Numerical method for optimal stopping of PDMP and maintenance optimization

Camille Baysse Thales Optronique

Benoîte de Saporta Univ. Bordeaux Anne Gégout-Petit Univ. Lorraine

International Workshop on Applied Probability Antalya, 17 June 2014

IWAP 2014 – Antalya – 17 June 2014

Outline

Introduction Piecewise deterministic Markov Processes Numerical methods for PDMP

Optimal stopping Problem formulation Discretization scheme Quantization Convergence

Application to maintenance optimization Example from Thales optronique Conclusion and perspectives

Piecewise deterministic Markov processes

Davis (80's)

General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

Applications

Engineering systems, operations research, management science, economics, internet traffic, neurosciences, biology, dependability and safety...

Benoîte de Saporta

Dynamics

Hybrid process $X_t = (m_t, y_t)$

- discrete mode $m_t \in \{1, 2, \ldots, p\}$
- Euclidean state variable $y_t \in \mathbb{R}^n$

Local characteristics for each mode m

- ▶ E_m open subset of \mathbb{R}^d , ∂E_m its boundary and \overline{E}_m its closure
- ► Flow ϕ_m : $\mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ deterministic motion between jumps, one-parameter group of homeomorphisms
- ▶ Intensity λ_m : $\overline{E}_m \to \mathbb{R}_+$ intensity of random jumps
- ▶ Markov kernel Q_m on $(\overline{E}_m, \mathcal{B}(\overline{E}_m))$ selects post-jump location

Two types of jumps

▶ $t^*(m, y)$ deterministic exit time starting from (m, y)

$$t^*(m, y) = \inf\{t > 0 : \phi_m(y, t) \in \partial E_m\}$$

▶ law of the first jump time T_1 starting from (m, y)

$$\mathbb{P}_{(m,y)}(T_1 > t) = \begin{cases} e^{-\int_0^t \lambda_m (\phi_m(y,s)) ds} & \text{if } t < t^*(m,y) \\ 0 & \text{if } t \ge t^*(m,y) \end{cases}$$

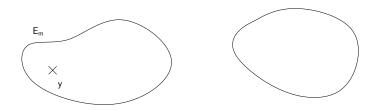
Remark

 T_1 has a density on $[0, t^*(m, y)]$ but has an atom at $t^*(m, y)$

 $\mathbb{P}_{(m,y)}(T_1 = t^*(m,y)) > 0$

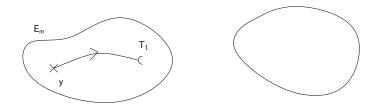
Starting point

$$X_0 = Z_0 = (m, y)$$

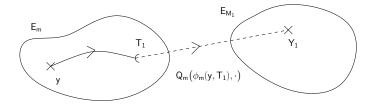


 X_t follows the deterministic flow until the first jump time $T_1 = S_1$

$$X_t = (m, \phi_m(y, t)), \quad t < T_1$$

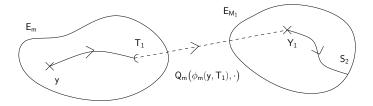


Post-jump location $Z_1 = (M_1, Y_1)$ selected by the Markov kernel $Q_m(\phi_m(y, T_1), \cdot)$

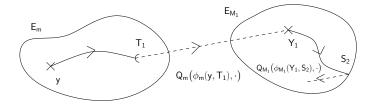


 X_t follows the flow until the next jump time $T_2 = T_1 + S_2$

$$X_{T_1+t} = \big(M_1, \phi_{M_1}(Y_1, t)\big), \quad t < S_2$$



Post-jump location $Z_2 = (M_2, Y_2)$ selected by Markov kernel $Q_{M_1}(\phi_{M_1}(Y_1, S_2), \cdot) \dots$



Embedded Markov chain

 $\{X_t\}$ strong Markov process [Davis 93]

Natural embedded Markov chain

- Z_0 starting point, $T_0 = 0$, $S_0 = 0$
- ► Z_n new mode and location after *n*-th jump T_n date of *n*-th jump, $S_n = T_n T_{n-1}$

Important property

 (Z_n, S_n) is a discrete-time Markov chain Only source of randomness of the PDMP

Numerical methods for PDMP

Fact

- numerous application domains
- numerous theoretical results
 [Davis 93], [Jacobsen 06], [Costa Dufour 13]
- processes easy to simulate if explicit flow
- very few dedicated numerical methods in the literature for optimal control

[Costa Davis 88, 89]

Aim of the talk

Propose a new numerical method

- adapted to the specificities of PDMPs
- with proofs and rate of convergence
- implementable in practice

To solve approximately the optimal stopping problem for PDMPs

Optimal stopping

Outline

Introduction

Optimal stopping Problem formulation Discretization scheme Quantization Convergence

