Méthode numérique pour le contrôle des PDMP

Benoîte de Saporta Université de Montpellier

Plan de l'exposé

PDMP: notations et exemples

Définition

Exemple Astrium

Exemple Thales

Objectif

Arrêt optimal

Utilisation en statistique

Conclusion

Processus Markoviens déterministes par morceaux

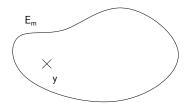
Davis (80's)

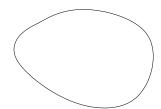
Classe générale de processus stochastiques

- markoviens
- hybrides : une composant discrète et une composante continue
- non-diffusion : mouvement déterministe entre des sauts aléatoires

Point de départ

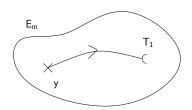
$$X_0 = Z_0 = (m, y)$$

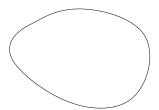




 X_t suit le flot déterministe jusqu'au premier temps de saut $T_1 = S_1$

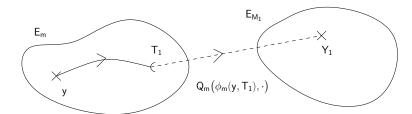
$$X_t = (m, \phi_m(y, t)), \quad t < T_1$$





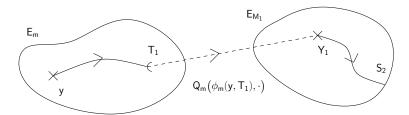
Position et mode après-saut $Z_1 = (M_1, Y_1)$ tirés suivant la loi

$$Q_m(\phi_m(y,T_1),\cdot)$$



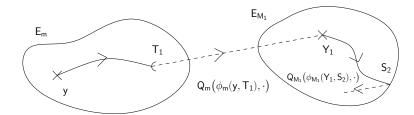
 X_t suit le flot déterministe jusqu'au prochain temps de saut T_2

$$X_{T_1+t} = (M_1, \phi_{M_1}(Y_1, t)), \quad t < S_2 = T_2 - T_1$$



Position et mode après-saut $Z_2 = (M_2, Y_2)$ tirés suivant la loi

$$Q_{M_1}(\phi_{M_1}(Y_1,S_2),\cdot)\ldots$$



Domaines d'application

Premières applications

gestion de stock, modèles d'atelier, files d'attente, assurance, ...

Biologie

- modélisation du potentiel électrique dans les neurones
 [Pakdaman, Thieullen, Wainrib 2010] [Riedler, Thieullen, Wainrib 2012]
 [Génadot, Thieullen 2012]
- modélisation de la division cellulaire [Doumic, Hoffmann, Krell, Robert 2012]
- ▶ modélisation individu-centré de chemostat [Fritsch 2014]

Fiabilité dynamique

Comportement de systèmes complexes pouvant tomber en panne

Plan de l'exposé

PDMP: notations et exemples

Définition

Exemple Astrium

Exemple Thales

Objectif

Arrêt optimal

Utilisation en statistique

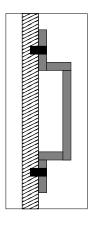
Conclusion

Exemple Astrium

Structure de missile balistique stratégique soumis à corrosion

Problème de corrosion

Structure de missile balistique stratégique soumis à corrosion



- support pour les équipements du missile
- structure de petite taille : un seul point de mesure
- ▶ longue durée de vie → surveillance de la perte d'épaisseur par corrosion

Profil d'emploi

Structure de missile balistique stratégique soumis à corrosion

Profil d'emploi

Stockage dans 3 environnements différentes avec durées aléatoires

- atelier
- 2. sous-marin nucléaire en mission
- sous-marin en cale sèche

Exigence du sûreté très forte

Maîtriser l'évolution de l'épaisseur

Dynamique du processus de dégradation

▶ Succession déterministe des environnements : $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$

Dynamique du processus de dégradation

- ► Succession déterministe des environnements : $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$
- ► Temps aléatoire passé dans l'environnement i loi $Exp(\lambda_i)$

Dynamique du processus de dégradation

- ▶ Succession déterministe des environnements : $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$
- ► Temps aléatoire passé dans l'environnement i loi $Exp(\lambda_i)$
- Protection anti-corrosion initiale d'une durée aléatoire suivant une loi de Weibul

- ▶ Succession déterministe des environnements : $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$
- ► Temps aléatoire passé dans l'environnement i loi $Exp(\lambda_i)$
- Protection anti-corrosion initiale d'une durée aléatoire suivant une loi de Weibul
- Equation de la perte d'épaisseur dans l'environnement i :

$$d_t = \rho_i \Big(t - \eta_i + \eta_i \exp(-t/\eta_i) \Big)$$

- ▶ Succession déterministe des environnements : $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$
- ▶ Temps aléatoire passé dans l'environnement i loi $Exp(\lambda_i)$
- Protection anti-corrosion initiale d'une durée aléatoire suivant une loi de Weibul
- Equation de la perte d'épaisseur dans l'environnement i :

$$d_t = \rho_i \Big(t - \eta_i + \eta_i \exp(-t/\eta_i) \Big)$$

 $\triangleright \rho_i$ taux de corrosion stable aléatoire suivant une loi uniforme dépendant de l'environnement i

