Bifurcating autoregressive processes and cell division data

Benoîte de Saporta, Anne Gégout-Petit, Laurence Marsalle University of Bordeaux
University of Lille

University of Bordeaux
 Inria CQFD
 France

Outline

Introduction

Missing data BAR processes
Observation process
Estimation
Convergence
Multiple-tree estimation

Random coefficient BAR processes
Model
Laws of large numbers

Conclusion

Cell division

film

Escherichia coli

Observation genealogical tree Originality dependence structure

First BAR model

[Cowan \& Staudte 1986] Bifurcating AutoRegressive model

$$
\left\{\begin{aligned}
X_{2 k} & =a+b X_{k}+\epsilon_{2 k} \\
X_{2 k+1} & =a+b X_{k}+\epsilon_{2 k+1}
\end{aligned}\right.
$$

$\left(\epsilon_{2 k}, \epsilon_{2 k+1}\right)$ gaussian iid
$\mathbb{E}\left[\epsilon_{2 k+i}\right]=\sigma^{2}, \mathbb{E}\left[\epsilon_{2 k} \epsilon_{2 k+1}\right]=\rho$
stationary regime if $X_{1} \sim \mathcal{N}\left(\frac{a}{1-b}, \frac{\sigma^{2}}{1-b^{2}}\right)$

First BAR model

[Cowan \& Staudte 1986] Bifurcating AutoRegressive model

First BAR model

[Cowan \& Staudte 1986] Bifurcating AutoRegressive model

$$
\left\{\begin{aligned}
X_{2 k} & =a+b X_{k}+\epsilon_{2 k} \\
X_{2 k+1} & =a+b X_{k}+\epsilon_{2 k+1}
\end{aligned}\right.
$$

$\left(\epsilon_{2 k}, \epsilon_{2 k+1}\right)$ gaussian iid
$\mathbb{E}\left[\epsilon_{2 k+i}\right]=\sigma^{2}, \mathbb{E}\left[\epsilon_{2 k} \epsilon_{2 k+1}\right]=\rho$
stationary regime if $X_{1} \sim \mathcal{N}\left(\frac{a}{1-b}, \frac{\sigma^{2}}{1-b^{2}}\right)$
Estimate the parameters to measure correlations

- b mother-daughter correlation
- $\phi=b^{2}+\left(1-b^{2}\right) \rho / \sigma^{2}$ sister-sister correlation

Asymmetry in cell division

[Stewart \& al. 2005]
Do single cell organisms age ?

Asymmetric BAR process

[Guyon 2007] Asymmetric model

$$
\left\{\begin{aligned}
X_{2 k} & =a+b X_{k}+\epsilon_{2 k} \\
X_{2 k+1} & =c+d X_{k}+\epsilon_{2 k+1}
\end{aligned}\right.
$$

$\left(\epsilon_{2 k}, \epsilon_{2 k+1}\right)$ gaussian iid, $\mathbb{E}\left[\epsilon_{2 k+i}\right]=\sigma^{2}, \mathbb{E}\left[\epsilon_{2 k} \epsilon_{2 k+1}\right]=\rho$ no stationarity

Estimate the parameters to test symmetry

- $(a, b)=(c, d)$?
$\Rightarrow a /(1-b)=c /(1-d) ?$

Bifurcating Markov chains approach with generation-wise tree structure

Generations

Generation 0:
$\mathbb{G}_{0}=\{1\}$

Generations

Generation 1:
$\mathbb{G}_{1}=\{2,3\}$

Generations

Generation 2:

$\mathbb{G}_{2}=\{4,5,6,7\}$

Generations

Generation n :
$\mathbb{G}_{n}=\left\{2^{n}, 2^{n}+1, \ldots, 2^{n+1}-1\right\}$

Generations

Tree up to Generation n :

$$
\mathbb{T}_{n}=\bigcup_{\ell=0}^{n} \mathbb{G}_{\ell}
$$

Bifurcating Markov chains

- definition of a Markov model on a binary tree

$$
\mathbb{E}\left[\prod_{k \in \mathbb{G}_{n}} f_{k}\left(X_{2 k}, X_{2 k+1}\right) \mid \sigma\left(X_{j}, j \in \mathbb{T}_{n}\right)\right]=\prod_{k \in \mathbb{G}_{n}} P f_{k}\left(X_{k}\right)
$$

