Bifurcating autoregressive processes and cell division data

Benoîte de Saporta, Anne Gégout-Petit, Laurence Marsalle University of Bordeaux University of Lille

University of Bordeaux Inria CQFD France

University of Hong Kong - 24 April 2013

Outline

Introduction

Missing data BAR processes Observation process Estimation Convergence Multiple-tree estimation

Random coefficient BAR processes Model Laws of large numbers

Conclusion

Benoîte de Saporta

University of Hong Kong

Cell division

film

Escherichia coli

Observation genealogical tree Originality dependence structure

Benoîte de Saporta

University of Hong Kong

First BAR model

[Cowan & Staudte 1986] Bifurcating AutoRegressive model

$$\begin{cases} X_{2k} = a + bX_k + \epsilon_{2k} \\ X_{2k+1} = a + bX_k + \epsilon_{2k+1} \end{cases}$$

$$\begin{array}{l} (\epsilon_{2k}, \epsilon_{2k+1}) \text{ gaussian iid} \\ \mathbb{E}[\epsilon_{2k+i}] = \sigma^2, \ \mathbb{E}[\epsilon_{2k}\epsilon_{2k+1}] = \rho \\ \text{stationary regime if } X_1 \sim \mathcal{N}(\frac{a}{1-b}, \frac{\sigma^2}{1-b^2}) \end{array}$$

First BAR model

4

7

15

[Cowan & Staudte 1986] Bifurcating AutoRegressive model

3

First BAR model

4

5

6

7

11

12

13

15

[Cowan & Staudte 1986] Bifurcating AutoRegressive model

 $(\epsilon_{2k}, \epsilon_{2k+1})$ gaussian iid $\mathbb{E}[\epsilon_{2k+i}] = \sigma^2$, $\mathbb{E}[\epsilon_{2k}\epsilon_{2k+1}] = \rho$ stationary regime if $X_1 \sim \mathcal{N}(\frac{a}{1-b}, \frac{\sigma^2}{1-b^2})$

Estimate the parameters to measure correlations

- b mother-daughter correlation
- ▶ $\phi = b^2 + (1 b^2)\rho/\sigma^2$ sister-sister correlation

3

Asymmetry in cell division

[Stewart & al. 2005]

Do single cell organisms age ?

Benoîte de Saporta

University of Hong Kong

Asymmetric BAR process

[Guyon 2007] Asymmetric model

$$\begin{cases} X_{2k} = a + bX_k + \epsilon_{2k} \\ X_{2k+1} = c + dX_k + \epsilon_{2k+1} \end{cases}$$

 $(\epsilon_{2k}, \epsilon_{2k+1})$ gaussian iid, $\mathbb{E}[\epsilon_{2k+i}] = \sigma^2$, $\mathbb{E}[\epsilon_{2k}\epsilon_{2k+1}] = \rho$ no stationarity

Estimate the parameters to test symmetry

Bifurcating Markov chains approach with generation-wise tree structure

Benoîte de Saporta

Generations

University of Hong Kong

Generations

University of Hong Kong

Generations

Generation 2:

$$\mathbb{G}_2 = \{4, 5, 6, 7\}$$

Generations

Generation *n*:

$$\mathbb{G}_n = \{2^n, 2^n + 1, \dots, 2^{n+1} - 1\}$$

University of Hong Kong

Generations

Benoîte de Saporta

University of Hong Kong

Bifurcating Markov chains

definition of a Markov model on a binary tree

$$\mathbb{E}\left[\prod_{k\in\mathbb{G}_n}f_k(X_{2k},X_{2k+1})\mid\sigma(X_j,j\in\mathbb{T}_n)\right]=\prod_{k\in\mathbb{G}_n}Pf_k(X_k)$$