- ▶ Succession déterministe des environnements : $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$
- ▶ Temps aléatoire passé dans l'environnement i loi $Exp(\lambda_i)$
- Protection anti-corrosion initiale d'une durée aléatoire suivant une loi de Weibul
- ► Equation de la perte d'épaisseur dans l'environnement *i* :

$$d_t = \rho_i \Big(t - \eta_i + \eta_i \exp(-t/\eta_i) \Big)$$

- $\triangleright \rho_i$ taux de corrosion stable aléatoire suivant une loi uniforme dépendant de l'environnement i
- $\triangleright \eta_i$ durée de transition déterministe dans l'environnement i.

- ► Succession déterministe des environnements : $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$
- ► Temps aléatoire passé dans l'environnement i loi $Exp(\lambda_i)$
- ▶ Protection anti-corrosion initiale d'une durée aléatoire suivant une loi de Weibul
- ► Equation de la perte d'épaisseur dans l'environnement *i* :

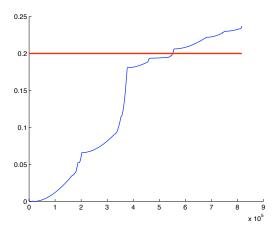
$$d_t = \rho_i \Big(t - \eta_i + \eta_i \exp(-t/\eta_i) \Big)$$

- ρ_i taux de corrosion stable aléatoire suivant une loi uniforme dépendant de l'environnement i
- $\triangleright \eta_i$ durée de transition déterministe dans l'environnement i.

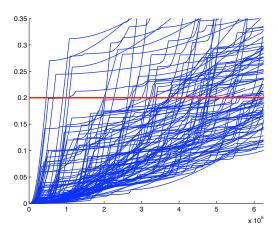
On dispose de valeurs numériques pour tous les paramètres.

Structure inutilisable si $d_t \geq 0.2mm$

Exemples de trajectoires simulées



Exemples de trajectoires simulées



Plan de l'exposé

PDMP: notations et exemples

Définition

Exemple Astrium

Exemple Thales

Objectif

Arrêt optima

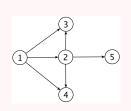
Utilisation en statistique

Conclusion

Problème industriel de Thales optronique

Calculer une date de maintenance pour un équipement soumis à différents types de pannes et équipé de capteurs permettant de connaître l'état du système

Goupe de climatisation

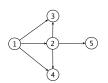


- ► Etat 1: état stable
- ► Etat 2: roulement à billes degradé
- ► Etat 3: panne de l'électrovanne
- ► Etat 4: panne électronique
- ► Etat 5: panne du roulement à billes

Modèle PDMP

Taux de transition

- ▶ dégradation du roulement à bille et panne de l'électrovanne: loi de Weibull ⇒ intensité dépendant du temps
- pannes électronique et du roulement à bille: loi exponentielle

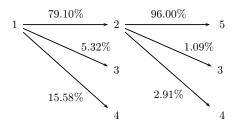


- ► Etat 1: état stable
- Etat 2: roulement à billes degradé
- Etat 3: panne de l'électrovanne
- Etat 4: panne électronique
- Etat 5: panne du roulement à billes

Modèle PDMP

- ▶ mode discret $m_t \in \{1, 2, 3, 4, 5\}$
- ightharpoonup variable euclidienne $y_t = t$ temps de fonctionnement du groupe de climatisation

Trajectoires sans maintenance



- ▶ 1: état stable
- 2: roulement à billes degradé
- 3: panne électrovanne
- 4: panne électronique
- 5: panne roulement à billes

Autres exemples de PDMP

Composante discrète

- environnement
- panne de composants
- nombre de cellules/canaux ouverts

Composante euclidienne

- équations de la physique, chimie, biologie
- dynamique des populations
- temps

Plan de l'exposé

PDMP: notations et exemples

Definition

Exemple Thales

Objectif

Arrêt optimal

Utilisation en statistique

Conclusion

Méthodes numériques pour les PDMP

- fort potentiel d'applications
- nombreux résultats théoriques [Davis 93], [Jacobsen 06]
- processus faciles à simuler
- méthodes d'approximation numérique dédiées basées sur des discrétisations intelligentes et les simulations [de Saporta, Dufour, Zhang, 2015]

Objectif des travaux présentés

Proposer des méthodes numériques

- adaptées aux spécificités des PDMP
- avec des preuves (et des vitesses) de convergence
- utilisables en pratique

Pour calculer

un temps d'arrêt optimal

- ▶ Utiliser la chaîne induite (Z_n, S_n) qui est déjà en temps discret
- Utiliser la propriété de Markov pour obtenir des expressions par récurrence
- ▶ Discrétiser intelligemment l'espace d'états de la chaîne induite pour obtenir une expression calculable