- asymptotic behavior of $\left(X_{k}\right)$ given by an induced Markov chain

$$
\left\{\begin{aligned}
Y_{0} & =X_{1} \\
Y_{n+1} & =A_{n+1}+B_{n+1} Y_{n}
\end{aligned}\right.
$$

random lineage $\left(A_{n}, B_{n}\right)$ iid with distribution $\left(a+\epsilon_{2}, b\right) \mathbb{1}_{\{\zeta=1\}}+\left(c+\epsilon_{3}, d\right) \mathbb{1}_{\{\zeta=0\}}, \zeta \sim \operatorname{Bernoulli}(1 / 2)$

Induced Markov chain

First contribution

[Bercu, dS, Gégout-Petit 2009] Asymmetric model

$$
\left\{\begin{aligned}
X_{2 k} & =a+b X_{k}+\epsilon_{2 k} \\
X_{2 k+1} & =c+d X_{k}+\epsilon_{2 k+1}
\end{aligned}\right.
$$

Assumptions

$\mathcal{F}_{n}=\sigma\left\{X_{k}, k \in \mathbb{T}_{n}\right\}$ generation-wise filtration

- moments of order 8 for the noise
- martingale difference sequence
$\mathbb{E}\left[\epsilon_{2 k+i} \mid \mathcal{F}_{n}\right]=0$ for all $k \in \mathbb{G}_{n}, \epsilon_{2 k+i}$ independent of $\epsilon_{2 k^{\prime}+j}$ conditionnally to \mathcal{F}_{n} for all $k \neq k^{\prime} \in \mathbb{G}_{n}$
$\triangleright \mathbb{E}\left[\epsilon_{2 k+i}^{2} \mid \mathcal{F}_{n}\right]=\sigma^{2}, \mathbb{E}\left[\epsilon_{2 k} \epsilon_{2 k+1} \mid \mathcal{F}_{n}\right]=\rho$ for all $k \in \mathbb{G}_{n}$
- convergence rate for the estimators
- martingale approach

Martingale approach

Convergence of martingales in L^{2}

$\left(M_{n}\right)$ scalar martingale bounded in L^{2}
$<M>_{n}=\sum_{k=0}^{n} \mathbb{E}\left[\left(M_{n+1}-M_{n}\right)^{2} \mid \mathcal{F}_{n}\right]$
If $\lim _{n \rightarrow \infty}<M>_{n}=+\infty$, then $\frac{M_{n}}{<M>_{n}} \rightarrow 0$ a.s.

+ conditions on moments then $\left(\frac{M_{n}}{\left\langle M>_{n}\right.}\right)^{2}=\mathcal{O}\left(\frac{\log \left(\langle M\rangle_{n}\right)}{\langle M\rangle_{n}}\right)$ a.s.
- identify a (vector) martingale for the generation-wise filtration
> compute the limit of the quadratic variation $<M>_{n} \sim\left|\mathbb{T}_{n}\right|$
- apply the theorem of convergence with rate ?

Martingale approach

Convergence of martingales in L^{2}

$\left(M_{n}\right)$ scalar martingale bounded in L^{2}
$<M>_{n}=\sum_{k=0}^{n} \mathbb{E}\left[\left(M_{n+1}-M_{n}\right)^{2} \mid \mathcal{F}_{n}\right]$
If $\lim _{n \rightarrow \infty}<M>_{n}=+\infty$, then $\frac{M_{n}}{\left\langle M>_{n}\right.} \rightarrow 0$ a.s.

+ conditions on moments then $\left(\frac{M_{n}}{\langle M\rangle_{n}}\right)^{2}=\mathcal{O}\left(\frac{\log \left(\langle M\rangle_{n}\right)}{\langle M\rangle_{n}}\right)$ a.s.
- identify a (vector) martingale for the generation-wise filtration
- compute the limit of the quadratic variation $\langle M\rangle_{n} \sim\left|\mathbb{T}_{n}\right|$
- prove the theorem of convergence with rate for martingales on a binary tree

Real data

Escherichia coli data of [Stewart \& al. 2005]

- 94 films $=94$ genealogies
- 4 to 9 generations of cells in each genealogy
- average growth rate 0.037
- no complete genealogy: cells out of scope, overlapping, ...

Real data

Escherichia coli data of [Stewart \& al. 2005]

- 94 films $=94$ genealogies
- 4 to 9 generations of cells in each genealogy
- average growth rate 0.037
- no complete genealogy: cells out of scope, overlapping, ...