• asymptotic behavior of (X_k) given by an induced Markov chain

$$\begin{cases} Y_0 = X_1, \\ Y_{n+1} = A_{n+1} + B_{n+1} Y_n \end{cases}$$

random lineage (A_n, B_n) iid with distribution $(a + \epsilon_2, b)\mathbb{1}_{\{\zeta=1\}} + (c + \epsilon_3, d)\mathbb{1}_{\{\zeta=0\}}, \zeta \sim \text{Bernoulli}(1/2)$

Benoîte de Saporta

University of Hong Kong

Induced Markov chain

Benoîte de Saporta

University of Hong Kong

First contribution

[Bercu, dS, Gégout-Petit 2009] Asymmetric model

$$\begin{cases} X_{2k} = a + bX_k + \epsilon_{2k} \\ X_{2k+1} = c + dX_k + \epsilon_{2k+1} \end{cases}$$

Assumptions

- $\mathcal{F}_n = \sigma\{X_k, k \in \mathbb{T}_n\}$ generation-wise filtration
 - moments of order 8 for the noise
 - ▶ martingale difference sequence $\mathbb{E}[\epsilon_{2k+i}|\mathcal{F}_n] = 0$ for all $k \in \mathbb{G}_n$, ϵ_{2k+i} independent of $\epsilon_{2k'+j}$ conditionnally to \mathcal{F}_n for all $k \neq k' \in \mathbb{G}_n$

$$\blacktriangleright \mathbb{E}[\epsilon_{2k+i}^2 | \mathcal{F}_n] = \sigma^2, \mathbb{E}[\epsilon_{2k}\epsilon_{2k+1} | \mathcal{F}_n] = \rho \text{ for all } k \in \mathbb{G}_n$$

convergence rate for the estimators

martingale approach

Benoîte de Saporta

University of Hong Kong

Martingale approach

Convergence of martingales in L^2

 (M_n) scalar martingale bounded in L^2 $< M >_n = \sum_{k=0}^n \mathbb{E}[(M_{n+1} - M_n)^2 | \mathcal{F}_n]$

If
$$\lim_{n\to\infty} \langle M \rangle_n = +\infty$$
, then $\frac{M_n}{\langle M \rangle_n} \to 0$ a.s.
+ conditions on moments then $\left(\frac{M_n}{\langle M \rangle_n}\right)^2 = \mathcal{O}\left(\frac{\log(\langle M \rangle_n)}{\langle M \rangle_n}\right)$ a.s.

- identify a (vector) martingale for the generation-wise filtration
- ▶ compute the limit of the quadratic variation $\langle M \rangle_n \sim |\mathbb{T}_n|$
- apply the theorem of convergence with rate ?

Benoîte de Saporta

University of Hong Kong

Martingale approach

Convergence of martingales in L^2

 (M_n) scalar martingale bounded in L^2 $< M >_n = \sum_{k=0}^n \mathbb{E}[(M_{n+1} - M_n)^2 | \mathcal{F}_n]$

If
$$\lim_{n\to\infty} \langle M \rangle_n = +\infty$$
, then $\frac{M_n}{\langle M \rangle_n} \to 0$ a.s.
+ conditions on moments then $\left(\frac{M_n}{\langle M \rangle_n}\right)^2 = \mathcal{O}\left(\frac{\log(\langle M \rangle_n)}{\langle M \rangle_n}\right)$ a.s.

- identify a (vector) martingale for the generation-wise filtration
- ▶ compute the limit of the quadratic variation $\langle M \rangle_n \sim |\mathbb{T}_n|$
- prove the theorem of convergence with rate for martingales on a binary tree

Benoîte de Saporta

Real data

Escherichia coli data of [Stewart & al. 2005]

- 94 films = 94 genealogies
- 4 to 9 generations of cells in each genealogy
- average growth rate 0.037
- no complete genealogy: cells out of scope, overlapping, ...

Real data

Escherichia coli data of [Stewart & al. 2005]

- > 94 films = 94 genealogies
- 4 to 9 generations of cells in each genealogy
- average growth rate 0.037
- no complete genealogy: cells out of scope, overlapping, ...

