaction costs
 - \(g_{01}\) buying cost
 - \(g_{10}\) selling cost

\[\mu(t) = \begin{cases}
\mu_1 & \text{if } \tau_{2n} \leq t < \tau_{2n+1} \\
\mu_2 & \text{if } \tau_{2n+1} \leq t < \tau_{2n+2}
\end{cases}\]

\[\mu_1 = -0.2, \mu_2 = 0.2, \]
\[\sigma = 0.15, \lambda_1 = \lambda_2 = 2.\]
Admissible strategies

Control process: $\pi_t \in \{0, 1\}$ proportion of the wealth invested in the risky asset

$$F^S_t = \sigma(S_u, u \leq t)$$

π_t must be F^S_t-adapted

Problem

$$F^S_t \neq F^B_t = \sigma(B_u, u \leq t)$$

\Rightarrow Change of framework
Filtering Theory

Optional Projection: \(F_t = \mathbb{P}(\mu(t) = \mu_1 \mid \mathcal{F}_t^S) \)

\[
\bar{B}_t = \frac{1}{\sigma} \left(\log \frac{S_t}{S_0} - \int_0^t (\mu_1 F_s + \mu_2 (1 - F_s) - \frac{\sigma^2}{2}) ds \right)
\]

Martinez, Rubenthaler, Tanré 2005

- \(\bar{B} \) is a \((\mathcal{F}^S)\) Brownian motion
- \(\mathcal{F}^S = \mathcal{F}^\bar{B} \)

\[
\frac{dS_t}{S_t} = (\mu_1 F_t + \mu_2 (1 - F_t)) dt + \sigma d\bar{B}_t
\]

Kurtz, Ocone 1988

\[
dF_t = (\lambda_1 F_t + \lambda_2 (1 - F_t)) dt + \frac{\mu_1 - \mu_2}{\sigma} F_t(1 - F_t) d\bar{B}_t
\]
New Framework

Control process: π_t

State: pair (W_t, F_t)

Dynamics:

$$\frac{dW^\pi_t}{W^\pi_t} = \left(\pi_t (\mu_1 F_t + \mu_2 (1 - F_t)) + (1 - \pi_t) r \right) dt + \pi_t \sigma d\bar{B}_t$$

$$- g_{01} \delta(\Delta \pi_t = 1) - g_{10} \delta(\Delta \pi_t = -1)$$

$$dF_t = \left(-\lambda_1 F_t + \lambda_2 (1 - F_t) \right) dt + \frac{\mu_1 - \mu_2}{\sigma} F_t (1 - F_t) d\bar{B}_t,$$

Criterion: expected utility of the terminal wealth

Utility: $U(x) = x^\alpha$, $\alpha \in]0, 1[$
Continuity

Value Function

\[V^0(t, x, f) = \sup_{\pi} \mathbb{E}[U(W_{\pi}^T) \mid \pi_{t^-} = 0, W_{t^-}^\pi = x, F_t = f] \]

\[V^1(t, x, f) = \sup_{\pi} \mathbb{E}[U(W_{\pi}^T) \mid \pi_{t^-} = 1, W_{t^-}^\pi = x, F_t = f] \]

Continuity

For all \(i \in \{0; 1\}, 0 \leq t \leq \hat{t} \leq T, x, \hat{x} > 0, 0 \leq f, \hat{f} \leq 1:\)

\[
|V^i(\hat{t}, \hat{x}, \hat{f}) - V^i(t, x, f)| \\
\leq C(1 + x^{\alpha^{-1}} + \hat{x}^{\alpha^{-1}})(|\hat{x} - x| + x(|\hat{f} - f| + |\hat{t} - t|^{1/2}))
\]
Continuity

Value Function

\[V^0(t, x, f) = \sup_{\pi} \mathbb{E}[U(W^\pi_T) \mid \pi_{t-} = 0, W^\pi_{t-} = x, F_t = f] \]

\[V^1(t, x, f) = \sup_{\pi} \mathbb{E}[U(W^\pi_T) \mid \pi_{t-} = 1, W^\pi_{t-} = x, F_t = f] \]

Continuity

For all \(i \in \{0; 1\}, 0 \leq t \leq \hat{t} \leq T, x, \hat{x} > 0, 0 \leq f, \hat{f} \leq 1: \)

\[|V^i(\hat{t}, \hat{x}, \hat{f}) - V^i(t, x, f)| \leq C(1 + x^{\alpha-1} + \hat{x}^{\alpha-1})(|\hat{x} - x| + x(|\hat{f} - f| + |\hat{t} - t|^{1/2})) \]
Dynamic Programming Principle