Application to maintenance optimization

Benoîte de Saporta

Problem setting

- Reward function g
- Random time horizon: *N*-th jump time T_N
- \mathcal{M}_N set of all stopping times $\tau \leq T_N$

Optimal stopping problem

compute the value function

$$V(x) = \sup_{ au \in \mathcal{M}_N} \mathbb{E}_x[g(X_{ au})]$$

▶ find an (ε -)optimal stopping time τ^* that reaches $V(x)(-\varepsilon)$

Recursion for value functions

[Gugerli 1986]

Dynamic programming

$$\triangleright$$
 $v_N = g$

▶
$$v_n = L(v_{n+1}, g)$$
 pour $n \le N - 1$

$$v_0(x) = \sup_{\tau \in \mathcal{M}_N} \mathbb{E}_x[g(X_{\tau})] = V(x)$$

$$L(w,g)(x) = \sup_{u \le t^*(Z_n)} \left\{ \mathbb{E} \Big[w(Z_{n+1}) \mathbb{1}_{\{S_{n+1} < u\}} + g(\phi(Z_n,u)) \mathbb{1}_{\{S_{n+1} \ge u\}} \mid Z_n = x \Big] \right\}$$
$$\vee \mathbb{E} \Big[w(Z_{n+1}) \mid Z_n = x \Big]$$

Benoîte de Saporta

Recursion for random variables

Dynamic programming

►
$$v_N(Z_N) = g(Z_N)$$

► $v_n(Z_n) = L(v_{n+1}, g)(Z_n)$ pour $n \le N - 1$
 $v_0(Z_0) = \sup_{\tau \in \mathcal{M}_N} \mathbb{E}_x[g(X_\tau)]$

Benoîte de Saporta

Strategy

- discretize the chain (Z_n, S_n) using quantization
- ▶ replace (Z_n, S_n) by its approximation $(\widehat{Z}_n, \widehat{S}_n)$ in L→ computable approximation
- study convergence, derive error bounds
 - \blacktriangleright indicator functions in the dynamic programming equation \longrightarrow be careful with the time grids

Quantization

[Pagès 98], [Pagès, Pham, Printems 04]...

Quantization of a random variable $X \in L^{p}(\mathbb{R}^{d})$

Approximate X by \widehat{X} taking finitely many values such that $\|X - \widehat{X}\|_p$ is minimum

- Find a finite weighted grid Γ with $|\Gamma| = K$
- Set $\widehat{X} = p_{\Gamma}(X)$ closest neighbor projection

Asymptotic properties

If $E[|X|^{p+\eta}] < +\infty$ for some $\eta > 0$ then

$$\lim_{K \to \infty} K^{1/d} \min_{|\Gamma| \le K} \|X - \widehat{X}^{\Gamma}\|_{\rho} = C$$

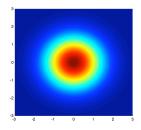
Benoîte de Saporta

Algorithms

There exist algorithms providing

- ►Γ
- ► law of \widehat{X}

► transition probabilities for quantization of Markov chains Example: $\mathcal{N}(0, l_2)$:

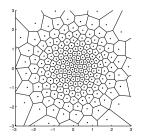


Algorithms

There exist algorithms providing

- ▶ Г.
- ► law of \widehat{X}

► transition probabilities for quantization of Markov chains Example: $\mathcal{N}(0, I_2)$:

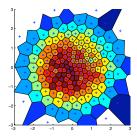


Algorithms

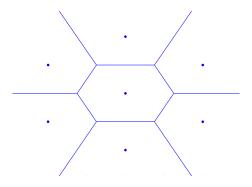
There exist algorithms providing

- ▶ Г.
- ► law of \widehat{X}

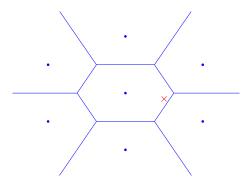
► transition probabilities for quantization of Markov chains Example: $\mathcal{N}(0, l_2)$:



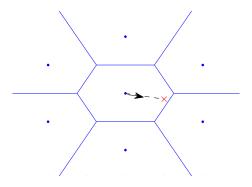
Model \longrightarrow simulator of trajectories \longrightarrow grids



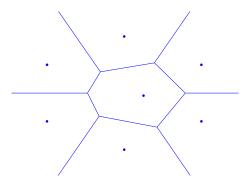
Model \longrightarrow simulator of trajectories \longrightarrow grids



Model \longrightarrow simulator of trajectories \longrightarrow grids



 $\mathsf{Model} \longrightarrow \mathsf{simulator} \text{ of trajectories} \longrightarrow \mathsf{grids}$