Plan de l'exposé

PDMP: notations et exemples

Arrêt optimal

Formulation du problème

Discrétisation de la chaîne induite par quantification

Simulation de PDMPs

Résultats théoriques

Résultats numériques, exemple Astrium

Résultats numériques, exemple Thales

Utilisation en statistique

Conclusion

Motivation: maintenance préventive

Machine pouvant tomber en panne

Problème de maintenance

Trouver un équilibre optimal entre

- changer les pièces trop tôt/souvent
- ne rien faire jusqu'à la panne totale

Motivation: maintenance préventive

Machine pouvant tomber en panne

Problème de maintenance

Trouver un équilibre optimal entre

- changer les pièces trop tôt/souvent
- ne rien faire jusqu'à la panne totale

Problème mathématique

- arrêt optimal
- contrôle impulsionnel

Problème d'arrêt optimal

- ► Fonction de performance g
- \blacktriangleright Horizon aléatoire : N-ème temps de saut T_N du PDMP
- \triangleright \mathcal{M}_N ensemble des temps d'arrêt $\tau < T_N$

Problème d'arrêt optimal

calculer la fonction valeur

$$V(x) = \sup_{\tau \in \mathcal{M}_N} \mathbb{E}_x[g(X_\tau)]$$

▶ trouver un temps d'arrêt $(\varepsilon$ -)optimal τ^* qui atteint $V(x)(-\varepsilon)$

Ecriture récursive des fonctions avec la chaîne induite

[Gugerli, 1986]

Equation de programmation dynamique rétrograde

$$\triangleright$$
 $v_N = g$

$$v_n = L(v_{n+1}, g)$$
 pour $n \le N - 1$

$$v_0(x) = \sup_{ au \in \mathcal{M}_N} \mathbb{E}_x[g(X_{ au})] = V(x)$$

$$L(w,g)(x) = \sup_{u \le t^*(Z_n)} \left\{ \mathbb{E} \left[w(Z_{n+1}) \mathbb{1}_{\{S_{n+1} < u\}} + g(\phi(Z_n, u)) \mathbb{1}_{\{S_{n+1} \ge u\}} \mid Z_n = x \right] \right\} \\
\vee \mathbb{E} \left[w(Z_{n+1}) \mid Z_n = x \right]$$

Construction itérative de variables aléatoires

Equation de programmation dynamique rétrograde

- \triangleright $v_N(Z_N) = g(Z_N)$
- $v_n(Z_n) = L(v_{n+1}, g)(Z_n)$ pour $n \le N 1$

$$v_0(Z_0) = \sup_{ au \in \mathcal{M}_N} \mathbb{E}_{\scriptscriptstyle X}[g(X_{\scriptscriptstyle T})]$$

$$\begin{aligned}
v_{n}(Z_{n}) &= L(v_{n+1}, g)(Z_{n}) \\
&= \sup_{u \leq t^{*}(Z_{n})} \left\{ \mathbb{E} \left[v_{n+1}(Z_{n+1}) \mathbb{1}_{\{S_{n+1} < u\}} + g(\phi(Z_{n}, u)) \mathbb{1}_{\{S_{n+1} \geq u\}} \mid Z_{n} \right] \right\} \\
&\vee \mathbb{E} \left[v_{n+1}(Z_{n+1}) \mid Z_{n} \right]
\end{aligned}$$

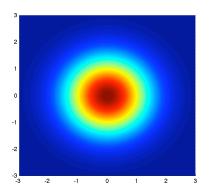
Plan de l'exposé

Arrêt optimal

Discrétisation de la chaîne induite par quantification

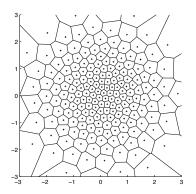
Méthode de quantification

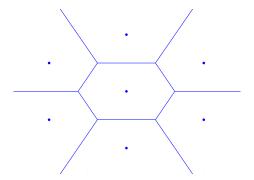
Approcher une loi continue par une loi discrète de façon optimisée Exemple: $\mathcal{N}(0, I_2)$

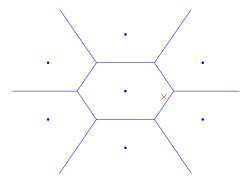


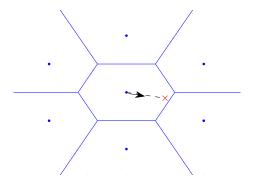
Méthode de quantification

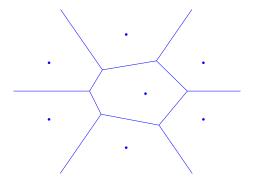
Approcher une loi continue par une loi discrète de façon optimisée Exemple: $\mathcal{N}(0, I_2)$











Avantages et inconvénients de la quantification

Avantages

- un simulateur de la loi cible suffit
- construction automatique des grilles
- ▶ vitesse de convergence pour $\mathbb{E}[|f(X) f(\widehat{X})|]$ si f Lipschitz

