B. de Saporta, F. Dufour, H. Zhang C. Elegbede

INRIA Bordeaux et Université de Bordeaux EADS Astrium

ANR-09-SEGI-004 Fautocoes

 λ - μ 17, La Rochelle, octobre 2010

Plan

- Un problème de maintenance
 - Formulation
 - Modélisation
- 2 Stratégie de résolution
 - Solution itérative
 - Quantification
- Résultats numériques
- 4 Conclusion et perspectives

Structure de missile balistique stratégique soumis à corrosion

Structure de missile balistique stratégique soumis à corrosion

Profil d'emploi

Stockage dans 3 ambiances différentes

- atelier
- 2 sous-marin nucléaire en mission
- sous-marin en cale sèche

Structure de missile balistique stratégique soumis à corrosion

Profil d'emploi

Stockage dans 3 ambiances différentes

- atelier
- 2 sous-marin nucléaire en mission
- sous-marin en cale sèche

Exigence du sûreté très forte

Maîtriser l'évolution de l'épaisseur

Structure de missile balistique stratégique soumis à corrosion

Profil d'emploi

Stockage dans 3 ambiances différentes

- atelier
- sous-marin nucléaire en mission
- sous-marin en cale sèche

Exigence du sûreté très forte

Maîtriser l'évolution de l'épaisseur

Politique de Maintenance

Une seule intervention avant la rupture \Rightarrow remise à neuf de la structure

Optimisation de la maintenance : équilibre entre

- une maintenance trop précoce
- une maintenance trop tardive

Optimisation des marges

En phase de conception

- consolider les marges de dimensionnement par rapport aux spécifications
- assurer à 95% qu'aucune maintenance ne sera nécessaire avant la date objective contractuelle

Dynamique du processus de dégradation

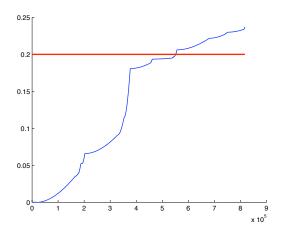
- Succession déterministe des ambiances : $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$
- Temps aléatoire passé dans l'ambiance i loi $Exp(\lambda_i)$
- Protection anti-corrosion initiale d'une durée aléatoire suivant une loi de Weibul
- Equation de la perte d'épaisseur dans l'ambiance i :

$$d_t = \rho_i \Big(t - \eta_i + \eta_i \exp(-t/\eta_i) \Big)$$

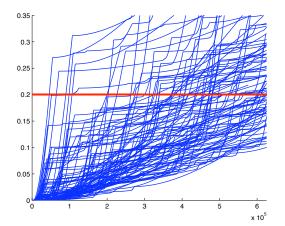
- \bullet ρ_i taux de corrosion stable aléatoire suivant une loi uniforme dépendant de l'ambiance i
- η_i durée de transition déterministe dans l'ambiance i.

On dispose de valeurs numériques pour tous les paramètres.

Structure inutilisable si $d_t > 0.2 mm$



Problème 000000 Modélisation



Modélisation

Processus Markovien déterministe par morceaux

$$X_t = (m_t, d_t, \gamma_t, \rho_t)$$

 $\mathsf{mode}\ m_t$: $\mathsf{ambiance}\ \mathsf{a}\ \mathsf{l'instant}\ t$

 γ_t : reste de la protection anti-corrosion à l'instant t

Chaîne de Markov sous-jacente

$$(S_n, Z_n)$$

 S_n : temps passé dans la n-ème d'ambiance

 Z_n : valeur du processus juste après le n-ème changement d'ambiance

Formulation mathématique du problème d'optimisation

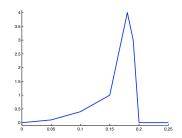
Problème d'arrêt optimal

Calculer la fonction valeur

$$V(x) = \sup_{\tau \le T_N} \mathbb{E}_x[g(X_\tau)]$$

• Trouver un temps d'arrêt optimal τ^* qui atteint V(x)