Our test procedure does not apply to these data

Real data

Escherichia coli data of [Stewart \& al. 2005]

- 94 films $=94$ genealogies
- 4 to 9 generations of cells in each genealogy
- average growth rate 0.037
- no complete genealogy: cells out of scope, overlapping, ...

Our test procedure does not apply to these data
\Longrightarrow New procedure taking missing data into account

Outline

Introduction

Missing data BAR processes
Observation process
Estimation
Convergence
Multiple-tree estimation

Random coefficient BAR processes

Conclusion

Galton-Watson model

[Delmas \& Marsalle 2010]

- each cell has a type 0 (even - new pole) or 1 (odd - old pole)
- probability $p\left(j_{0}, j_{1}\right)$ for a cell to have j_{0} daughter of type 0 and j_{1} daughters of type 1, drawn independently for each cell
- Z_{n} number of observed cells in generation n Galton-Watson process
- if a cell is not observed, its offspring are not observed either
- inference for partially observed BAR process through the bifurcating Markov chain framework

Galton-Watson model

[Delmas \& Marsalle 2010]

- each cell has a type 0 (even - new pole) or 1 (odd - old pole)
- probability $p\left(j_{0}, j_{1}\right)$ for a cell to have j_{0} daughter of type 0 and j_{1} daughters of type 1, drawn independently for each cell
- Z_{n} number of observed cells in generation n Galton-Watson process
- if a cell is not observed, its offspring are not observed either
- inference for partially observed BAR process through the bifurcating Markov chain framework

The number of daughters of each type should also depend on the type of the mother

Two-type Galton-Watson model

- $\delta_{k}=1$ if cell k is observed, 0 otherwise
- probability $p^{(i)}\left(j_{0}, j_{1}\right)$ for a mother cell of type i to have j_{0} daughter of type 0 et j_{1} daughter of type 1, drawn independently for each cell
- Z_{n}^{i} number of cells of type i ingeneration $n,\left(Z_{n}^{0}, Z_{n}^{1}\right)$ two-type Galton-Watson process
- if a cell is not observed, its offspring are not observed either

Extinction

Descendants matrix

$$
P=\left(\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right)
$$

$p_{i 0}=p^{(i)}(1,0)+p^{(i)}(1,1)$: mean number of daughters of type 0
$p_{i 1}=p^{(i)}(0,1)+p^{(i)}(1,1)$: mean number of daughters of type 1 for a mother of type i

Probability of extinction

π spectral radius of P

- if $\pi \leq 1$, almost sure extinction
- if $\pi>1$, extinction with probability <1

Observed generations

Observed generation n

$$
\mathbb{G}_{n}^{*}=\left\{k \in \mathbb{G}_{n} ; \delta_{k}=1\right\}
$$

Observed generations

$$
\begin{aligned}
& \text { Observed tree up to generation } n \\
& \mathbb{T}_{n}^{*}=\left\{k \in \mathbb{T}_{n} ; \delta_{k}=1\right\}=\cup_{\ell=0}^{n} \mathbb{G}_{\ell}^{*}
\end{aligned}
$$

Partially observed BAR process

$$
\left\{\begin{array}{l}
X_{2 k}=a+b X_{k}+\epsilon_{2 k} \\
X_{2 k+1}=c+d X_{k}+\epsilon_{2 k+1}
\end{array}\right.
$$

Assumptions

- independence between $\left(\delta_{k}\right)$ and $X_{1},\left(\epsilon_{2 k}, \epsilon_{2 k+1}\right)$
- noise martingale difference sequence with moments up to order 8

Least squares estimation of $\boldsymbol{\theta}=(a, b, c, d)^{t}$: minimize
$\Delta_{n}(\theta)=\frac{1}{2} \sum_{k \in \mathbb{T}_{n-1}} \delta_{2 k}\left(X_{2 k}-a-b X_{k}\right)^{2}+\delta_{2 k+1}\left(X_{2 k+1}-c-d X_{k}\right)^{2}$.
Empirical estimators for the moments of the noise

