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Introduction Piecewise deterministic Markov Processes

Piecewise deterministic Markov processes

Davis (80’s)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Applications
Engineering systems, operations research, management science,
economics, internet traffic, neurosciences, biology, dependability
and safety. . .
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Introduction Piecewise deterministic Markov Processes

Dynamics

Hybrid process Xt = (mt , yt)

I discrete mode mt ∈ {1, 2, . . . , p}
I Euclidean state variable yt ∈ Rn

Local characteristics for each mode m
I Em open subset of Rd , ∂Em its boundary and Em its closure
I Flow φm: Rd × R→ Rd deterministic motion between jumps,

one-parameter group of homeomorphisms
I Intensity λm: Em → R+ intensity of random jumps
I Markov kernel Qm on (Em,B(Em)) selects post-jump location
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Introduction Piecewise deterministic Markov Processes

Two types of jumps

I t∗(m, y) deterministic exit time starting from (m, y)

t∗(m, y) = inf{t > 0 : φm(y , t) ∈ ∂Em}

I law of the first jump time T1 starting from (m, y)

P(m,y)(T1 > t) =

{
e−

∫ t
0 λm
(
φm(y ,s)

)
ds if t < t∗(m, y)

0 if t ≥ t∗(m, y)

Remark
T1 has a density on [0, t∗(m, y)[ but has an atom at t∗(m, y)

P(m,y)(T1 = t∗(m, y)) > 0
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Introduction Piecewise deterministic Markov Processes

Iterative construction
Starting point

X0 = Z0 = (m, y)

PSfrag replaements
Em

y

Benoîte de Saporta IWAP 2014 Antalya – 17 June 2014 6/30



Introduction Piecewise deterministic Markov Processes

Iterative construction
Xt follows the deterministic flow until the first jump time T1 = S1

Xt =
(
m, φm(y , t)

)
, t < T1

PSfrag replaements
Em

y

T1
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Introduction Piecewise deterministic Markov Processes

Iterative construction
Post-jump location Z1 = (M1,Y1) selected by the Markov kernel

Qm
(
φm(y ,T1), ·

)

PSfrag replaementsEM1

Em

y

T1

Qm

(
φm(y,T1), ·

)

Y1
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Introduction Piecewise deterministic Markov Processes

Iterative construction
Xt follows the flow until the next jump time T2 = T1 + S2

XT1+t =
(
M1, φM1(Y1, t)

)
, t < S2

PSfrag replaementsEM1

Em

y

T1

Qm

(
φm(y,T1), ·

)

Y1

S2
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Introduction Piecewise deterministic Markov Processes

Iterative construction
Post-jump location Z2 = (M2,Y2) selected by Markov kernel

QM1

(
φM1(Y1,S2), ·

)
. . .

PSfrag replaementsEM1

Em

y

T1

Qm

(
φm(y,T1), ·

)

Y1

S2
QM1

(
φM1

(Y1, S2), ·
)
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Introduction Piecewise deterministic Markov Processes

Embedded Markov chain

{Xt} strong Markov process [Davis 93]

Natural embedded Markov chain
I Z0 starting point, T0 = 0, S0 = 0
I Zn new mode and location after n-th jump

Tn date of n-th jump, Sn = Tn − Tn−1

Important property
(Zn,Sn) is a discrete-time Markov chain
Only source of randomness of the PDMP
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Introduction Numerical methods for PDMP

Numerical methods for PDMP

Fact
I numerous application domains
I numerous theoretical results

[Davis 93], [Jacobsen 06], [Costa Dufour 13]
I processes easy to simulate if explicit flow
I very few dedicated numerical methods in the literature for

optimal control
[Costa Davis 88, 89]
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Introduction Numerical methods for PDMP

Aim of the talk

Propose a new numerical method
I adapted to the specificities of PDMPs
I with proofs and rate of convergence
I implementable in practice

To solve approximately the optimal stopping problem for PDMPs
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Optimal stopping Problem formulation

Problem setting

I Reward function g
I Random time horizon: N-th jump time TN
I MN set of all stopping times τ ≤ TN

Optimal stopping problem
I compute the value function

V (x) = sup
τ∈MN

Ex [g(Xτ )]

I find an (ε-)optimal stopping time τ∗ that reaches V (x)(−ε)
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Optimal stopping Problem formulation

Recursion for value functions

[Gugerli 1986]

Dynamic programming
I vN = g
I vn = L(vn+1, g) pour n ≤ N − 1

v0(x) = sup
τ∈MN

Ex [g(Xτ )] = V (x)

L(w , g)(x)

= sup
u≤t∗(Zn)

{
E
[
w(Zn+1)1{Sn+1<u} + g

(
φ(Zn, u)

)
1{Sn+1≥u}

∣∣ Zn = x
]}

∨ E
[
w(Zn+1)

∣∣ Zn = x
]
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Optimal stopping Problem formulation

Recursion for random variables

Dynamic programming
I vN(ZN) = g(ZN)

I vn(Zn) = L(vn+1, g)(Zn) pour n ≤ N − 1

v0(Z0) = sup
τ∈MN

Ex [g(Xτ )]

vn(Zn) = L(vn+1, g)(Zn)

= sup
u≤t∗(Zn)

{
E
[
vn+1(Zn+1)1{Sn+1<u} + g

(
φ(Zn, u)

)
1{Sn+1≥u}

∣∣ Zn
]}

∨ E
[
vn+1(Zn+1)

∣∣ Zn
]
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Optimal stopping Problem formulation

Strategy

I discretize the chain (Zn,Sn) using quantization

I replace (Zn, Sn) by its approximation (Ẑn, Ŝn) in L
−→ computable approximation

I study convergence, derive error bounds
I indicator functions in the dynamic programming equation
−→ be careful with the time grids
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Optimal stopping Quantization

Quantization

[Pagès 98], [Pagès, Pham, Printems 04]. . .