Our test procedure does not apply to these data

Real data

Escherichia coli data of [Stewart & al. 2005]

- 94 films = 94 genealogies
- 4 to 9 generations of cells in each genealogy
- average growth rate 0.037
- no complete genealogy: cells out of scope, overlapping, ...

Our test procedure does not apply to these data

 \implies New procedure taking missing data into account

Missing data BAR processes

Outline

Introduction

Missing data BAR processes Observation process Estimation Convergence Multiple-tree estimation

Random coefficient BAR processes

Conclusion

Benoîte de Saporta

University of Hong Kong

Galton-Watson model

[Delmas & Marsalle 2010]

- each cell has a type 0 (even new pole) or 1 (odd old pole)
- ▶ probability $p(j_0, j_1)$ for a cell to have j_0 daughter of type 0 and j_1 daughters of type 1, drawn independently for each cell
- Z_n number of observed cells in generation n Galton-Watson process
- ▶ if a cell is not observed, its offspring are not observed either
- inference for partially observed BAR process through the bifurcating Markov chain framework

Galton-Watson model

[Delmas & Marsalle 2010]

- each cell has a type 0 (even new pole) or 1 (odd old pole)
- ▶ probability $p(j_0, j_1)$ for a cell to have j_0 daughter of type 0 and j_1 daughters of type 1, drawn independently for each cell
- Z_n number of observed cells in generation n Galton-Watson process
- ▶ if a cell is not observed, its offspring are not observed either
- inference for partially observed BAR process through the bifurcating Markov chain framework

The number of daughters of each type should also depend on the type of the mother

Two-type Galton-Watson model

- $\delta_k = 1$ if cell k is observed, 0 otherwise
- probability p⁽ⁱ⁾(j₀, j₁) for a mother cell of type i to have j₀ daughter of type 0 et j₁ daughter of type 1, drawn independently for each cell
- ► Z_n^i number of cells of type *i* ingeneration *n*, (Z_n^0, Z_n^1) two-type Galton-Watson process
- ▶ if a cell is not observed, its offspring are not observed either

Extinction

Descendants matrix

$$P = \left(\begin{array}{cc} p_{00} & p_{01} \\ p_{10} & p_{11} \end{array}\right)$$

 $p_{i0} = p^{(i)}(1,0) + p^{(i)}(1,1)$: mean number of daughters of type 0 $p_{i1} = p^{(i)}(0,1) + p^{(i)}(1,1)$: mean number of daughters of type 1 for a mother of type *i*

Probability of extinction

 π spectral radius of P

- if $\pi \leq 1$, almost sure extinction
- if $\pi > 1$, extinction with probability < 1

Benoîte de Saporta

Observed generations

Observed generation n

$$\mathbb{G}_n^* = \{k \in \mathbb{G}_n ; \delta_k = 1\}$$

University of Hong Kong

Observed generations

Observed tree up to generation n

$$\mathbb{T}_n^*=\{k\in\mathbb{T}_n\ ;\ \delta_k=1\}=\cup_{\ell=0}^n\mathbb{G}_\ell^*$$

University of Hong Kong

Partially observed BAR process

$$\begin{cases} X_{2k} = a + b X_k + \epsilon_{2k} \\ X_{2k+1} = c + d X_k + \epsilon_{2k+1} \end{cases}$$

Assumptions

- independence between (δ_k) and X_1 , $(\epsilon_{2k}, \epsilon_{2k+1})$
- noise martingale difference sequence with moments up to order 8

Least squares estimation of $\theta = (a, b, c, d)^t$: minimize

$$\Delta_n(\theta) = \frac{1}{2} \sum_{k \in \mathbb{T}_{n-1}} \delta_{2k} (X_{2k} - a - bX_k)^2 + \delta_{2k+1} (X_{2k+1} - c - dX_k)^2.$$