Inconvénients

- temps de calcul des grilles
- fléau de la dimension
- questions ouvertes sur la convergence des algorithmes

Plan de l'exposé

PDMP: notations et exemples

Arrêt optimal

Formulation du problème

Discrétisation de la chaîne induite par quantification

Simulation de PDMPs

Résultats théoriques

Résultats numériques, exemple Astrium

Résultats numériques, exemple Thales

Utilisation en statistique

Conclusion

Construction itérative [M. Davis]

- ▶ Initialisation $X_0 = Z_0 = x = (m, y), S_0 = T_0 = 0$
- ▶ Récurrence pour tout $n \ge 0$
 - ▶ tirer S_{n+1} selon l'intensité λ et le temps d'atteinte de la frontière t^*
 - poser $T_{n+1} = T_n + S_{n+1}$
 - ▶ pour $T_n \le t < T_{n+1}$, poser $X_t = \phi(Z_n, t T_n)$
 - tirer Z_{n+1} suivant $Q(\phi(Z_n, S_{n+1}), \cdot)$
 - → Méthode de simulation

Intensité variable

Théorème

Soit
$$X \sim Exp(\lambda)$$
, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X | T = t) = \frac{\lambda(\phi(x, t))}{\left(\lambda(\phi(x, t)) + \mu(\phi(x, t))\right)}$.

$$\mathbb{P}(T > t, I = X)$$

Intensité variable

Théorème

Soit
$$X \sim Exp(\lambda)$$
, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X | T = t) = \frac{\lambda(\phi(x, t))}{\left(\lambda(\phi(x, t)) + \mu(\phi(x, t))\right)}$.

$$\mathbb{P}(T > t, I = X)$$

$$= \int_{t}^{\infty} \int_{u}^{\infty} \mu(\phi(x, v)e^{-\int_{0}^{v} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} dv du)$$

Intensité variable

Théorème

Soit
$$X \sim Exp(\lambda)$$
, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X | T = t) = \frac{\lambda(\phi(x, t))}{\left(\lambda(\phi(x, t)) + \mu(\phi(x, t))\right)}$.

$$\mathbb{P}(T > t, I = X)$$

$$= \int_{t}^{\infty} \int_{u}^{\infty} \mu(\phi(x, v)e^{-\int_{0}^{v} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} dv du)$$

$$= \int_{t}^{\infty} e^{-\int_{0}^{u} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} du)$$

Intensité variable

Théorème

Soit
$$X \sim Exp(\lambda)$$
, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X | T = t) = \frac{\lambda(\phi(x, t))}{\left(\lambda(\phi(x, t)) + \mu(\phi(x, t))\right)}$.

$$\mathbb{P}(T > t, I = X) \\
= \int_{t}^{\infty} \int_{u}^{\infty} \mu(\phi(x, v)e^{-\int_{0}^{v} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} dv du) \\
= \int_{t}^{\infty} e^{-\int_{0}^{u} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} du) \\
= \int_{t}^{\infty} \frac{\lambda(\phi(x, u))}{\lambda(\phi(x, u)) + \mu(\phi(x, u))} (\lambda(\phi(x, u)) + \mu(\phi(x, u))) e^{-\int_{0}^{u} (\lambda(\phi(x, s)) + \mu(\phi(x, s))) ds} du$$

Intensité variable

Théorème

Soit
$$X \sim Exp(\lambda)$$
, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X | T = t) = \frac{\lambda(\phi(x, t))}{\left(\lambda(\phi(x, t)) + \mu(\phi(x, t))\right)}$.

$$\begin{split} &\mathbb{P}(T > t, I = X) \\ &= \int_{t}^{\infty} \int_{u}^{\infty} \mu(\phi(x, v)e^{-\int_{0}^{v} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} dv du) \\ &= \int_{t}^{\infty} e^{-\int_{0}^{u} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} du \\ &= \int_{t}^{\infty} \frac{\lambda(\phi(x, u))}{\lambda(\phi(x, u)) + \mu(\phi(x, u))} \left(\lambda(\phi(x, u)) + \mu(\phi(x, u))\right) e^{-\int_{0}^{u} \left(\lambda(\phi(x, s)) + \mu(\phi(x, s))\right)ds} du \\ &= \int_{t}^{\infty} \mathbb{P}(I = X | T = u) \mathbb{P}(T \in du) \end{split}$$

Simulation d'un minimum de lois exponentielles

Intensité variable

 $X_1, \ldots X_n$ v.a. indépendantes d'intensité respective $\lambda_1, \ldots, \lambda_n$, correspondant à la survenue d'événements de type 1 à n

 $T = \min\{X_1, \dots X_n\}$ et / l'indice de la variable qui réalise le minimum

Pour simuler T et I

Il est équivalent de

- Simuler X₁,...X_n et prendre leur minimum, choisir l'indice correspondant
- Simuler une seule loi d'intensité $\lambda_1 + \cdots + \lambda_n$ et une fois T = t tiré choisir i avec probabilité $\frac{\lambda_i}{\lambda_1 + \cdots + \lambda_n} (\phi(x, t))$