Quantization of a random variable X ∈ Lp(Rd)

Approximate X by X̂ taking finitely many values such that
‖X − X̂‖p is minimum

I Find a finite weighted grid Γ with |Γ| = K
I Set X̂ = pΓ(X ) closest neighbor projection

Asymptotic properties
If E [|X |p+η] < +∞ for some η > 0 then

lim
K→∞

K 1/d min
|Γ|≤K

‖X − X̂ Γ‖p = C
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Optimal stopping Quantization

Algorithms

There exist algorithms providing
I Γ

I law of X̂
I transition probabilities for quantization of Markov chains

Example: N (0, I2):
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Optimal stopping Quantization

Grids construction

Model −→ simulator of trajectories −→ grids

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Benoîte de Saporta IWAP 2014 Antalya – 17 June 2014 17/30



Optimal stopping Quantization

Grids construction

Model −→ simulator of trajectories −→ grids

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Benoîte de Saporta IWAP 2014 Antalya – 17 June 2014 17/30



Optimal stopping Quantization

Grids construction

Model −→ simulator of trajectories −→ grids

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Benoîte de Saporta IWAP 2014 Antalya – 17 June 2014 17/30



Optimal stopping Quantization
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Optimal stopping Quantization

Assets and drawbacks of quantization

Assets
I a simulator of the target law is enough to build the grids
I automatic construction of grids
I convergence rate for E[|f (X )− f (X̂ )|] if f lipschitz

Drawbacks
I computation time
I curse of dimension
I open questions of convergence of the algorithms
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Optimal stopping Convergence

Discretization

Approximation of the value function
I v̂N(ẐN) = g(ẐN)

I v̂n(Ẑn) = L̂n
d (v̂n+1, g)(Ẑn) for n ≤ N − 1

L̂n
d (vn+1, g)(Ẑn)

= max
u∈G(Ẑn)

{
E
[
v(Ẑn+1)1{Ŝn+1<u} + g

(
φẐn, u)

)
1{Ŝn+1≥u}

∣∣ Ẑn
]}

∨ E
[
v(Ẑn+1)

∣∣ Ẑn
]
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Optimal stopping Convergence

Convergence

[dS, Dufour, Gonzalez, Ann. Appl. Proba. 2010]

Theroem
Lipschitz regularity assumptions on φ, λ, Q, t∗ and g

|v0(x)− v̂0(x)| ≤ C
√

EQ

C explicit constant,
EQ quantization error
√· due to the indicator functions
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Optimal stopping Convergence

ε-optimal stopping time

Computable stopping rule τ̂
I explicit iterative construction
I no extra computation
I true stopping time for the original process (Xt)

Theorem
Same assumptions

|v0(x)− Ex [g(Xτ̂ )]| ≤ C1EV + C2
√

EQ

C1, C2 explicit constants, EV value function error, EQ
quantization error

Provides another approximation of the value function via Monte
Carlo simulations
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Application to maintenance optimization Example from Thales optronique

Application to maintenance optimization

I Xt = (mt , yt) state of a machine at time t
I Tn failure of some components

Maintenance optimization
Find an optimal balance between

I changing the components too early/often
I do nothing until total breakdown
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Application to maintenance optimization Example from Thales optronique

Industrial problem from Thales optronique

Compute an optimized maintenance date for an equipment subject
to different kinds of failures

Air conditioning unit

I State 1: stable state
I State 2: degraded ball bearing
I State 3: failed electrovalve
I State 4: electronic failure
I State 5: failed ball bearing
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Application to maintenance optimization Example from Thales optronique

PDMP model

Transition rates
I degraded ball bearing and failed electorovalve: Weibull

distributions ⇒ time dependent intensity
I electronic and ball bearing failures: exponential distribution

I State 1: stable state
I State 2: degraded ball bearing
I State 3: failed electrovalve
I State 4: electronic failure
I State 5: failed ball bearing

PDMP model
I discrete mode mt ∈ {1, 2, 3, 4, 5}
I Euclidean state variable yt = t working time
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Application to maintenance optimization Example from Thales optronique

Trajectories without maintenance

1 2 5

3 3

4 4

79.10%

5.32%

15.58%

96.00%

1.09%

2.91%

1

I 1: stable state
I 2: degraded ball

bearing
I 3: failed electrovalve
I 4: electronic failure
I 5: failed ball bearing
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Application to maintenance optimization Example from Thales optronique

Reward function

g(m, t) =
t

p(m)

I p(1) = 6 price of maintenance in stable mode
I p(2) = 6 price of maintenance in degraded ball bearing mode
I p(3) = 5 price of repair of electrovalve failure
I p(4) = 3.5 price of repair of electronic failure
I p(5) = 12 price of repair of ball bearing failure

Maintenance optimisation
I Better to start a maintenance in mode 2 than wait for total

failure mode 5
I Failure modes 3 and 4 cost less than maintenance

Average performance without maintenance: 342.72
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Application to maintenance optimization Example from Thales optronique

Trajectories with maintenance

Without maintenance

1 2 5

3 3

4 4

79.10%

5.32%

15.58%

96.00%

1.09%

2.91%

1

Average performance : 342.72

With maintenance
maintenance maintenance

1 2 5

3 3

4 4

0%

79.10%

5.32%

15.58%

84.76%

11.56%

0.11%

3.87%

1

Average performance : 592.47
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Application to maintenance optimization Conclusion and perspectives

Conclusion and perspectives

Assets and drawbacks of the numerical method
I practical method
I computation time on line/off line
I curse of dimension

Perspectives
I Optimal policy for impulse control Thales Optronique
I Numerical methods for MDP Airbus, DCNS
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