Estimator of $\boldsymbol{\theta}$

Least squares estimator for $\boldsymbol{\theta}$

$$
\widehat{\boldsymbol{\theta}}_{n}=\left(\begin{array}{c}
\widehat{a}_{n} \\
\widehat{b}_{n} \\
\widehat{c}_{n} \\
\widehat{d}_{n}
\end{array}\right)=\boldsymbol{S}_{n-1}^{-1} \sum_{k \in \mathbb{T}_{n-1}}\left(\begin{array}{c}
\delta_{2 k} X_{2 k} \\
\delta_{2 k} X_{k} X_{2 k} \\
\delta_{2 k+1} X_{2 k+1} \\
\delta_{2 k+1} X_{k} X_{2 k+1}
\end{array}\right)
$$

with

$$
\begin{gathered}
\boldsymbol{S}_{n}=\left(\begin{array}{cc}
\boldsymbol{S}_{n}^{0} & 0 \\
0 & \boldsymbol{S}_{n}^{1}
\end{array}\right) \\
\boldsymbol{S}_{n}^{0}=\sum_{k \in \mathbb{T}_{n}} \delta_{2 k}\left(\begin{array}{cc}
1 & X_{k} \\
X_{k} & X_{k}^{2}
\end{array}\right) \quad \boldsymbol{S}_{n}^{1}=\sum_{k \in \mathbb{T}_{n}} \delta_{2 k+1}\left(\begin{array}{cc}
1 & X_{k} \\
X_{k} & X_{k}^{2}
\end{array}\right)
\end{gathered}
$$

Convergence rate

Theorem

$$
\mathbb{1}_{\left\{\left|\mathbb{G}_{n}^{*}\right|>0\right\}}\left\|\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}\right\|^{2}=\mathbb{1}_{\left\{\left|\mathbb{G}_{n}^{*}\right|>0\right\}} \mathcal{O}\left(\frac{\log \left|\mathbb{T}_{n-1}^{*}\right|}{\left|\mathbb{T}_{n-1}^{*}\right|}\right)
$$

Proof: martingale approach

- identify a (vector) martingale for the generation-wise filtration with observations
- compute the limit of the quadratic variation
- theorem on the convergence rate of martingales on a Galton-Watson binary tree

Main martingale

$\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}=\boldsymbol{S}_{n-1}^{-1} M_{n}$, with $\left(M_{n}\right)$ martingale for the generation-wise filtration of the process and observations

$$
\boldsymbol{M}_{n}=\sum_{k \in \mathbb{T}_{n-1}}\left(\begin{array}{c}
\delta_{2 k} \epsilon_{2 k} \\
\delta_{2 k} X_{k} \epsilon_{2 k} \\
\delta_{2 k+1} \epsilon_{2 k+1} \\
\delta_{2 k+1} X_{k} \epsilon_{2 k+1}
\end{array}\right)
$$

$\left(\boldsymbol{M}_{n}\right)_{n \geq 1}$ square integrable with quadratic variation
$<\boldsymbol{M}>_{n}=\boldsymbol{\Gamma}_{n-1}$

$$
\boldsymbol{\Gamma}_{n}=\left(\begin{array}{cc}
\sigma^{2} S_{n}^{0} & \rho S_{n}^{0,1} \\
\rho S_{n}^{0,1} & \sigma^{2} S_{n}^{1}
\end{array}\right) \quad \text { and } \quad \boldsymbol{S}_{n}^{0,1}=\sum_{k \in \mathbb{T}_{n}} \delta_{2 k} \delta_{2 k+1}\left(\begin{array}{cc}
1 & X_{k} \\
X_{k} & X_{k}^{2}
\end{array}\right)
$$

Convergence of the quadratic variation

Laws of large numbers for the observations $\left(\delta_{k}\right)$, the noise $\left(\delta_{k} \epsilon_{k}\right)$ processes

- scalar martingales for various filtrations

Laws of large numbers for the $\operatorname{BAR}\left(\delta_{2 k+i} X_{k}^{q}\right)$ processes

- specific form of the autoregression
- assumption $\max \{|b|,|d|\}<1$

Central limit theorem

Theorem

Conditionally to non extinction

$$
\sqrt{\left|\mathbb{T}_{n-1}^{*}\right|}\left(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}\right) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}\left(0, \boldsymbol{S}^{-1} \boldsymbol{\Gamma} \boldsymbol{S}^{-1}\right)
$$