For all $0 \leq s \leq t \leq T$ and x, f, i:

$$V^i(s, x, f) = \sup_{\pi} \mathbb{E}[V^{\pi_{t^-}}(t, W^{s, x, f, \pi}_t, F^{s, f}_t)]$$

Proof:

$$J^i(s, x, f, \pi) = \mathbb{E}[U(W^{s, x, f, \pi}_T)] = \mathbb{E}[\mathbb{E}[U(W^{s, x, f, \pi}_T) | \mathcal{F}_s, t]]$$

$$= \mathbb{E}[J^{\pi_{t^-}}(t, W^{s, x, f, \pi}_t, F^{s, f}_t, \pi)]$$

$$\leq \mathbb{E}[V^{\pi_{t^-}}(t, W^{s, x, f, \pi}_t, F^{s, f}_t)]$$
Dynamic Programming Principle

For all $0 \leq s \leq t \leq T$ and x, f, i:

$$V^i(s, x, f) = \sup_{\pi} \mathbb{E}[V^{\pi_t-}(t, W^{s,x,f}_t, F^{s,f}_t)]$$

Proof:

$$J^i(s, x, f, \pi) = \mathbb{E}[U(W^s_{T,x,f,\pi})] = \mathbb{E}[\mathbb{E}[U(W^s_{T,x,f,\pi}) | \mathcal{F}_{s,t}]]$$

$$= \mathbb{E}[J^{\pi_t-}(t, W^{s,x,f}_t, F^{s,f}_t, \pi)]$$

$$\leq \mathbb{E}[V^{\pi_t-}(t, W^{s,x,f}_t, F^{s,f}_t)]$$
Dynamic Programming Principle

For all $0 \leq s \leq t \leq T$ and x, f, i:

$$V^i(s, x, f) = \sup_{\pi} \mathbb{E}[V^{\pi t-}(t, W^{s,x,f}_t, F^{s,f}_t)]$$

Proof:

$$J^i(s, x, f, \pi) = \mathbb{E}[U(W^s_t, x, f, \pi)] = \mathbb{E}[\mathbb{E}[U(W^s_t, x, f, \pi) | \mathcal{F}_s,t]]$$

$$= \mathbb{E}[J^{\pi t-}(t, W^{s,x,f}_t, \pi, F^{s,f}_t, \pi)]$$

$$\leq \mathbb{E}[V^{\pi t-}(t, W^{s,x,f}_t, F^{s,f}_t)]$$
Dynamic Programming Principle

For all $0 \leq s \leq t \leq T$ and x, f, i:

$$V^i(s, x, f) = \sup_{\pi} \mathbb{E}[V_{\pi}^{t-}(t, W_{t-}^{s, x, f, \pi}, F_{t}^{s, f})]$$

Proof:

$$J^i(s, x, f, \pi) = \mathbb{E}[U(W_T^{s, x, f, \pi})] = \mathbb{E}[\mathbb{E}[U(W_T^{s, x, f, \pi}) | \mathcal{F}_{s,t}]]$$

$$= \mathbb{E}[J_{\pi}^{t-}(t, W_{t-}^{s, x, f, \pi}, F_{t}^{s, f}, \pi)]$$

$$\leq \mathbb{E}[V_{\pi}^{t-}(t, W_{t-}^{s, x, f, \pi}, F_{t}^{s, f})]$$
Fix \(\pi \) such that

\[
V = \sup_{\pi} \mathbb{E}[V_{\pi t-}^{t-}(t, W_{t-}^{s,x,f}, F_{t}^{s,f})] \leq \varepsilon + \mathbb{E}[V_{\pi t-}^{t-}(t, W_{t-}^{s,x,f}, F_{t}^{s,f})]
\]