Inversion de la fonction de répartition

Solution à privilégier quand c'est possible

- ► Si on sait calculer explicitement la fonction de répartition le long du flot
- ► Et si on sait l'inverser explicitement

Inversion de la fonction de répartition

Exemple

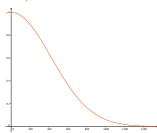
Loi de Weibull $\lambda \circ \phi(x,t) = \frac{\alpha}{\beta} \left(\frac{x+t}{\beta}\right)^{\alpha-1}$ pour x=0

Fonction de survie

on de survie Inverse

$$\mathbb{P}(T > t) = \exp\left(-\left(\frac{t}{\beta}\right)^{\alpha}\right)$$

$$f(U) = \beta \big(-\log(U) \big)^{1/\alpha}$$



Simulation d'un processus de Poisson

Rappel Conditionnellement à $N_t = n$, les n sauts du processus de Poisson sont répartis de façon uniforme sur l'intervalle [0, t].

Simulation d'un processus de Poisson

Rappel Conditionnellement à $N_t = n$, les n sauts du processus de Poisson sont répartis de façon uniforme sur l'intervalle [0, t].

Simulation d'un processus de Poisson jusqu'au temps T

- ▶ tirer $N \sim Poisson(\lambda T)$
- ► Si $N \neq 0$ faire
 - ▶ Pour $1 \le k \le N$ faire
 - tirer $U_k \sim Unif[0, T]$
 - ▶ ordonner les U_k , $U_{(0)} \leftarrow 0$, $U_{(N+1)} \leftarrow T$
 - Pour $1 \le k \le N+1$ faire
 - $N_t \leftarrow k \text{ sur } [U_{(k-1)}, U_{(k)}]$
- ▶ Sinon $N_t \leftarrow 0$ sur [0, T[
- ► renvoyer N_t

[Cocozza] Simuler une intensité variable

Simulation de la loi d'intensité variable $\lambda(x)$

- ▶ Initialisation choisir A > 0, $a \leftarrow 0$, $S \leftarrow \emptyset$
- ▶ Tant que $S = \emptyset$ faire
 - ▶ choisir $L \ge \sup_{a \le x \le a+A} \lambda(x)$
 - tirer $N \sim Poisson(\bar{L} \times A)$
 - ▶ Si $N \neq 0$ faire
 - Pour 1 < k < N faire
 - tirer $U \sim Unif[a, a + A]$
 - tirer *V* ∼ *Unif* [0, *L*]
 - Si U < V faire $S \leftarrow S \cup \{U\}$
 - a ← a + A
- renvoyer min S

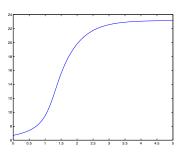
Exemple

Mise en oeuvre de l'algorithme A = 0.5

$$\rightarrow a = 0$$

•

•



Exemple

Mise en oeuvre de l'algorithme A = 0.5

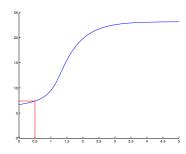
$$\rightarrow a = 0$$

L =
$$\max_{t \in [a,a+A]} \lambda \circ \phi(x,t)$$

calculé numériquement
(pas= 10^{-3}) $L = 7.39$

•

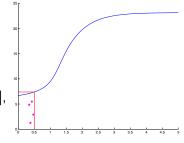
•



Exemple

Mise en oeuvre de l'algorithme A = 0.5

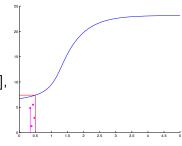
- $\rightarrow a = 0$
- ► $L = \max_{t \in [a, a+A]} \lambda \circ \phi(x, t)$ calculé numériquement (pas= 10^{-3}) L = 7.39
- ▶ tirer $N \sim Poisson(L \times A)$, N = 4, tirer $U \sim Unif[a, a + A]$, tirer $V \sim Unif[0, L]$



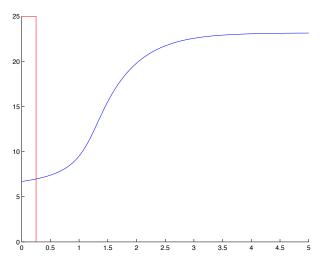
Exemple

Mise en oeuvre de l'algorithme A = 0.5

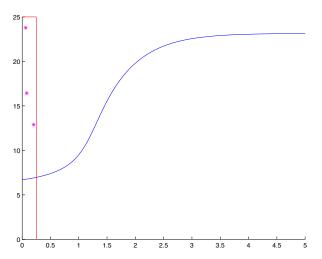
- $\rightarrow a = 0$
- L = $\max_{t \in [a,a+A]} \lambda \circ \phi(x,t)$ calculé numériquement (pas= 10^{-3}) L = 7.39
- tirer $N \sim Poisson(L \times A)$, N = 4, tirer $U \sim Unif[a, a + A]$, tirer $V \sim Unif[0, L]$
- sélectionner la plus petite abscisse des points sous la courbe 0.3394



