Processus markoviens déterministes par morceaux

Benoîte de Saporta

Université de Montpellier, IMAG, Inria CQFD

Plan du cours : les PDMP

Qu'est-ce que c'est ?
Présentation informelle
Construction

Qu'est-ce que ça modélise ?

Comment les simuler?

Pourquoi les simuler?

Références

Processus markoviens déterministes par morceaux [M. Davis]

Davis (80's)

Classe générale de processus stochastiques

virtually all continuous-time stochastic models arising in applications except diffusions

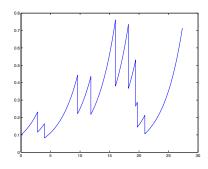
- processus : évolution dynamique au cours du temps
- markoviens : absence de mémoire le futur ne dépend du passé qu'à travers le présent
- déterministe : comportement déterministe
- par morceaux : entre des sauts aléatoires

Division cellulaire

[N. Krell]

Taille d'une bactérie au temps t

- Croissance exponentielle
- Division en 2 en fonction de la taille

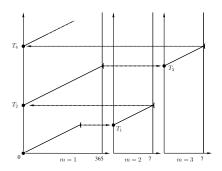


Modèle d'atelier

[M. Davis]

Fonctionnement d'un atelier avec une machine

- peut fonctionner normalement
- peut tomber en panne et être envoyée en réparation
- peut fonctionner et être envoyée en maintenance



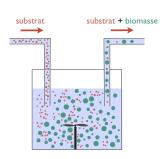
Chemostat

[C. Fritsch]

Masse d'une population de bactéries au temps t

Dynamique

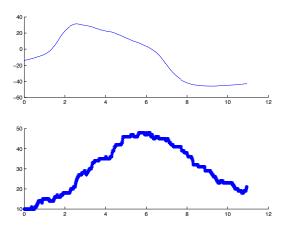
- croissance exponentielle des bactéries (en fonction du substrat)
- division des bactéries
- soutirage

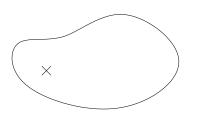


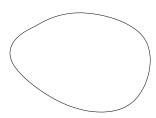
Potentiel électrique le long d'un neurone

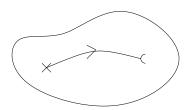
[M. Thieullen]

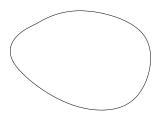
Potentiel électrique et nombre de canaux ioniques K^+ ouverts (100 canaux)

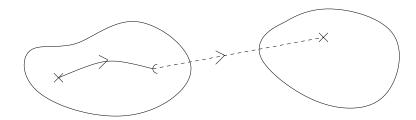


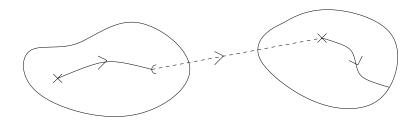


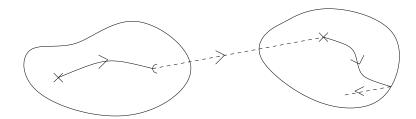












Plan du cours : les PDMP

Qu'est-ce que c'est ?

Construction

Espace d'états

Processus hybride $X_t = (m_t, y_t)$

- ▶ mode discret $m_t \in M = \{1, 2, ..., p\}$
- ightharpoonup variables d'état euclidiennes $y_t \in \mathbb{R}^d$

Espace d'états

 E_m ouvert de \mathbb{R}^d , $m \in M$

$$E = \cup (\{m\} \times E_m)$$

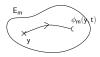
Dynamique déterministe

Flot

Dans le mode m, ϕ_m : $\mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$

- $\phi_m(y, t)$ solution au temps t d'un système d'équations différentielles partant de y au temps 0
- Propriété de semi-groupe

$$\phi_m(y,s+t) = \phi_m(\phi_m(y,s),t)$$



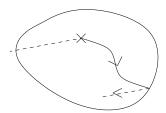
Mécanisme de saut : quand sauter ?

Sauts déterministes

Sauts déterministes

temps déterministe d'atteinte de la frontière $t^*(m, y)$

$$t^*(m,y) = \inf\{t > 0 : \phi_m(y,t) \in \partial E_m\}$$



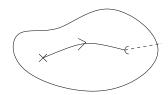
Mécanisme de saut : quand sauter ?