\((B_p)_{p \in \mathbb{N}}\) partition of \([0; +\infty[\times [0; 1]\) such that for all \(i, (x, f)\) and \((\hat{x}, \hat{f})\) in \(B_p\) and for all \(\pi\):

\[
|V^i(t, x, f) - V^i(t, \hat{x}, \hat{f})| \leq \varepsilon, \quad |J^i(t, x, f, \pi) - J^i(t, \hat{x}, \hat{f}, \pi)| \leq \varepsilon
\]

\[
V \leq \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V_{\pi t-}^{t-}(t, W_{t-}^{s,x,f}, F_{t}^{s,f})1_{(W_{t-}^{s,x,f}, F_{t}^{s,f}) \in B_p}]
\]

fix \((x_p, f_p)\) in \(B_p\)

\[
V \leq \varepsilon + \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V_{\pi t-}^{t-}(t, x_p, f_p)1_{(W_{t-}^{s,x,f}, F_{t}^{s,f}) \in B_p}]
\]
Fix π such that

$$ V = \sup_{\pi} \mathbb{E}[V_{t^-}(t, W^{s,x,f,\pi}, F_{t^-}^{s,f})] \leq \varepsilon + \mathbb{E}[V_{t^-}(t, W^{s,x,f,\pi}, F_{t^-}^{s,f})] $$

$(B_p)_{p \in \mathbb{N}}$ partition of $]0; +\infty[\times [0; 1]$ such that for all i, (x, f) and (\hat{x}, \hat{f}) in B_p and for all π:

$$ |V^i(t, x, f) - V^i(t, \hat{x}, \hat{f})| \leq \varepsilon, \ |J^i(t, x, f, \pi) - J^i(t, \hat{x}, \hat{f}, \pi)| \leq \varepsilon $$

$$ V \leq \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V_{t^-}(t, W^{s,x,f,\pi}, F_{t^-}^{s,f}) \mathbb{1}_{(W^{s,x,f,\pi}, F_{t^-}^{s,f}) \in B_p}] $$

fix (x_p, f_p) in B_p

$$ V \leq \varepsilon + \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V_{t^-}(t, x_p, f_p) \mathbb{1}_{(W^{s,x,f,\pi}, F_{t^-}^{s,f}) \in B_p}] $$
Dynamic Programming Principle

Proof I

Fix π such that

$$\mathcal{V} = \sup_{\pi} \mathbb{E}[V^{\pi t-}(t, W_{t-}^{s,x,f,\pi}, F_{t}^{s,f})] \leq \varepsilon + \mathbb{E}[V^{\pi t-}(t, W_{t-}^{s,x,f,\pi}, F_{t}^{s,f})]$$

$(\mathcal{B}_p)_{p \in \mathbb{N}}$ partition of $]0; +\infty[\times [0; 1]$ such that for all i, (x, f) and (\hat{x}, \hat{f}) in \mathcal{B}_p and for all π:

$$|V^i(t, x, f) - V^i(t, \hat{x}, \hat{f})| \leq \varepsilon, \quad |J^i(t, x, f, \pi) - J^i(t, \hat{x}, \hat{f}, \pi)| \leq \varepsilon$$

$$\mathcal{V} \leq \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V^{\pi t-}(t, W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}) \mathbb{1}_{(W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}) \in \mathcal{B}_p}]$$

fix (x_p, f_p) in \mathcal{B}_p

$$\mathcal{V} \leq \varepsilon + \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V^{\pi t-}(t, x_p, f_p) \mathbb{1}_{(W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}) \in \mathcal{B}_p}]$$
Fix π such that

$$
\mathcal{V} = \sup_{\pi} \mathbb{E}[V^\pi_{t^-}(t, W^s_{t^-}, x, f, \pi, F^s_t)] \leq \varepsilon + \mathbb{E}[V^\pi_{t^-}(t, W^s_{t^-}, x, f, \pi, F^s_t)]
$$

$(\mathcal{B}_p)_{p \in \mathbb{N}}$ partition of $]0; +\infty[\times [0; 1]$ such that for all i, (x, f) and (\hat{x}, \hat{f}) in \mathcal{B}_p and for all π:

$$
|V^i(t, x, f) - V^i(t, \hat{x}, \hat{f})| \leq \varepsilon, \quad |J^i(t, x, f, \pi) - J^i(t, \hat{x}, \hat{f}, \pi)| \leq \varepsilon
$$

$$
\mathcal{V} \leq \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V^\pi_{t^-}(t, W^s_{t^-}, x, f, \pi, F^s_t) \mathbb{1}_{(W^s_{t^-}, x, f, \pi, F^s_t) \in \mathcal{B}_p}]
$$

fix (x_p, f_p) in \mathcal{B}_p

$$
\mathcal{V} \leq \varepsilon + \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V^\pi_{t^-}(t, x_p, f_p) \mathbb{1}_{(W^s_{t^-}, x, f, \pi, F^s_t) \in \mathcal{B}_p}]$$
Dynamic Programming Principle