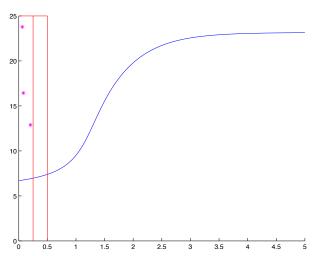
Exemple



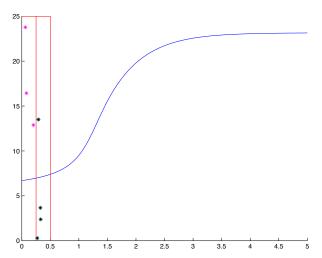
Exemple



Exemple



Exemple



Bilan

Avantages

- Uniquement besoin d'un maximum local de l'intensité
- Simulation exacte si le flot est connu
- ▶ Marche avec les intensités individuelles et l'intensité globale
- ▶ Simule directement la chaîne induite (Z_n, S_n)

Inconvénients

- Calculer un maximum local / global
- Nombre d'itérations inconnu, aléatoire
- Si flot numérique, nombre d'appels à la fonction flot inconnu, aléatoire,
- Simuler séparément les temps de sauts et la trajectoire le long du flot

Quand le flot n'est pas explicite

En pratique

on remplace par une approximation numérique

En théorie

- quasiment pas de résultat sur l'erreur qu'on commet : modifier le flot influe sur
 - ▶ *
 - ▶ l'intensité le long du flot
 - ▶ le point de départ pour le noyau de saut...

La régularité du flot ne suffit probablement pas à ce que tout se passe bien.

Plan de l'exposé

PDMP : notations et exemples

Arrêt optimal

Formulation du problème
Discrétisation de la chaîne induite par quantification
Simulation de PDMPs

Résultats théoriques

Résultats numériques, exemple Astrium Résultats numériques, exemple Thales

Utilisation en statistique

Conclusion

Discrétisation

Approximation de la fonction valeur

- $\triangleright \widehat{v}_N(\widehat{Z}_N) = g(\widehat{Z}_N)$
- $\widehat{v}_n(\widehat{Z}_n) = \widehat{L}_d(\widehat{v}_{n+1}, g)(\widehat{Z}_n)$ pour $n \leq N-1$

$$\widehat{L}_{d}(v_{n+1}, g)(Z_{n}) = \max_{u \in G(Z_{n})} \left\{ \mathbb{E}\left[v(\widehat{Z}_{n+1})\mathbb{1}_{\{\widehat{S}_{n+1} < u\}} + g(\phi(Z_{n}, u))\mathbb{1}_{\{\widehat{S}_{n+1} \ge u\}} \mid \widehat{Z}_{n}\right] \right\} \\
\vee \mathbb{E}\left[v(Z_{n+1}) \mid \widehat{Z}_{n}\right]$$

Vitesse de convergence

[dS, Dufour, Gonzalez 2009]

Théorème

Hypothèses de régularité Lipschitz sur ϕ , λ , Q, t^* et g

$$|v_0(x) - \widehat{v}_0(x)| \leq C\sqrt{EQ}$$

C constante explicite, EQ erreur de quantification

√ due aux indicatrices

Temps d'arrêt optimal

Règle d'arrêt calculable $\hat{\tau}$

- construction itérative explicite
- pas de calculs supplémentaires
- \triangleright vrai temps d'arrêt pour la filtration du processus (X_t)

Théorème

Mêmes hypothèses

$$|v_0(x) - \mathbb{E}_{\mathbf{x}}[g(X_{\hat{\tau}})]| \leq C_1 EV + C_2 \sqrt{EQ}$$