Empirical estimators for the moments of the noise

Benoîte de Saporta

University of Hong Kong

Estimator of θ

Least squares estimator for θ

$$\widehat{\boldsymbol{\theta}}_{n} = \begin{pmatrix} \widehat{a}_{n} \\ \widehat{b}_{n} \\ \widehat{c}_{n} \\ \widehat{d}_{n} \end{pmatrix} = \boldsymbol{S}_{n-1}^{-1} \sum_{k \in \mathbb{T}_{n-1}} \begin{pmatrix} \delta_{2k} X_{2k} \\ \delta_{2k} X_{k} X_{2k} \\ \delta_{2k+1} X_{k} X_{2k+1} \\ \delta_{2k+1} X_{k} X_{2k+1} \end{pmatrix}$$

with

$$\boldsymbol{S}_{n} = \begin{pmatrix} \boldsymbol{S}_{n}^{0} & 0\\ 0 & \boldsymbol{S}_{n}^{1} \end{pmatrix}$$
$$\boldsymbol{S}_{n}^{0} = \sum_{k \in \mathbb{T}_{n}} \delta_{2k} \begin{pmatrix} 1 & X_{k} \\ X_{k} & X_{k}^{2} \end{pmatrix} \qquad \boldsymbol{S}_{n}^{1} = \sum_{k \in \mathbb{T}_{n}} \delta_{2k+1} \begin{pmatrix} 1 & X_{k} \\ X_{k} & X_{k}^{2} \end{pmatrix}$$

Convergence rate

Theorem

$$\mathbb{1}_{\{|\mathbb{G}_n^*|>0\}} \parallel \widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta} \parallel^2 = \mathbb{1}_{\{|\mathbb{G}_n^*|>0\}} \mathcal{O}\left(\frac{\log |\mathbb{T}_{n-1}^*|}{|\mathbb{T}_{n-1}^*|}\right)$$

Proof: martingale approach

- identify a (vector) martingale for the generation-wise filtration with observations
- compute the limit of the quadratic variation
- theorem on the convergence rate of martingales on a Galton-Watson binary tree

Main martingale

 $\hat{\theta}_n - \theta = \mathbf{S}_{n-1}^{-1} \mathbf{M}_n$, with (\mathbf{M}_n) martingale for the generation-wise filtration of the process and observations

$$\boldsymbol{M}_{n} = \sum_{k \in \mathbb{T}_{n-1}} \begin{pmatrix} \delta_{2k} \epsilon_{2k} \\ \delta_{2k} X_{k} \epsilon_{2k} \\ \delta_{2k+1} \epsilon_{2k+1} \\ \delta_{2k+1} X_{k} \epsilon_{2k+1} \end{pmatrix}$$

 $(\boldsymbol{M}_n)_{n\geq 1}$ square integrable with quadratic variation $< \boldsymbol{M} >_n = \boldsymbol{\Gamma}_{n-1}$

$$\boldsymbol{\Gamma}_n = \begin{pmatrix} \sigma^2 \boldsymbol{S}_n^0 & \rho \boldsymbol{S}_n^{0,1} \\ \rho \boldsymbol{S}_n^{0,1} & \sigma^2 \boldsymbol{S}_n^1 \end{pmatrix} \text{ and } \boldsymbol{S}_n^{0,1} = \sum_{k \in \mathbb{T}_n} \delta_{2k} \delta_{2k+1} \begin{pmatrix} 1 & X_k \\ X_k & X_k^2 \end{pmatrix}$$

Benoîte de Saporta

University of Hong Kong

Convergence of the quadratic variation

Laws of large numbers for the observations (δ_k) , the noise $(\delta_k \epsilon_k)$ processes

scalar martingales for various filtrations

Laws of large numbers for the BAR $(\delta_{2k+i}X_k^q)$ processes

- specific form of the autoregression
- assumption $\max\{|b|, |d|\} < 1$

Central limit theorem

Theorem

Conditionally to non extinction

$$\sqrt{|\mathbb{T}_{n-1}^*|}(\widehat{\boldsymbol{\theta}}_n-\boldsymbol{\theta}) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \boldsymbol{S}^{-1}\boldsymbol{\Gamma}\boldsymbol{S}^{-1})$$