Proof I

Fix \(\pi \) such that

\[\mathcal{V} = \sup_{\pi} \mathbb{E}[V_{t^-}^{\pi}(t, W_{t^-}^{s,x,f,\pi}, F_{t^s}^{f})] \leq \epsilon + \mathbb{E}[V_{t^-}^{\pi}(t, W_{t^-}^{s,x,f,\pi}, F_{t^s}^{f})] \]

\((B_p)_{p \in \mathbb{N}} \) partition of \(]0; +\infty[\times [0; 1] \) such that

for all \(i, (x, f) \) and \((\hat{x}, \hat{f}) \) in \(B_p \) and for all \(\pi \):

\[|V^i(t, x, f) - V^i(t, \hat{x}, \hat{f})| \leq \epsilon, \quad |J^i(t, x, f, \pi) - J^i(t, \hat{x}, \hat{f}, \pi)| \leq \epsilon \]

\[\mathcal{V} \leq \epsilon + \sum_{p=0}^{\infty} \mathbb{E}[V_{t^-}^{\pi}(t, W_{t^-}^{s,x,f,\pi}, F_{t^s}^{f}) \mathbf{1}_{(W_{t^-}^{s,x,f,\pi}, F_{t^s}^{f}) \in B_p}] \]

fix \((x_p, f_p) \) in \(B_p \)

\[\mathcal{V} \leq \epsilon + \epsilon + \sum_{p=0}^{\infty} \mathbb{E}[V_{t^-}^{\pi}(t, x_p, f_p) \mathbf{1}_{(W_{t^-}^{s,x,f,\pi}, F_{t^s}^{f}) \in B_p}] \]
Dynamic Programming Principle
Proof II

\[V \leq \epsilon + \epsilon + \sum_{p=0}^{\infty} \mathbb{E}[V^p_{t-}(t, x_p, f_p) \mathbf{1}_{(W^s_{t-}, F^s_t) \in \mathcal{B}_p}] \]

For fixed \(p, i \), let \(\pi^{p,i} \) be a strategy on \([t, T]\) such that

\[V^i(t, x_p, f_p) \leq \epsilon + J^i(t, x_p, f_p, \pi^{p,i}) \]

\[V \leq \epsilon + \epsilon + \epsilon + \sum_{p=0}^{\infty} \mathbb{E}[J^p_{t-}(t, x_p, f_p, \pi^{p,i}) \mathbf{1}_{(W^s_{t-}, F^s_t) \in \mathcal{B}_p}] \]

\[\leq \epsilon + 2\epsilon + \epsilon + \sum_{p=0}^{\infty} \mathbb{E}[J^p_{t-}(t, W^s_{t-}, F^s_t, \pi^{p,i}) \mathbf{1}_{(W^s_{t-}, F^s_t) \in \mathcal{B}_p}] \]
Dynamic Programming Principle
Proof II

$$V \leq \varepsilon + \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V_{t}^{\pi}(t, x_{p}, f_{p}) \mathbb{1}_{(W_{t}^{s,x,f,\pi}, F_{t}^{s,f}) \in B_{p}}]$$

For fixed \(p, i \), let \(\pi_{p,i} \) be a strategy on \([t, T]\) such that

$$V^{i}(t, x_{p}, f_{p}) \leq \varepsilon + J^{i}(t, x_{p}, f_{p}, \pi_{p,i})$$

$$V \leq \varepsilon + \varepsilon + \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[J_{t}^{\pi}(t, x_{p}, f_{p}, \pi_{p}, \pi_{t-}) \mathbb{1}_{(W_{t}^{s,x,f,\pi}, F_{t}^{s,f}) \in B_{p}}]$$

$$\leq \varepsilon + 2\varepsilon + \varepsilon$$

$$+ \sum_{p=0}^{\infty} \mathbb{E}[J_{t}^{\pi}(t, W_{t}^{s,x,f,\pi}, F_{t}^{s,f}, \pi_{p}, \pi_{t-}) \mathbb{1}_{(W_{t}^{s,x,f,\pi}, F_{t}^{s,f}) \in B_{p}}]$$
Dynamic Programming Principle
Proof II

\[V \leq \varepsilon + \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V_{t-}^{\pi}(t, x_p, f_p) \mathbf{1}_{(W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}) \in \mathcal{B}_p}] \]