 C_1 , C_2 constantes explicites EV erreur de la fonction valeur

EQ erreur de quantification

Autre approximation de la fonction valeur par Monte Carlo

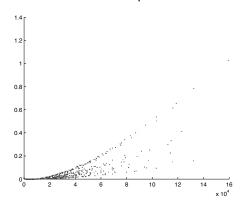
Plan de l'exposé

Arrêt optimal

Résultats numériques, exemple Astrium

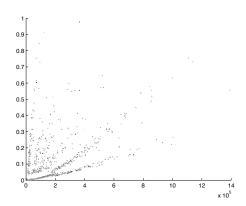
Grilles pour le processus de corrosion

Dans l'ambiance 2 après le 1er saut



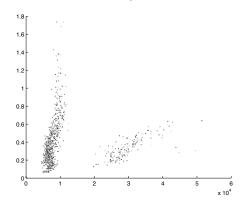
Grilles pour le processus de corrosion

Dans l'ambiance 3 après le 2ème saut

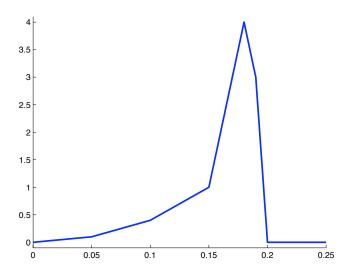


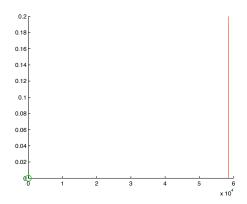
Grilles pour le processus de corrosion

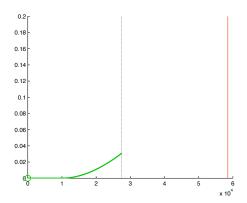
Dans l'ambiance 1 après le 15ème saut

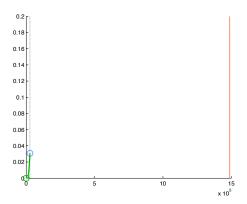


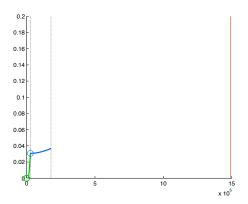
Fonction de performance

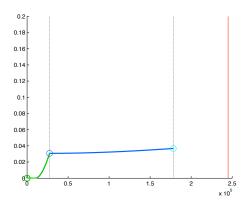


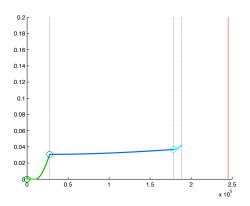


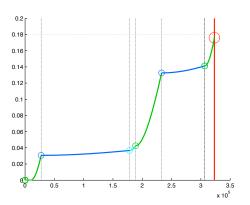












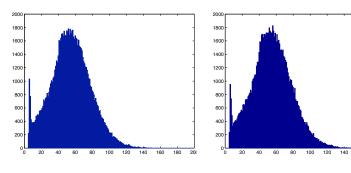
Calcul de la fonction valeur

Résultats numériques (vraie valeur : 4)

Nombre de points dans	Fonction valeur	Fonction valeur
les grilles de quantification	approchée	par Monte Carlo
10	2.48	0.94
50	2.70	1.84
100	2.94	2.10
200	3.09	2.63
500	3.39	3.15
1000	3.56	3.43
2000	3.70	3.60
5000	3.82	3.73
8000	3.86	3.75

Comparaison avec Monte Carlo

Temps d'arrêt optimal $\tau^* = \inf\{t : d_t \ge 0.02\}$



temps d'arrêt approché

temps d'arrêt théorique

Plan de l'exposé

PDMP: notations et exemples

Arrêt optimal

Formulation du problème

Discrétisation de la chaîne induite par quantification

Simulation de PDMPs

Résultats théoriques

Résultats numériques, exemple Astrium

Résultats numériques, exemple Thales

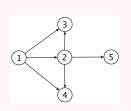
Utilisation en statistique

Conclusion

Problème industriel de Thales optronique

Calculer une date de maintenance pour un équipement soumis à différents types de pannes

Goupe de climatisation



- ► Etat 1: état stable
- ► Etat 2: roulement à billes degradé
- ► Etat 3: panne de l'électrovanne
- ► Etat 4: panne électronique
- Etat 5: panne du roulement à billes

Fonction de performance

$$g(m,t)=\frac{t}{p(m)}$$

- p(1) = 6 coût de maintenance dans l'état stable
- p(2) = 6 coût de maintenance pour roulement à bille dégradé
- p(3) = 5 coût de réparation de l'électrovanne
- p(4) = 3.5 coût de réparation d'une panne électronique
- p(5) = 12 coût de réparation du roulement à billes

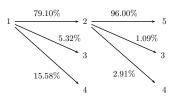
Optimisation de maintenance

- ▶ Il vaut mieux déclencher une maintenance en mode dégradé 2 qu'attendre la panne totale 5
- Les coûts de réparation en mode 3 et 4 sont moins chers que le coût de maintenance

Performance moyenne sans maintenance: 342.72

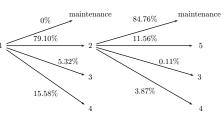
Performance avec maintenance optimisée

Sansmaintenance



Performance moyenne 342.72

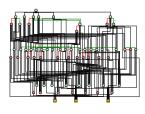
Avec maintenance



Performance movenne 592.47

Autres résultats

Optimisation de maintenance du réservoir chauffé [dS, Zhang 2013]



- Arrêt optimal partiellement observé [Brandejsky, dS, Dufour 2013]
- Arrêt optimal sur les PDMP avec branchement thèse M. Joubaud, en cours
- Contrôle impulsionnel
 - approximation de la fonction valeur [dS, Dufour 2012]
 - stratégie ϵ -optimale [dS, Dufour, Geeraert 2017]
 - approximation d'une stratégie ϵ -optimale en cours