Two main difficulties

- random $\left|\mathbb{T}_{n-1}^{*}\right|$ normalization
- result only valid conditionally to non extinction: on the non extinction set $\overline{\mathcal{E}}=\cap\left\{\left|\mathbb{G}_{n}^{*}\right|>0\right\}$ endowed with the probability $\mathbb{P}_{\overline{\mathcal{E}}}(\cdot)=\mathbb{P}(\cdot \cap \overline{\mathcal{E}}) / \mathbb{P}(\overline{\mathcal{E}})$

Symmetry tests: Escherichia coli data

p-values for the 51 genealogies with 8 or 9 generations

$$
\text { Test }(a, b)=(c, d)
$$

Symmetry tests: Escherichia coli data

p-values for the 51 genealogies with 8 or 9 generations

Test $a /(1-b)=c /(1-d)$

New model

Simulations \Longrightarrow low power of the tests for 8 or 9 generations

Multiple-tree estimation

- use several genealogies (in fixed number) for inference
- genealogies are iid samples of the partially observed BAR process with the same parameters
\triangleright new estimator (\neq average of single-tree estimators)
- union of non-extinction sets
- new proofs of convergence with the same ideas
- inference and symmetry test for the Galton Watson process

Multiple-tree estimator

Least squares estimator for $\boldsymbol{\theta}$

$$
\widehat{\boldsymbol{\theta}}_{n}=\left(\sum_{j=1}^{m} \boldsymbol{S}_{n-1}(j)\right)^{-1} \sum_{j=1}^{m} \sum_{k \in \mathbb{T}_{n-1}}\left(\begin{array}{c}
\delta_{j, 2 k} X_{j, 2 k} \\
\delta_{j, 2 k} X_{j, k} X_{j, 2 k} \\
\delta_{j, 2 k+1} X_{j, 2 k+1} \\
\delta_{j, 2 k+1} X_{j, k} X_{j, 2 k+1}
\end{array}\right)
$$

with

$$
\begin{gathered}
\boldsymbol{S}_{n}(j)=\left(\begin{array}{cc}
\boldsymbol{S}_{n}^{0}(j) & 0 \\
0 & \boldsymbol{S}_{n}^{1}(j)
\end{array}\right) \\
\boldsymbol{S}_{n}^{i}(j)=\sum_{k \in \mathbb{T}_{n}} \delta_{j, 2 k+i}\left(\begin{array}{cc}
1 & x_{j, k} \\
X_{j, k} & X_{j, k}^{2}
\end{array}\right)
\end{gathered}
$$

Multiple-tree analysis of E. coli data: BAR

Estimation of $\theta \Longrightarrow$ assumption $\max \{|b|,|d|\}<1$ holds true

a	$0.0203[0.0197 ; 0.0210]$	c	$0.0195[0.0188 ; 0.0201]$
b	$0.4615[0.4437 ; 0.4792]$	d	$0.4782[0.4605 ; 0.4959]$

Estimation of the moments of the noise

$$
\begin{array}{|c|l|}
\hline \sigma^{2} & 1.81 \cdot 10^{-5}\left[1.12 \cdot 10^{-5} ; 2.50 \cdot 10^{-5}\right] \\
\hline \rho & 0.48 \cdot 10^{-5}\left[0.44 \cdot 10^{-5} ; 0.52 \cdot 10^{-5}\right] \\
\hline
\end{array}
$$

Tests
hypothesis $(a, b)=(c, d)$ rejected $\left(p\right.$-value $\left.=10^{-5}\right)$, hypothesis $a /(1-b)=c /(1-d)$ rejected $\left(p\right.$-value $\left.=2 \cdot 10^{-3}\right)$

Multiple-tree analysis of E. coli data: Galton-Watson

Estimation of the reproduction laws

$p^{(0)}(0,0)$	$0.35579[0.35574 ; 0.35583]$	$p^{(1)}(0,0)$	$0.35611[0.35606 ; 0.35616]$
$p^{(0)}(1,0)$	$0.03621[0.03620 ; 0.03622]$	$p^{(1)}(1,0)$	$0.04707[0.04706 ; 0.04708]$
$p^{(0)}(0,1)$	$0.04740[0.04739 ; 0.04741]$	$p^{(1)}(0,1)$	$0.03755[0.03754 ; 0.03756]$
$p^{(0)}(1,1)$	$0.56060[0.56055 ; 0.56065]$	$p^{(1)}(1,1)$	$0.55928[0.55923 ; 0.55933]$