For fixed \(p, i \), let \(\pi^{p,i} \) be a strategy on \([t, T]\) such that

\[V^{i}(t, x_p, f_p) \leq \varepsilon + J^{i}(t, x_p, f_p, \pi^{p,i}) \]

\[V \leq \varepsilon + \varepsilon + \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[J_{t-}^{\pi}(t, x_p, f_p, \pi^{p,\pi_{t-}}) \mathbf{1}_{(W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}) \in \mathcal{B}_p}] \]

\[\leq \varepsilon + 2\varepsilon + \varepsilon \]

\[+ \sum_{p=0}^{\infty} \mathbb{E}[J_{t-}^{\pi}(t, W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}, \pi^{p,\pi_{t-}}) \mathbf{1}_{(W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}) \in \mathcal{B}_p}] \]
Dynamic Programming Principle
Proof II

\[V \leq \varepsilon + \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[V^{\pi_t}(t, x_p, f_p) 1_{(W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}) \in \mathcal{B}_p}] \]

For fixed \(p, i \), let \(\pi^{p,i} \) be a strategy on \([t, T]\) such that

\[V^i(t, x_p, f_p) \leq \varepsilon + J^i(t, x_p, f_p, \pi^{p,i}) \]

\[V \leq \varepsilon + \varepsilon + \varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[J^{\pi_t}(t, x_p, f_p, \pi^{p,\pi_{t-}}) 1_{(W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}) \in \mathcal{B}_p}] \]

\[\leq \varepsilon + 2\varepsilon + \varepsilon \]

\[+ \sum_{p=0}^{\infty} \mathbb{E}[J^{\pi_{t-}}(t, W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}, \pi^{p,\pi_{t-}}) 1_{(W_{t-}^{s,x,f,\pi}, F_{t}^{s,f}) \in \mathcal{B}_p}] \]
Dynamic Programming Principle

Proof III

\[V \leq 4\varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[J^{\hat{\pi}_t} - (t, W_{t-}^{S,x,f,\hat{\pi}}, F_t^{S,f}, \pi P, \pi_t^p) \mathbf{1}(W_{t-}^{S,x,f,\hat{\pi}}, F_t^{S,f}) \in B_p] \]

Combining step

\[\hat{\pi}_u = \begin{cases} \pi_u & \text{if } s \leq u < t \\ \pi P, \hat{\pi}_t^p & \text{if } u \geq t, \text{ and } (W_{t-}^{S,x,f,\hat{\pi}}, F_t^{S,f}) \in B_p \end{cases} \]

\[V \leq 4\varepsilon + \mathbb{E}[J^{\hat{\pi}_t} - (t, W_{t-}^{S,x,f,\hat{\pi}}, F_t^{S,f}, \hat{\pi})] \]

\[= 4\varepsilon + \mathbb{E}\left[\mathbb{E}[U(W_T^{S,x,f,\hat{\pi}}) | F_s, t] \right] \]

\[= 4\varepsilon + \mathbb{E}[U(W_T^{S,x,f,\hat{\pi}})] \]

\[\leq 4\varepsilon + \mathbb{E}[V^i(s, x, f)] \]
Dynamic Programming Principle

Proof III

\[V \leq 4\varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[J_{\hat{\pi} t^+}(t, W_{s, x, f, \hat{\pi}, F_{s, f}, \pi p, \pi t^-}) \mathbb{1}_{(W_{s, x, f, \hat{\pi}, F_{s, f}) \in B_p}]
\]

Combining step

\[\hat{\pi} u = \begin{cases}
\pi u & \text{if } s \leq u < t \\
\pi^p, \hat{\pi} t^- & \text{if } u \geq t, \text{ and } (W_{s, x, f, \hat{\pi}, F_{s, f}) \in B_p
\end{cases} \]

\[V \leq 4\varepsilon + \mathbb{E}[J_{\hat{\pi} t^+}(t, W_{s, x, f, \hat{\pi}, F_{s, f}, \hat{\pi})] \]
\[= 4\varepsilon + \mathbb{E}[\mathbb{E}[U(W_{s, x, f, \hat{\pi}) | F_s, t))]
\[= 4\varepsilon + \mathbb{E}[U(W_{s, x, f, \hat{\pi})]
\[\leq 4\varepsilon + \mathbb{E}[V^i(s, x, f)] \]
Dynamic Programming Principle
Proof III

\[V \leq 4\varepsilon + \sum_{p=0}^{\infty} \mathbb{E}[J_{t^-}^{\pi_{t^-}}(t, W_{t^-}^{s,x,f,\pi}, F_{t}^{s,f}, \pi_{p,\pi_{t^-}}) \mathbb{1}(W_{t^-}^{s,x,f,\pi}, F_{t}^{s,f}) \in B_p] \]