Sauts aléatoires

Sauts aléatoires

Intensité λ_m dans le mode $m: \overline{E}_m \to \mathbb{R}_+$

$$\mathbb{P}_{(m,y)}(T>t)=e^{-\int_0^t \lambda_m(\phi_m(y,s))ds}$$



- ▶ loi de type loi exponentielle
- ▶ l'intensité dépend de la position du processus

T suit la loi exponentielle de paramètre λ si $\mathbb{P}(T>t)=e^{-\lambda t}$

Propriété d'absence de mémoire

$$\mathbb{P}(T > t + u | T > u) = \mathbb{P}(T > t)$$

$$\mathbb{P}(T > t + u | T > u)$$

T suit la loi exponentielle de paramètre λ si $\mathbb{P}(T>t)=e^{-\lambda t}$

Propriété d'absence de mémoire

$$\mathbb{P}(T > t + u | T > u) = \mathbb{P}(T > t)$$

$$\mathbb{P}(T > t + u | T > u) = \frac{\mathbb{P}(T > t + u, T > u)}{\mathbb{P}(T > u)}$$

 ${\mathcal T}$ suit la loi exponentielle de paramètre λ si ${\mathbb P}({\mathcal T}>t)=e^{-\lambda t}$

Propriété d'absence de mémoire

$$\mathbb{P}(T > t + u | T > u) = \mathbb{P}(T > t)$$

$$\mathbb{P}(T > t + u | T > u) = \frac{\mathbb{P}(T > t + u, T > u)}{\mathbb{P}(T > u)}$$
$$= \frac{\mathbb{P}(T > t + u)}{\mathbb{P}(T > u)}$$

T suit la loi exponentielle de paramètre λ si $\mathbb{P}(T>t)=e^{-\lambda t}$

Propriété d'absence de mémoire

$$\mathbb{P}(T > t + u | T > u) = \mathbb{P}(T > t)$$

$$\mathbb{P}(T > t + u | T > u) = \frac{\mathbb{P}(T > t + u, T > u)}{\mathbb{P}(T > u)}$$
$$= \frac{\mathbb{P}(T > t + u)}{\mathbb{P}(T > u)}$$
$$= \frac{e^{-\lambda(t+u)}}{e^{-\lambda u}}$$

T suit la loi exponentielle de paramètre λ si $\mathbb{P}(T>t)=e^{-\lambda t}$

Propriété d'absence de mémoire

$$\mathbb{P}(T > t + u | T > u) = \mathbb{P}(T > t)$$

$$\mathbb{P}(T > t + u | T > u) = \frac{\mathbb{P}(T > t + u, T > u)}{\mathbb{P}(T > u)}$$

$$= \frac{\mathbb{P}(T > t + u)}{\mathbb{P}(T > u)}$$

$$= \frac{e^{-\lambda(t+u)}}{e^{-\lambda u}}$$

$$= e^{-\lambda t} = \mathbb{P}(T > t)$$

Propriété d'absence de mémoire

$$\mathbb{P}_{(m,y)}(T > t + u | T > u) = \mathbb{P}_{(m,\phi_m(y,u))}(T > t)$$

$$\mathbb{P}_{y}(T > t + u | T > u) = \frac{\mathbb{P}_{y}(T > t + u, T > u)}{\mathbb{P}_{y}(T > u)}$$
$$= \frac{\mathbb{P}_{y}(T > t + u)}{\mathbb{P}_{y}(T > u)}$$

Propriété d'absence de mémoire

$$\mathbb{P}_{(m,y)}(T>t+u|T>u)=\mathbb{P}_{(m,\phi_m(y,u))}(T>t)$$

$$\mathbb{P}_{y}(T > t + u | T > u) = \frac{\mathbb{P}_{y}(T > t + u, T > u)}{\mathbb{P}_{y}(T > u)}$$

$$= \frac{\mathbb{P}_{y}(T > t + u)}{\mathbb{P}_{y}(T > u)}$$

$$= \frac{e^{-\int_{0}^{t+u} \lambda_{m}(\phi_{m}(y,s))ds}}{e^{-\int_{0}^{u} \lambda_{m}(\phi_{m}(y,s))ds}}$$