Fonction de performance g



Résolution itérative théorique

Programmation dynamique

- $v_N = g$
- $v_n = L(v_{n+1}, g)$ pour $n \le N 1$

$$v_0(x) = \sup_{\tau \le T_N} \mathbb{E}_x[g(X_\tau)] = V(x)$$

$$L(w,g)(x) = \sup_{u \leq t^*(Z_n)} \left\{ \mathbb{E} \left[w(Z_{n+1}) \mathbf{1}_{\{S_{n+1} < u\}} + g(\phi(Z_n, u)) \mathbf{1}_{\{S_{n+1} \geq u\}} \mid Z_n = x \right] \right\}$$

$$\vee \mathbb{E} \left[w(Z_{n+1}) \mid Z_n = x \right]$$

Résolution itérative théorique

Programmation dynamique

- \bullet $v_N = g$
- $v_n = L(v_{n+1}, g)$ pour $n \le N-1$

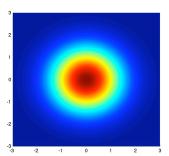
$$v_0(x) = \sup_{\tau \le T_N} \mathbb{E}_x[g(X_\tau)] = V(x)$$

Notre but : proposer une méthode numérique d'approximation de V

Quantification

Méthode de discrétisation de variables aléatoires sur des grilles adaptées à leur loi

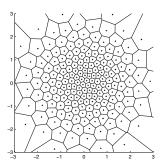
Exemple loi gaussienne $\mathcal{N}(0,\mathit{I}_2)$:



Quantification

Méthode de discrétisation de variables aléatoires sur des grilles adaptées à leur loi

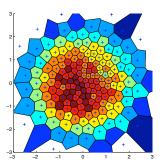
Exemple loi gaussienne $\mathcal{N}(0, I_2)$:



Quantification

Méthode de discrétisation de variables aléatoires sur des grilles adaptées à leur loi

Exemple loi gaussienne $\mathcal{N}(0, I_2)$:



Problème pratique

Echelles des différents paramètres

- ullet taux de corrosion stable $ho \sim 10^{-6}$
- ullet temps moyen de séjour dans l'ambiance 2 $\lambda_2^{-1}=131$ 400 h

Loi uniforme sur
$$[0,1] \times [0,5000]$$

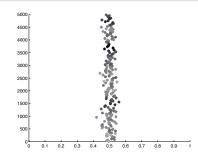
Problème pratique

Echelles des différents paramètres

- ullet taux de corrosion stable $ho \sim 10^{-6}$
- ullet temps moyen de séjour dans l'ambiance 2 $\lambda_2^{-1}=131$ 400 h

Loi uniforme sur $[0,1] \times [0,5000]$

algorithme standard



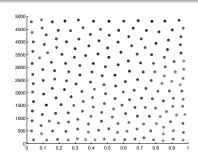
Problème pratique

Echelles des différents paramètres

- ullet taux de corrosion stable $ho \sim 10^{-6}$
- ullet temps moyen de séjour dans l'ambiance 2 $\lambda_2^{-1}=131$ 400 h

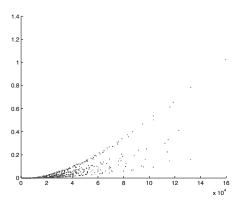
Loi uniforme sur $[0,1] \times [0,5000]$

algorithme pondéré



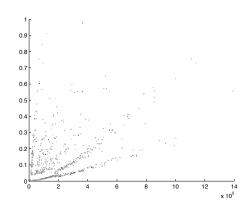
Grilles pour le processus de dégradation

Dans l'ambiance 2 après le 1er saut



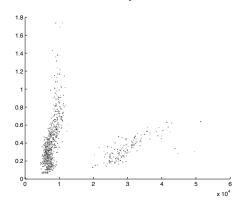
Grilles pour le processus de dégradation