Combining step

\[\hat{\pi}_u = \begin{cases}
\pi_u & \text{if } s \leq u < t \\
\pi_{p,\hat{\pi}_{t^-}} & \text{if } u \geq t, \text{ and } (W_{t^-}^{s,x,f,\hat{\pi}}, F_{t}^{s,f}) \in B_p
\end{cases} \]

\[V \leq 4\varepsilon + \mathbb{E}[J_{t^-}^{\hat{\pi}_{t^-}}(t, W_{t^-}^{s,x,f,\hat{\pi}}, F_{t}^{s,f,\hat{\pi}})] \]

\[= 4\varepsilon + \mathbb{E}[\mathbb{E}[U(W_{T}^{s,x,f,\hat{\pi}}) | \mathcal{F}_s,t]]] \]

\[= 4\varepsilon + \mathbb{E}[U(W_{T}^{s,x,f,\hat{\pi}})] \]

\[\leq 4\varepsilon + \mathbb{E}[V^i(s, x, f)] \]
Hamilton Jacobi Bellman Equations

\[
\begin{align*}
\min \left\{ - \frac{\partial \varphi^0}{\partial t} - L^0 \varphi^0; \quad \varphi^0(t, x, f) - \varphi^1(t, x(1 - g_{01}), f) \right\} &= 0 \\
\min \left\{ - \frac{\partial \varphi^1}{\partial t} - L^1 \varphi^1; \quad \varphi^1(t, x, f) - \varphi^0(t, x(1 - g_{10}), f) \right\} &= 0
\end{align*}
\]

\[
\begin{align*}
L^0 \varphi(t, x, f) &= x r \frac{\partial \varphi}{\partial x}(t, x, f) + \left(-\lambda_1 f + \lambda_2 (1 - f) \right) \frac{\partial \varphi}{\partial f}(t, x, f) + \\
&\quad \frac{1}{2} \left(\frac{\mu_1 - \mu_2}{\sigma} \right)^2 f^2 (1 - f)^2 \frac{\partial^2 \varphi}{\partial f^2}(t, x, f)
\end{align*}
\]

\[
\begin{align*}
L^1 \varphi(t, x, f) &= x (\mu_1 f + \mu_2 (1 - f)) \frac{\partial \varphi}{\partial x}(t, x, f) + \frac{1}{2} x^2 \sigma^2 \frac{\partial^2 \varphi}{\partial x^2}(t, x, f) \\
&\quad + \left(-\lambda_1 f + \lambda_2 (1 - f) \right) \frac{\partial \varphi}{\partial f}(t, x, f) + x (\mu_1 - \mu_2) f (1 - f) \frac{\partial^2 \varphi}{\partial x \partial f}(t, x, f) \\
&\quad + \frac{1}{2} \left(\frac{\mu_1 - \mu_2}{\sigma} \right)^2 f^2 (1 - f)^2 \frac{\partial^2 \varphi}{\partial f^2}(t, x, f)
\end{align*}
\]
Viscosity Solutions

\[
(P) \quad F(t, x, v(t, x), D_t v(t, x), Dv(t, x), D^2 v(t, x)) = 0
\]

Definition

- \(v \) is a *viscosity sub-solution* of \((P)\) if

 \[
 F(\bar{t}, \bar{x}, v(\bar{t}, \bar{x}), D_t \varphi(\bar{t}, \bar{x}), D\varphi(\bar{t}, \bar{x}), D^2 \varphi(\bar{t}, \bar{x})) \leq 0
 \]

 for all \((\bar{t}, \bar{x})\) and all functions \(\varphi \in C^{1,2}\) such that \((\bar{t}, \bar{x})\) is a local maximum of \(v - \varphi\)