Two main difficulties

- ▶ random $|\mathbb{T}_{n-1}^*|$ normalization
- ▶ result only valid conditionally to non extinction: on the non extinction set $\overline{\mathcal{E}} = \cap\{|\mathbb{G}_n^*| > 0\}$ endowed with the probability $\mathbb{P}_{\overline{\mathcal{E}}}(\cdot) = \mathbb{P}(\cdot \cap \overline{\mathcal{E}})/\mathbb{P}(\overline{\mathcal{E}})$

Symmetry tests: Escherichia coli data

p-values for the 51 genealogies with 8 or 9 generations

Symmetry tests: Escherichia coli data

p-values for the 51 genealogies with 8 or 9 generations

New model

Simulations \implies low power of the tests for 8 or 9 generations

Multiple-tree estimation

- use several genealogies (in fixed number) for inference
- genealogies are iid samples of the partially observed BAR process with the same parameters
- new estimator (\neq average of single-tree estimators)
- union of non-extinction sets
- new proofs of convergence with the same ideas
- inference and symmetry test for the Galton Watson process

Multiple-tree estimator

Least squares estimator for θ

$$\widehat{\theta}_{n} = \left(\sum_{j=1}^{m} S_{n-1}(j)\right)^{-1} \sum_{j=1}^{m} \sum_{k \in \mathbb{T}_{n-1}} \begin{pmatrix} \delta_{j,2k} X_{j,2k} \\ \delta_{j,2k} X_{j,k} X_{j,2k} \\ \delta_{j,2k+1} X_{j,2k+1} \\ \delta_{j,2k+1} X_{j,k} X_{j,2k+1} \end{pmatrix}$$

with

$$\boldsymbol{S}_{n}(j) = \begin{pmatrix} \boldsymbol{S}_{n}^{0}(j) & 0\\ 0 & \boldsymbol{S}_{n}^{1}(j) \end{pmatrix}$$
$$\boldsymbol{S}_{n}^{i}(j) = \sum_{k \in \mathbb{T}_{n}} \delta_{j,2k+i} \begin{pmatrix} 1 & X_{j,k} \\ X_{j,k} & X_{j,k}^{2} \end{pmatrix}$$

Benoîte de Saporta

University of Hong Kong

24 April 2013

`

• •

Multiple-tree analysis of E. coli data: BAR

Estimation of $\theta \implies$ assumption $\max\{|b|, |d|\} < 1$ holds true

а	0.0203 [0.0197; 0.0210]	С	0.0195 [0.0188; 0.0201]
b	0.4615 [0.4437; 0.4792]	d	0.4782 [0.4605; 0.4959]

Estimation of the moments of the noise

Tests

hypothesis
$$(a, b) = (c, d)$$
 rejected (p-value = 10^{-5}),
hypothesis $a/(1-b) = c/(1-d)$ rejected (p-value = $2 \cdot 10^{-3}$)

Benoîte de Saporta

Multiple-tree analysis of E. coli data: Galton-Watson

Estimation of the reproduction laws

$p^{(0)}(0,0)$	0.35579 [0.35574; 0.35583]	$p^{(1)}(0,0)$	0.35611 [0.35606; 0.35616]
$p^{(0)}(1,0)$	0.03621 [0.03620; 0.03622]	$p^{(1)}(1,0)$	0.04707 [0.04706; 0.04708]
$p^{(0)}(0,1)$	0.04740 [0.04739; 0.04741]	$p^{(1)}(0,1)$	0.03755 [0.03754; 0.03756]
$p^{(0)}(1,1)$	0.56060 [0.56055; 0.56065]	$p^{(1)}(1,1)$	0.55928 [0.55923; 0.55933]

Estimation of π : 1.204 [1.191; 1.217]