Estimation of π : 1.204 [1.191;1.217]
\Longrightarrow assumption $\pi>1$ holds true
Tests
hypothesis of equality of the means of the reproduction laws not
rejected (p-value $=0.9$),
assumption of equality between the vectors rejected (p-value $=2 \cdot 10^{-5}$)

Outline

Introduction
Missing data BAR processes
Random coefficient BAR processes
Model
Laws of large numbers

Conclusion

Random coefficient model

$$
\left\{\begin{array}{l}
X_{2 k}=\left(a+\varepsilon_{2 k}\right)+\left(b+\eta_{2 k}\right) X_{k} \\
X_{2 k+1}=\left(c+\varepsilon_{2 k+1}\right)+\left(d+\eta_{2 k+1}\right) X_{k}
\end{array}\right.
$$

Assumptions

$\Rightarrow\left(\varepsilon_{2 k}, \eta_{2 k}, \varepsilon_{2 k+1}, \eta_{2 k+1}\right)$ iid

- moments up to order 32
- missing data modeled by a simple supercritical Galton Watson process

Estimators

- Least squares estimator of $\boldsymbol{\theta}$: same formula
- modified least squares estimators for the moments of the noise: minimize

$$
\begin{aligned}
& \frac{1}{2} \sum_{\ell=1}^{n-1} \sum_{k \in \mathbb{G}_{\ell}}\left(\hat{\epsilon}_{2 k}^{2}-\mathbb{E}\left[\epsilon_{2 k}^{2} \mid \mathcal{F}_{\ell}^{\mathcal{O}}\right]\right)^{2}+\left(\widehat{\epsilon}_{2 k+1}^{2}-\mathbb{E}\left[\epsilon_{2 k+1}^{2} \mid \mathcal{F}_{\ell}^{\mathcal{O}}\right]\right)^{2} \\
& \frac{1}{2} \sum_{\ell=1}^{n-1} \sum_{k \in \mathbb{G}_{\ell}}\left(\widehat{\epsilon}_{2 k} \widehat{\epsilon}_{2 k+1}-\mathbb{E}\left[\epsilon_{2 k} \epsilon_{2 k+1} \mid \mathcal{F}_{\ell}^{\mathcal{O}}\right]\right)^{2}
\end{aligned}
$$

where $\left(\mathcal{F}_{n}^{\mathcal{O}}\right)$ generation-wise filtration with observations and

$$
\left\{\begin{array} { l }
{ \epsilon _ { 2 k } = \delta _ { 2 k } (\varepsilon _ { 2 k } + \eta _ { 2 k } X _ { k }) , } \\
{ \epsilon _ { 2 k + 1 } = \delta _ { 2 k + 1 } (\varepsilon _ { 2 k + 1 } + \eta _ { 2 k + 1 } X _ { k }) , }
\end{array} \quad \left\{\begin{array}{l}
\widehat{\epsilon}_{2 k}=\delta_{2 k}\left(X_{2 k}-\widehat{a}_{n}-\widehat{b}_{n} X_{k}\right) \\
\widehat{\epsilon}_{2 k+1}=\delta_{2 k}\left(X_{2 k+1}-\widehat{c}_{n}-\widehat{d}_{n} X_{k}\right)
\end{array}\right.\right.
$$

Convergence

Convergence rate

$$
\mathbb{1}_{\left\{\left|\mathbb{G}_{n}^{*}\right|>0\right\}}\left\|\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}\right\|^{2}=\mathbb{1}_{\left\{\left|\mathbb{G}_{n}^{*}\right|>0\right\}} \mathcal{O}\left(\frac{\log \left|\mathbb{T}_{n-1}^{*}\right|}{\left|\mathbb{T}_{n-1}^{*}\right|}\right)
$$

Central limit theorem

Conditionally to non extinction

$$
\sqrt{\left|\mathbb{T}_{n-1}^{*}\right|}\left(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \boldsymbol{S}^{-1} \boldsymbol{\Gamma} \boldsymbol{S}^{-1}\right)
$$

- identify a (vector) martingale for the generation-wise filtration with observations
- compute the limit of the quadratic variation
- theorem on the convergence rate of martingales on a Galton-Watson binary tree