- \(v \) is a *viscosity super-solution* of \((P)\) if

 \[
 F(\bar{t}, \bar{x}, v(\bar{t}, \bar{x}), D_t \varphi(\bar{t}, \bar{x}), D\varphi(\bar{t}, \bar{x}), D^2 \varphi(\bar{t}, \bar{x})) \geq 0
 \]

 for all \((\bar{t}, \bar{x})\) and all functions \(\varphi \in C^{1,2}\) such that \((\bar{t}, \bar{x})\) is a local minimum of \(v - \varphi\)
Identification of the Value Function

\(\mathcal{V}_\alpha \) : set of continuous functions \(\varphi \) on \([0; T] \times [0; +\infty] \times [0; 1]\)
satisfying \(\varphi(t, 0, f) = 0 \) and

\[
\sup_{[0; T] \times [0; +\infty] \times [0; 1]} \frac{|\varphi(t, x, f) - \varphi(t, \hat{x}, \hat{f})|}{(1 + x^{\alpha-1} + \hat{x}^{\alpha-1})(|x - \hat{x}| + x|f - \hat{f}|)} < \infty.
\]

Theorem

\((\mathcal{V}^0, \mathcal{V}^1) \) is the unique viscosity solution of HJB equation in
\(\mathcal{V}_\alpha \times \mathcal{V}_\alpha \) satisfying

\[
\mathcal{V}^0(T, x, f) = \mathcal{V}^1(T, x, f) = U(x) = x^\alpha
\]
Outline

1. Introduction to Stochastic Control
2. Motivation
3. Framework
4. Study of the Value Function
 - Dynamic Programming Principle
 - Hamilton Jacobi Bellman Equations
5. Numerical Results
 - Value Function
 - An Efficient Strategy
 - Comparison of Strategies
Discretization Scheme

Dependence on \(x \):

\[
V^i(t, x, f) = \sup_{\pi} \mathbb{E}[U(W^t_{T,x,f}, \pi)] = x^\alpha V^i(t, 1, f)
\]

Numerical Scheme

- \(\hat{V}^0(T, f) = \hat{V}^1(T, f) = 1 \)
- With the PDE part in HJB, compute \(\overline{V}^0(t, \cdot) \) and \(\overline{V}^1(t, \cdot) \) from \(\hat{V}^0(t + dt, \cdot) \) and \(\hat{V}^1(t + dt, \cdot) \)
- Comparison
 - if \(\overline{V}^0(t, f) \geq (1 - g_{01})^\alpha \overline{V}^1(t, f) \), set \(\hat{V}^0(t, f) = \overline{V}^0(t, f) \)
 - otherwise \(\hat{V}^0(t, f) = (1 - g_{01})^\alpha \overline{V}^1(t, f) \)
 - if \(\overline{V}^1(t, f) \geq (1 - g_{10})^\alpha \overline{V}^0(t, f) \), set \(\hat{V}^1(t, f) = \overline{V}^1(t, f) \)
 - otherwise \(\hat{V}^1(t, f) = (1 - g_{10})^\alpha \overline{V}^0(t, f) \)
Discretization Scheme

Dependence on x:

$$V^i(t, x, f) = \sup_{\pi} \mathbb{E}[U(W_t^{t,x,f,\pi})] = x^\alpha V^i(t, 1, f)$$

Numerical Scheme

1. $\hat{V}^0(T, f) = \hat{V}^1(T, f) = 1$
2. With the PDE part in HJB, compute $\overline{V}^0(t, \cdot)$ and $\overline{V}^1(t, \cdot)$ from $\hat{V}^0(t + dt, \cdot)$ and $\hat{V}^1(t + dt, \cdot)$
3. Comparison
 - if $\overline{V}^0(t, f) \geq (1 - g_{01})^\alpha \overline{V}^1(t, f)$, set $\hat{V}^0(t, f) = \overline{V}^0(t, f)$
 - otherwise $\hat{V}^0(t, f) = (1 - g_{01})^\alpha \overline{V}^1(t, f)$
 - if $\overline{V}^1(t, f) \geq (1 - g_{10})^\alpha \overline{V}^0(t, f)$, set $\hat{V}^1(t, f) = \overline{V}^1(t, f)$
 - otherwise $\hat{V}^1(t, f) = (1 - g_{10})^\alpha \overline{V}^0(t, f)$
Optimal Portfolio Allocation