 \implies assumption $\pi > 1$ holds true

Tests

hypothesis of equality of the means of the reproduction laws not rejected (p-value = 0.9), assumption of equality between the vectors rejected (p-value = $2 \cdot 10^{-5}$)

Random coefficient BAR processes

Outline

Introduction

Missing data BAR processes

Random coefficient BAR processes Model Laws of large numbers

Conclusion

Benoîte de Saporta

University of Hong Kong

Random coefficient model

$$\begin{cases} X_{2k} = (a + \varepsilon_{2k}) + (b + \eta_{2k}) X_k \\ X_{2k+1} = (c + \varepsilon_{2k+1}) + (d + \eta_{2k+1}) X_k \end{cases}$$

Assumptions

- \triangleright ($\varepsilon_{2k}, \eta_{2k}, \varepsilon_{2k+1}, \eta_{2k+1}$) iid
- moments up to order 32
- missing data modeled by a simple supercritical Galton Watson process

Estimators

- Least squares estimator of θ : same formula
- modified least squares estimators for the moments of the noise: minimize

$$\frac{1}{2} \sum_{\ell=1}^{n-1} \sum_{k \in \mathbb{G}_{\ell}} (\widehat{\epsilon}_{2k}^2 - \mathbb{E}[\epsilon_{2k}^2 | \mathcal{F}_{\ell}^{\mathcal{O}}])^2 + (\widehat{\epsilon}_{2k+1}^2 - \mathbb{E}[\epsilon_{2k+1}^2 | \mathcal{F}_{\ell}^{\mathcal{O}}])^2$$
$$\frac{1}{2} \sum_{\ell=1}^{n-1} \sum_{k \in \mathbb{G}_{\ell}} (\widehat{\epsilon}_{2k} \widehat{\epsilon}_{2k+1} - \mathbb{E}[\epsilon_{2k} \epsilon_{2k+1} | \mathcal{F}_{\ell}^{\mathcal{O}}])^2$$

where $(\mathcal{F}_n^{\mathcal{O}})$ generation-wise filtration with observations and

$$\begin{cases} \epsilon_{2k} = \delta_{2k}(\varepsilon_{2k} + \eta_{2k}X_k), \\ \epsilon_{2k+1} = \delta_{2k+1}(\varepsilon_{2k+1} + \eta_{2k+1}X_k), \end{cases} \begin{cases} \widehat{\epsilon}_{2k} = \delta_{2k}(X_{2k} - \widehat{a}_n - \widehat{b}_nX_k), \\ \widehat{\epsilon}_{2k+1} = \delta_{2k}(X_{2k+1} - \widehat{c}_n - \widehat{d}_nX_k). \end{cases}$$

Benoîte de Saporta

Convergence

Convergence rate

$$\mathbb{1}_{\{|\mathbb{G}_n^*|>0\}} \parallel \widehat{\theta}_n - \theta \parallel^2 = \mathbb{1}_{\{|\mathbb{G}_n^*|>0\}} \mathcal{O}\left(\frac{\log|\mathbb{T}_{n-1}^*|}{|\mathbb{T}_{n-1}^*|}\right)$$

Central limit theorem

Conditionally to non extinction

$$\sqrt{|\mathbb{T}_{n-1}^*|}(\widehat{\boldsymbol{\theta}}_n-\boldsymbol{\theta})\xrightarrow{\mathcal{L}}\mathcal{N}(0,\boldsymbol{S}^{-1}\boldsymbol{\Gamma}\boldsymbol{S}^{-1})$$

- identify a (vector) martingale for the generation-wise filtration with observations
- compute the limit of the quadratic variation
- theorem on the convergence rate of martingales on a Galton-Watson binary tree