Main martingale

$\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}=\boldsymbol{S}_{n-1}^{-1} M_{n}$, with $\left(M_{n}\right)$ martingale for the generation -wise filtration with observations

$$
\begin{gathered}
\boldsymbol{M}_{n}=\sum_{k \in \mathbb{T}_{n-1}}\left(\begin{array}{c}
\delta_{2 k} \epsilon_{2 k} \\
\delta_{2 k} X_{k} \epsilon_{2 k} \\
\delta_{2 k+1} \epsilon_{2 k+1} \\
\delta_{2 k+1} X_{k} \epsilon_{2 k+1}
\end{array}\right) \\
\begin{cases}\epsilon_{2 k} & =\delta_{2 k}\left(\varepsilon_{2 k}+\eta_{2 k} X_{k}\right), \\
\epsilon_{2 k+1} & =\delta_{2 k+1}\left(\varepsilon_{2 k+1}+\eta_{2 k+1} X_{k}\right),\end{cases}
\end{gathered}
$$

quadratic variation $<\boldsymbol{M}>_{n}=\boldsymbol{\Gamma}_{n-1}, 4 \times 4$ matrix with terms of the form $\sum_{k \in \mathbb{T}_{n-1}} \delta_{2 k+i} X_{k}^{q}, 0 \leq q \leq 4$

Convergence of the quadratic variation

We do not want to suppose

$$
\max \left\{\left|b+\eta_{2}\right|,\left|d+\eta_{3}\right|\right\}<1
$$

\Longrightarrow no majoration to make asymmetry vanish impossible to use the martingale approach martingale directly

Convergence of the quadratic variation

We do not want to suppose

$$
\max \left\{\left|b+\eta_{2}\right|,\left|d+\eta_{3}\right|\right\}<1
$$

\Longrightarrow no majoration to make asymmetry vanish impossible to use the martingale approach martingale directly
\Longrightarrow laws of large numbers by bifurcating Markov chain approach

Bifurcating Markov chain on a Galton-Watson tree

Bifurcating Markov chain on $\mathbb{R} \cup \partial$

$$
X_{k}^{*}=X_{k} \mathbb{1}_{\left\{\delta_{k}=1\right\}}+\partial \mathbb{1}_{\left\{\delta_{k}=0\right\}}
$$

bifurcating Markov kernel on $(\mathbb{R} \cup \partial) \operatorname{Pf}(\partial)=f(\partial, \partial, \partial)$ and

$$
\begin{aligned}
\operatorname{Pf}(x)= & p(1,1) \mathbb{E}\left[f\left(x,\left(b+\eta_{2}\right) x+a+\varepsilon_{2},\left(d+\eta_{3}\right) x+c+\varepsilon_{3}\right)\right] \\
& +p(1,0) \mathbb{E}\left[f\left(x,\left(b+\eta_{2}\right) x+a+\varepsilon_{2}, \partial\right)\right] \\
& +p(0,1) \mathbb{E}\left[f\left(x, \partial,\left(d+\eta_{3}\right) x+c+\varepsilon_{3}\right)\right] \\
& +p(0,0) f(x, \partial, \partial)
\end{aligned}
$$

Sub-Markovian kernels on \mathbb{R}

$$
P_{0}(x, A)=(p(1,1)+p(1,0)) \mathbb{E}\left[\mathbb{1}_{A}\left(\left(a+\varepsilon_{2}\right)+\left(b+\eta_{2}\right) x\right)\right]
$$

Bifurcating Markov chain on a Galton-Watson tree

Bifurcating Markov chain on $\mathbb{R} \cup \partial$

$$
X_{k}^{*}=X_{k} \mathbb{1}_{\left\{\delta_{k}=1\right\}}+\partial \mathbb{1}_{\left\{\delta_{k}=0\right\}}
$$

bifurcating Markov kernel on $(\mathbb{R} \cup \partial) \operatorname{Pf}(\partial)=f(\partial, \partial, \partial)$ and

$$
\begin{aligned}
\operatorname{Pf}(x)= & p(1,1) \mathbb{E}\left[f\left(x,\left(b+\eta_{2}\right) x+a+\varepsilon_{2},\left(d+\eta_{3}\right) x+c+\varepsilon_{3}\right)\right] \\
& +p(1,0) \mathbb{E}\left[f\left(x,\left(b+\eta_{2}\right) x+a+\varepsilon_{2}, \partial\right)\right] \\
& +p(0,1) \mathbb{E}\left[f\left(x, \partial,\left(d+\eta_{3}\right) x+c+\varepsilon_{3}\right)\right] \\
& +p(0,0) f(x, \partial, \partial)
\end{aligned}
$$