Plan de l'exposé

PDMP: notations et exemples

Arrêt optimal

Utilisation en statistique Loi d'un temps de sortie Résultats

Conclusion

Approximation de la loi d'un temps de sortie

$$U \subset E$$
, $X_0 \in U$. Temps de sortie de U :

$$\tau = \inf\{s \ge 0 : X_s \notin U\}$$

Objectif

Proposer une méthode numérique pour approcher la loi de au

$$s \longmapsto \mathbb{P}(\tau > s)$$

Formulation récursive du problème

Constat
$$\{\tau \leq T_{k+1}\} = \{\tau \leq T_k\} \cup \{T_k < \tau \leq T_{k+1}\}$$

Conséquence : calcul récursif de $\mathbb{P}(\tau > s | \tau \leq T_n)$

$$\mathbb{P}(\tau > s | \tau \leq T_{k+1})$$

$$= \frac{\mathbb{P}(\tau > s | \tau \leq T_k) \mathbb{P}(\tau \leq T_k) + \mathbb{P}(\{\tau > s\} \cap \{T_k < \tau \leq T_{k+1}\})}{\mathbb{P}(\tau \leq T_{k+1})}$$

$$\mathbb{P}(\tau > s | \tau \leq T_0) = 0$$

Deux quantités à calculer

- $ightharpoonup \mathbb{P}(\tau \leq T_k)$
- ▶ $\mathbb{P}(\{\tau > s\} \cap \{T_k < \tau \leq T_{k+1}\})$

Stratégie

Deux quantités à calculer

- $ightharpoonup \mathbb{P}(\tau \leq T_k)$
- ▶ $\mathbb{P}(\{\tau > s\} \cap \{T_k < \tau \le T_{k+1}\})$

Stratégie

• faire apparaître la chaîne de Markov (Z_n, T_n)

Deux quantités à calculer

- $\mathbb{P}(\tau \leq T_k) = \mathbb{E}[\mathbb{1}_{U^c}(Z_k)]$
- $\begin{array}{l} \blacktriangleright \ \mathbb{P}(\{\tau > s\} \cap \{T_k < \tau \leq T_{k+1}\}) \\ = \mathbb{E}[\mathbb{1}_{\{T_k + u^*(Z_k) \wedge T_{k+1} > s\}} \mathbb{1}_{U}(Z_k) \mathbb{1}_{U^c}(Z_{k+1})] \end{array}$

Stratégie

▶ faire apparaître la chaîne de Markov (Z_n, T_n)

Deux quantités à calculer

- $\mathbb{P}(\tau \leq T_k) = \mathbb{E}[\mathbb{1}_{U^c}(Z_k)]$
- $\begin{array}{l} \blacktriangleright \ \mathbb{P}(\{\tau > s\} \cap \{T_k < \tau \leq T_{k+1}\}) \\ = \mathbb{E}[\mathbb{1}_{\{T_k + u^*(Z_k) \wedge T_{k+1} > s\}} \mathbb{1}_{U}(Z_k) \mathbb{1}_{U^c}(Z_{k+1})] \end{array}$

Stratégie

- faire apparaître la chaîne de Markov (Z_n, T_n)
- ▶ Discrétiser la chaîne de Markov (Z_n, T_n)

Plan de l'exposé

PDMP: notations et exemples

Arrêt optimal

Utilisation en statistique

Loi d'un temps de sortie

Résultats

Conclusion

Mise en œuvre de notre stratégie

- ▶ Remplacer (Z_n, T_n) par son approximation quantifiée $(\widehat{Z}_n, \widehat{T}_n)$
- Prouver la convergence de la méthode sous des hypothèses Lipschitz [Brandejsky, dS, Dufour 2012]

Points difficiles

- ▶ si $Z_k \in U$, on n'a pas forcément $\widehat{Z}_k \in U \Longrightarrow$ hypothèse de convexité sur U
- besoin de contrôler la probabilité de sauter près de la frontière de U
- dénominateur dans la relation de récurrence

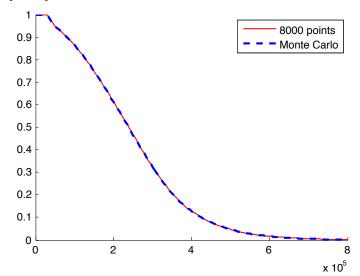
Résultats numériques : modèle de corrosion

U = [0, 0.2]mm, $\tau = durée de service de la structure$

Grilles de quantification	max de l'erreur
20 points	0.1041
50 points	0.0664
100 points	0.0447
200 points	0.0335
500 points	0.0112
1000 points	0.0091
2000 points	0.0058
4000 points	0.0039
6000 points	0.0028
8000 points	0.0024
10000 points	0.0023

Résultats numériques : modèle de corrosion

U = [0, 0.2]mm, $\tau = durée de service de la structure$



Conclusion et perspectives

Avantages et inconvénients des méthodes numériques

- méthode très générale, utilisable en pratique, avec des démonstrations théoriques de convergence sous des hypothèses de régularité Lipschitz
- temps de calcul on line/off line
- dimension

Perspectives

- Contrôler les sauts pour estimer l'intensité en cours, avec Romain Azaïs et Nathalie Krell
- ▶ Détection de rupture pour PDMP sous observation partielle et bruitée en cours, avec Alice Cleynen