Benoîte de Saporta

University of Hong Kong

Main martingale

 $\hat{\theta}_n - \theta = S_{n-1}^{-1} M_n$, with (M_n) martingale for the generation -wise filtration with observations

$$\mathbf{M}_{n} = \sum_{k \in \mathbb{T}_{n-1}} \begin{pmatrix} \delta_{2k} \epsilon_{2k} \\ \delta_{2k} X_{k} \epsilon_{2k} \\ \delta_{2k+1} \epsilon_{2k+1} \\ \delta_{2k+1} X_{k} \epsilon_{2k+1} \end{pmatrix}$$

$$\begin{cases} \epsilon_{2k} = \delta_{2k}(\varepsilon_{2k} + \eta_{2k}X_k), \\ \epsilon_{2k+1} = \delta_{2k+1}(\varepsilon_{2k+1} + \eta_{2k+1}X_k), \end{cases}$$

quadratic variation $\langle \boldsymbol{M} \rangle_n = \boldsymbol{\Gamma}_{n-1}$, 4×4 matrix with terms of the form $\sum_{k \in \mathbb{T}_{n-1}} \delta_{2k+i} X_k^q$, $0 \leq q \leq 4$

Benoîte de Saporta

University of Hong Kong

Convergence of the quadratic variation

We do not want to suppose

 $\max\{|b+\eta_2|,|d+\eta_3|\}<1$

 \implies no majoration to make asymmetry vanish impossible to use the martingale approach martingale directly

Convergence of the quadratic variation

We do not want to suppose

 $\max\{|b+\eta_2|, |d+\eta_3|\} < 1$

 \implies no majoration to make asymmetry vanish impossible to use the martingale approach martingale directly

 \implies laws of large numbers by bifurcating Markov chain approach

Bifurcating Markov chain on a Galton-Watson tree

Bifurcating Markov chain on $\mathbb{R} \cup \partial$

$$X_k^* = X_k \mathbb{1}_{\{\delta_k=1\}} + \partial \mathbb{1}_{\{\delta_k=0\}}$$

bifurcating Markov kernel on $(\mathbb{R} \cup \partial) Pf(\partial) = f(\partial, \partial, \partial)$ and

$$Pf(x) = p(1,1)\mathbb{E} \left[f(x,(b+\eta_2)x + a + \varepsilon_2,(d+\eta_3)x + c + \varepsilon_3) \right] \\ + p(1,0)\mathbb{E} \left[f(x,(b+\eta_2)x + a + \varepsilon_2,\partial) \right] \\ + p(0,1)\mathbb{E} \left[f(x,\partial,(d+\eta_3)x + c + \varepsilon_3) \right] \\ + p(0,0)f(x,\partial,\partial)$$

Sub-Markovian kernels on $\mathbb R$

$$P_0(x,A) = (p(1,1) + p(1,0))\mathbb{E}\left[\mathbb{1}_A((a + \varepsilon_2) + (b + \eta_2)x)\right]$$

Benoîte de Saporta

Bifurcating Markov chain on a Galton-Watson tree

Bifurcating Markov chain on $\mathbb{R} \cup \partial$

$$X_k^* = X_k \mathbb{1}_{\{\delta_k=1\}} + \partial \mathbb{1}_{\{\delta_k=0\}}$$

bifurcating Markov kernel on $(\mathbb{R} \cup \partial) Pf(\partial) = f(\partial, \partial, \partial)$ and

$$Pf(x) = p(1,1)\mathbb{E} \left[f(x,(b+\eta_2)x + a + \varepsilon_2,(d+\eta_3)x + c + \varepsilon_3) \right] \\ + p(1,0)\mathbb{E} \left[f(x,(b+\eta_2)x + a + \varepsilon_2,\partial) \right] \\ + p(0,1)\mathbb{E} \left[f(x,\partial,(d+\eta_3)x + c + \varepsilon_3) \right] \\ + p(0,0)f(x,\partial,\partial)$$

Sub-Markovian kernels on $\mathbb R$

$$P_{1}(x,A) = (p(1,1) + p(0,1))\mathbb{E}\left[\mathbb{1}_{A}\left((c + \varepsilon_{3}) + (d + \eta_{3})x\right)\right]$$