Sub-Markovian kernels on \mathbb{R}

$$
P_{1}(x, A)=(p(1,1)+p(0,1)) \mathbb{E}\left[\mathbb{1}_{A}\left(\left(c+\varepsilon_{3}\right)+\left(d+\eta_{3}\right) x\right)\right]
$$

Induced Markov chain

$\left(A_{n}, B_{n}\right)$ iid $\sim\left(a+\epsilon_{2}, b+\eta_{2}\right) \mathbb{1}_{\{\zeta=1\}}+\left(c+\epsilon_{3}, d+\eta_{3}\right) \mathbb{1}_{\{\zeta=0\}}$, $\zeta \sim \operatorname{Bernoulli}((p(1,1)+p(1,0)) / \pi)$ where π mean of the reproduction law

$$
\left\{\begin{aligned}
Y_{0} & =X_{1}, \\
Y_{n+1} & =A_{n+1}+B_{n+1} Y_{n}
\end{aligned}\right.
$$

- Markov kernel $Q=\left(P_{0}+P_{1}\right) / \pi$
- Many to one formula

$$
\frac{1}{\pi^{n}} \sum_{k \in \mathbb{G}_{n}} \mathbb{E}\left[f\left(X_{k}\right) \mathbb{1}_{\left\{k \in \mathbb{T}_{n}^{*}\right\}}\right]=\mathbb{E}\left[f\left(Y_{n}\right)\right]
$$

- Law of large numbers: ν distribution of X_{1}

$$
\left\|\frac{1}{\pi^{n}} \sum_{k \in \mathbb{G}_{n}^{*}} f\left(X_{k}\right)\right\|_{L^{2}}^{2}=\frac{\nu Q^{n} f^{2}}{\pi^{n}}+\frac{2}{\pi^{2}} \sum_{\ell=0}^{n-1} \frac{1}{\pi^{\ell}} \nu Q^{\ell} P\left(Q^{n-\ell-1} f \otimes Q^{n-\ell-1} f\right)
$$

Ergodicity of the induced chain

- invariant distribution $\mu \sim \sum B_{1} \cdots B_{n-1} A_{n}$
- geometric ergodicity for polynomials up to degree q if

$$
\mathbb{E}\left[\left|B_{1}\right|^{q}\right]=\frac{p(1,0)+p(1,1)}{\pi} \mathbb{E}\left[\left|b+\eta_{2}\right|^{q}\right]+\frac{p(0,1)+p(1,1)}{\pi} \mathbb{E}\left[\left|d+\eta_{3}\right|^{q}\right]<1
$$

replace assumption $\max \{|b|,|d|\}<1$

- law of large numbers for X_{k}^{q} requires moments of order $4 q$
- convergence of the quadratic variation
- rate of convergence of the estimators via martingale approach

Outline

Introduction

Missing data BAR processes

Random coefficient BAR processes

Conclusion

Bifrucating Markov chain vs martingale approach

	Martingale	Markov chain
noise	martingale difference sequence moments of order q	iid
b and d	max <1	weighted mean <1
observations	two-type	simple
	Galton-Watson process	Galton-Watson process two-type ?

References

[Cowan \& Staudte 1986] Cowan \& Staudte The bifurcating autoregressive model in cell lineage studies. Biometrics (1986).
[Guyon 2007] Guyon Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. (2007)
[Delmas \& Marsalle 2010] Delmas \& Marsalle Detection of cellular aging in a Galton-Watson process. Stoch. Process. and Appl. (2010)
[Stewart \& al. 2005] Stewart, Madden, Paul, Taddei Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. (2005)
[Bercu, dS, Gégout-Petit 2009] Bercu, de Saporta, Gégout-Petit Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. Electron. J. Probab. (2009)
[dS, Gégout-Petit, Marsalle 2011] de Saporta, Gégout-Petit, Marsalle Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Statist. (2011)
[dS, Gégout-Petit, Marsalle 2012] de Saporta, Gégout-Petit, Marsalle Symmetry tests for bifurcating autoregressive processes with missing data. Statistics \& Probability Letters (2012)
random coefficents de Saporta, Gégout-Petit, Marsalle Random coefficients bifurcating autoregressive processes. Arxiv 1205.4840
multiple trees de Saporta, Gégout-Petit, Marsalle Statistical study of asymmetry in cell lineage data. Arxiv 1205.3658