Assets and drawbacks of quantization

Assets

- a simulator of the target law is enough to build the grids
- automatic construction of grids
- convergence rate for $\mathbb{E}[|f(X) f(\widehat{X})|]$ if f lipschitz

Drawbacks

- computation time
- curse of dimension
- open questions of convergence of the algorithms

Discretization

Approximation of the value function

$$\blacktriangleright \widehat{v}_N(\widehat{Z}_N) = g(\widehat{Z}_N)$$

•
$$\widehat{v}_n(\widehat{Z}_n) = \widehat{L}_d^n(\widehat{v}_{n+1}, g)(\widehat{Z}_n)$$
 for $n \le N-1$

$$\begin{aligned} \widehat{L}_{d}^{n}(v_{n+1},g)(\widehat{Z}_{n}) \\ &= \max_{u \in G(\widehat{Z}_{n})} \left\{ \mathbb{E} \Big[v(\widehat{Z}_{n+1}) \mathbf{1}_{\{\widehat{S}_{n+1} < u\}} + g(\phi \widehat{Z}_{n},u) \big] \mathbf{1}_{\{\widehat{S}_{n+1} \geq u\}} \mid \widehat{Z}_{n} \Big] \right\} \\ &\quad \forall \mathbb{E} \big[v(\widehat{Z}_{n+1}) \mid \widehat{Z}_{n} \big] \end{aligned}$$

Convergence

[dS, Dufour, Gonzalez, Ann. Appl. Proba. 2010]

Theroem

Lipschitz regularity assumptions on ϕ , λ , Q, t^* and g

 $|v_0(x) - \widehat{v}_0(x)| \le C\sqrt{EQ}$

C explicit constant, *EQ* quantization error

 $\sqrt{\cdot}$ due to the indicator functions

$\epsilon\text{-optimal stopping time}$

Computable stopping rule $\hat{\tau}$

- explicit iterative construction
- no extra computation
- true stopping time for the original process (X_t)

Theorem

Same assumptions

$|v_0(x) - \mathbb{E}_x[g(X_{\hat{\tau}})]| \le C_1 EV + C_2 \sqrt{EQ}$

 C_1 , C_2 explicit constants, EV value function error, EQ quantization error

Provides another approximation of the value function via Monte Carlo simulations

Benoîte de Saporta

Outline

Introduction

Optimal stopping

Application to maintenance optimization Example from Thales optronique Conclusion and perspectives

Application to maintenance optimization

- $X_t = (m_t, y_t)$ state of a machine at time t
- T_n failure of some components

Maintenance optimization

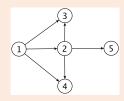
Find an optimal balance between

- changing the components too early/often
- do nothing until total breakdown

Industrial problem from Thales optronique

Compute an optimized maintenance date for an equipment subject to different kinds of failures

Air conditioning unit



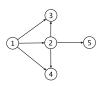
- State 1: stable state
- State 2: degraded ball bearing
- State 3: failed electrovalve
- State 4: electronic failure
- State 5: failed ball bearing

Example from Thales optronique

PDMP model

Transition rates

- degraded ball bearing and failed electorovalve: Weibull distributions => time dependent intensity
- electronic and ball bearing failures: exponential distribution

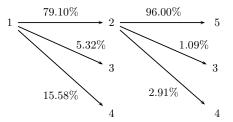


- State 1: stable state
- State 2: degraded ball bearing
- State 3: failed electrovalve
- State 4: electronic failure
- State 5: failed ball bearing

PDMP model

- discrete mode $m_t \in \{1, 2, 3, 4, 5\}$
- Euclidean state variable $y_t = t$ working time

Trajectories without maintenance



- 1: stable state
- 2: degraded ball bearing
- 3: failed electrovalve
- 4: electronic failure
- ▶ 5: failed ball bearing

Reward function

$$g(m,t) = \frac{t}{p(m)}$$

- \triangleright p(1) = 6 price of maintenance in stable mode
- > p(2) = 6 price of maintenance in degraded ball bearing mode
- > p(3) = 5 price of repair of electrovalve failure
- > p(4) = 3.5 price of repair of electronic failure
- \triangleright p(5) = 12 price of repair of ball bearing failure

Maintenance optimisation

- Better to start a maintenance in mode 2 than wait for total failure mode 5
- Failure modes 3 and 4 cost less than maintenance

Average performance without maintenance: 342.72

Benoîte de Saporta

IWAP 2014

Antalva - 17 June 2014

Trajectories with maintenance



Conclusion and perspectives

Assets and drawbacks of the numerical method

- practical method
- computation time on line/off line
- curse of dimension

Perspectives

- Optimal policy for impulse control Thales Optronique
- Numerical methods for MDP Airbus, DCNS

Thank you