Benoîte de Saporta

Induced Markov chain

 (A_n, B_n) iid $\sim (a + \epsilon_2, b + \eta_2) \mathbb{1}_{\{\zeta=1\}} + (c + \epsilon_3, d + \eta_3) \mathbb{1}_{\{\zeta=0\}}, \zeta \sim \text{Bernoulli}((p(1, 1) + p(1, 0))/\pi)$ where π mean of the reproduction law

$$\begin{cases} Y_0 = X_1, \\ Y_{n+1} = A_{n+1} + B_{n+1} Y_n \end{cases}$$

• Markov kernel $Q = (P_0 + P_1)/\pi$

Many to one formula

$$\frac{1}{\pi^n}\sum_{k\in\mathbb{G}_n}\mathbb{E}[f(X_k)\mathbb{1}_{\{k\in\mathbb{T}_n^*\}}]=\mathbb{E}[f(Y_n)]$$

Law of large numbers: v distribution of X₁

$$\left\|\frac{1}{\pi^{n}}\sum_{k\in\mathbb{G}_{n}^{*}}f(X_{k})\right\|_{L^{2}}^{2}=\frac{\nu Q^{n}f^{2}}{\pi^{n}}+\frac{2}{\pi^{2}}\sum_{\ell=0}^{n-1}\frac{1}{\pi^{\ell}}\nu Q^{\ell}P(Q^{n-\ell-1}f\otimes Q^{n-\ell-1}f)$$

Benoîte de Saporta

University of Hong Kong

Ergodicity of the induced chain

- invariant distribution $\mu \sim \sum B_1 \cdots B_{n-1} A_n$
- geometric ergodicity for polynomials up to degree q if

$$\mathbb{E}[|B_1|^q] = \frac{p(1,0) + p(1,1)}{\pi} \mathbb{E}[|b + \eta_2|^q] + \frac{p(0,1) + p(1,1)}{\pi} \mathbb{E}[|d + \eta_3|^q] < 1$$

replace assumption $\max\{|b|, |d|\} < 1$

- law of large numbers for X_k^q requires moments of order 4q
- convergence of the quadratic variation
- rate of convergence of the estimators via martingale approach

Conclusion

Outline

Introduction

Missing data BAR processes

Random coefficient BAR processes

Conclusion

Benoîte de Saporta

University of Hong Kong

Conclusion

Bifrucating Markov chain vs martingale approach

	Martingale	Markov chain
	martingale difference sequence	iid
noise	moments of order <i>q</i>	moments of order 4q
b and d	$\max < 1$	weighted mean < 1
	two-type	simple
observations	Galton-Watson process	Galton-Watson process
		two-type ?

Conclusion

References

[Cowan & Staudte 1986] COWAN & STAUDTE The bifurcating autoregressive model in cell lineage studies. *Biometrics* (1986). [Guyon 2007] GUYON Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. (2007) [Delmas & Marsalle 2010] DELMAS & MARSALLE Detection of cellular aging in a Galton-Watson process. Stoch. Process. and Appl. (2010) [Stewart & al. 2005] STEWART, MADDEN, PAUL, TADDEI Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. (2005) [Bercu, dS, Gégout-Petit 2009] BERCU, DE SAPORTA, GÉGOUT-PETIT Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. Electron. J. Probab. (2009) [dS, Gégout-Petit, Marsalle 2011] DE SAPORTA, GÉGOUT-PETIT, MARSALLE Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Statist. (2011) [dS, Gégout-Petit, Marsalle 2012] DE SAPORTA, GÉGOUT-PETIT, MARSALLE Symmetry tests for bifurcating autoregressive processes with missing data. Statistics & Probability Letters (2012) random coefficents DE SAPORTA, GÉGOUT-PETIT, MARSALLE Random coefficients bifurcating autoregressive processes. Arxiv 1205.4840 multiple trees DE SAPORTA, GÉGOUT-PETIT, MARSALLE Statistical study of asymmetry in cell lineage data. Arxiv 1205.3658

Benoîte de Saporta

University of Hong Kong