Benoîte de Saporta

Introduction
Motivation
Framework
Value Function
Dynamic Programming Principle
Hamilton Jacobi Bellman Equations
Numerical Results

Discretization Scheme

Dependence on x:

$$V^i(t, x, f) = \sup_\pi \mathbb{E}[U(W^t_{t+x}, f, \pi)] = x^\alpha V^i(t, 1, f)$$

Numerical Scheme

- $\hat{V}^0(T, f) = \hat{V}^1(T, f) = 1$

- With the PDE part in HJB, compute $\overline{V}^0(t, \cdot)$ et $\overline{V}^1(t, \cdot)$ from $\hat{V}^0(t + dt, \cdot)$ and $\hat{V}^1(t + dt, \cdot)$

- Comparison
 - if $\overline{V}^0(t, f) \geq (1 - g_{01})^\alpha \overline{V}^1(t, f)$, set $\hat{V}^0(t, f) = \overline{V}^0(t, f)$
 - otherwise $\hat{V}^0(t, f) = (1 - g_{01})^\alpha \overline{V}^1(t, f)$
 - if $\overline{V}^1(t, f) \geq (1 - g_{10})^\alpha \overline{V}^0(t, f)$, set $\hat{V}^1(t, f) = \overline{V}^1(t, f)$
 - otherwise $\hat{V}^1(t, f) = (1 - g_{10})^\alpha \overline{V}^0(t, f)$
Value Function V^0

Shape

Parameters: $T = 3$, $\mu_2 = -\mu_1 = 0.2$, $\lambda_1 = \lambda_2 = 2$, $\sigma = 0.15$, $g_{01} = g_{10} = 0.001$
Value Function V^0

Regularity I

Transaction costs $g_{01} = g_{10} = 0.01$

Zoom between $t = 2.5$ and $t = 3 = T$
Introduction
Motivation
Framework
Value Function
Dynamic Programming Principle
Hamilton Jacobi Bellman Equations
Numerical Results
Value Function
Efficient Strategy
Comparison of Strategies

Value Function V^0
Regularity II

Section at $f = 0.05$

Sections at $t = 2.90, t = 2.91, t = 2.92, t = 2.93,$
Efficient Strategy

- Compute \hat{V}^0, \hat{V}^1
- Estimate \hat{F}_t from the stock
- Compare $\hat{V}^0(t, \hat{F}_t)$ et $\hat{V}^1(t, \hat{F}_t)$:
 - buy if $\hat{V}^0(t, \hat{F}_t) = (1 - g_{01})^\alpha \hat{V}^1(t, \hat{F}_t)$
 - sell if $\hat{V}^1(t, \hat{F}_t) = (1 - g_{10})^\alpha \hat{V}^0(t, \hat{F}_t)$

$\mu_1 = -0.2$, $\mu_2 = 0.2$, $\sigma = 0.15$, $\lambda_1 = 2$, $\lambda_2 = 2$, $T = 3$
Efficient Strategy vs Value Function

- Computation of the value function:
 - time discretization step 10^{-6}
 - space discretization step 10^{-3}

- 10^5 Monte Carlo simulations of the Efficient Strategy

<table>
<thead>
<tr>
<th>F_0</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{V}^0</td>
<td>1.061</td>
<td>1.057</td>
<td>1.053</td>
<td>1.049</td>
<td>1.045</td>
<td>1.043</td>
</tr>
<tr>
<td>Strategy</td>
<td>1.061</td>
<td>1.056</td>
<td>1.052</td>
<td>1.049</td>
<td>1.045</td>
<td>1.043</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F_0</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{V}^0</td>
<td>1.041</td>
<td>1.039</td>
<td>1.038</td>
<td>1.037</td>
<td>1.036</td>
</tr>
<tr>
<td>Strategy</td>
<td>1.040</td>
<td>1.039</td>
<td>1.038</td>
<td>1.037</td>
<td>1.036</td>
</tr>
</tbody>
</table>
Miscalibrated Efficient Strategy vs Moving Average

miscalibrated parameters:
\[\mu_1 = -1.8, \mu_2 = 1.8, \sigma = 0.15, \]
\[\lambda_1 = 4, \lambda_2 = 4 \]

Real parameters:
\[\mu_1 = -0.2, \mu_2 = 0.2, \sigma = 0.15, \lambda_1 = 2, \lambda_2 = 2, T = 3, \delta = 0.8 \]

100000 Monte Carlo Simulations