Dans l'ambiance 3 après le 2ème saut

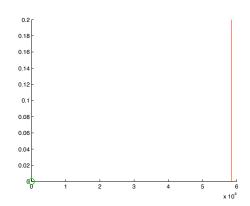


Grilles pour le processus de dégradation

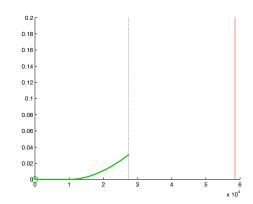
Dans l'ambiance 1 après le 15ème saut



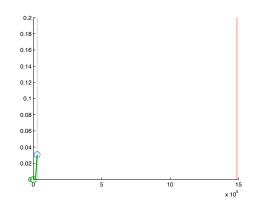
Règle d'arrêt itérative



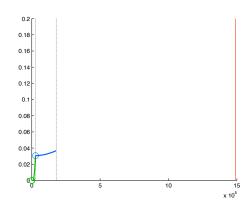
Résultats •00

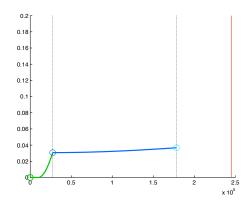


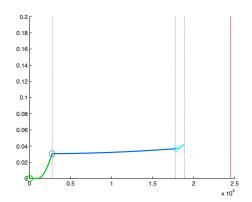
Règle d'arrêt itérative



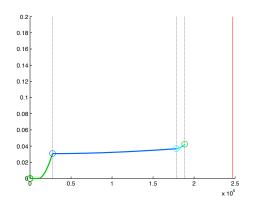
Règle d'arrêt itérative



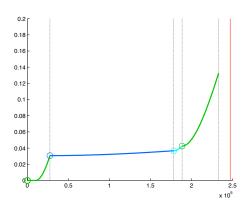




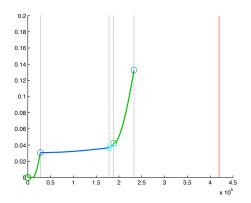
Règle d'arrêt itérative



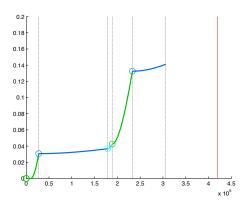
Règle d'arrêt itérative

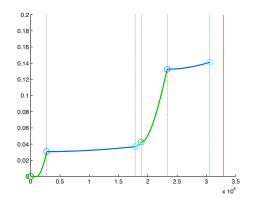


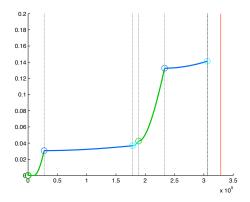
Résultats •00

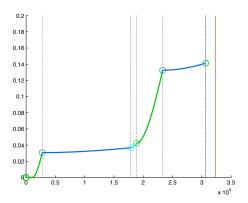


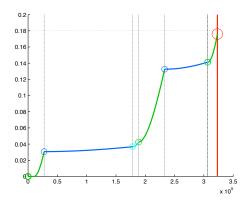
Règle d'arrêt itérative



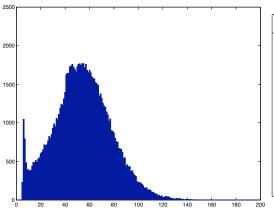








Optimisation des marges



Seuil	Probabilité	
5 ans	0.0002	
10 ans	0.0304	
15 ans	0.0524	
20 ans	0.0793	
40 ans	0.2647	
60 ans	0.6048	
80 ans	0.8670	
100 ans	0.9691	
150 ans	0.9997	

Calcul de la fonction valeur

Résultats numériques (vraie valeur : 4)

Nombre de points dans	Fonction valeur	Fonction valeur
les grilles de quantification	approchée	par Monte Carlo
10	2.48	0.94
50	2.70	1.84
100	2.94	2.10
200	3.09	2.63
500	3.39	3.15
1000	3.56	3.43
2000	3.70	3.60
5000	3.82	3.73
8000	3.86	3.75

Conclusion

Problème

- méthode numérique performante
- calculs lourds off line indépendants de la fonction coût
- calcul de la règle arrêt en temps réel
- règle d'arrêt adaptée à chaque trajectoire
- pas besoin de mesure en continu : seulement aux changements d'ambiance
- contexte mathématique rigoureux
 - algorithme général pour ce type de processus
 - preuve de convergence avec vitesse
- EADS-Astrium étude exploratoire en vue d'optimiser et de justifier les marges de conception

Etape suivante : maintenance avec réparations éventuellement partielles

⇒ contrôle impulsionnel

difficultés théoriques et pratiques importantes