Loi exponentielle d'intensité non constante

Propriété d'absence de mémoire

$$\mathbb{P}_{(m,y)}(T>t+u|T>u)=\mathbb{P}_{(m,\phi_m(y,u))}(T>t)$$

$$\mathbb{P}_{y}(T > t + u | T > u) = \frac{\mathbb{P}_{y}(T > t + u, T > u)}{\mathbb{P}_{y}(T > u)}$$

$$= \frac{\mathbb{P}_{y}(T > t + u)}{\mathbb{P}_{y}(T > u)}$$

$$= \frac{e^{-\int_{0}^{t+u} \lambda_{m}(\phi_{m}(y,s))ds}}{e^{-\int_{0}^{u} \lambda_{m}(\phi_{m}(y,s))ds}}$$

$$= e^{-\int_{u}^{t+u} \lambda_{m}(\phi_{m}(y,s))ds}$$

Loi exponentielle d'intensité non constante

Propriété d'absence de mémoire

$$\mathbb{P}_{(m,y)}(T>t+u|T>u)=\mathbb{P}_{(m,\phi_m(y,u))}(T>t)$$

$$\mathbb{P}_{y}(T > t + u | T > u) = \frac{\mathbb{P}_{y}(T > t + u, T > u)}{\mathbb{P}_{y}(T > u)}$$

$$= \frac{\mathbb{P}_{y}(T > t + u)}{\mathbb{P}_{y}(T > u)}$$

$$= \frac{e^{-\int_{0}^{t+u} \lambda_{m}(\phi_{m}(y,s))ds}}{e^{-\int_{0}^{u} \lambda_{m}(\phi_{m}(y,s))ds}}$$

$$= e^{-\int_{u}^{t+u} \lambda_{m}(\phi_{m}(y,s))ds}$$

$$= e^{-\int_{0}^{t} \lambda_{m}(\phi_{m}(y,s+u))ds}$$

$$= e^{-\int_{0}^{t} \lambda_{m}(\phi_{m}(y,s+u))ds}$$

Propriété d'absence de mémoire

$$\mathbb{P}_{(m,y)}(T>t+u|T>u)=\mathbb{P}_{(m,\phi_m(y,u))}(T>t)$$

$$\mathbb{P}_{y}(T > t + u | T > u) = \frac{\mathbb{P}_{y}(T > t + u, T > u)}{\mathbb{P}_{y}(T > u)}$$

$$= \frac{\mathbb{P}_{y}(T > t + u)}{\mathbb{P}_{y}(T > u)}$$

$$= \frac{e^{-\int_{0}^{t+u} \lambda_{m}(\phi_{m}(y,s))ds}}{e^{-\int_{0}^{u} \lambda_{m}(\phi_{m}(y,s))ds}}$$

$$= e^{-\int_{u}^{t+u} \lambda_{m}(\phi_{m}(y,s))ds}$$

$$= e^{-\int_{0}^{t} \lambda_{m}(\phi_{m}(y,s+u))ds}$$

$$= e^{-\int_{0}^{t} \lambda_{m}(\phi_{m}(\phi_{m}(y,u),s))ds} = \mathbb{P}_{\phi_{m}(y,u)}(T > t)$$

Mécanisme de saut : quand sauter ?

Loi du premier temps de saut T_1 Minimum entre

- le temps déterministe d'atteinte de la frontière
- ▶ le temps de saut aléatoire

$$\mathbb{P}_{(m,y)}(T_1 > t) = \begin{cases} e^{-\int_0^t \lambda_m(\phi_m(y,s))ds} & \text{si} \quad t < t^*(m,y) \\ 0 & \text{si} \quad t \ge t^*(m,y) \end{cases}$$

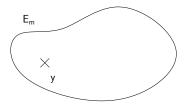
Mécanisme de saut : où sauter

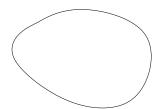
Nouveau mode et/ou position (M_1, Y_1) sélectionnés au temps T_1 par un noyau markovien Q_m

$$\mathbb{P}_{(m,y)}((M_1,Y_1)\in A)=\int_A Q_m(\phi_m(y,T_1),dx)$$

Point de départ

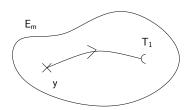
$$X_0 = Z_0 = (m, y) = x$$

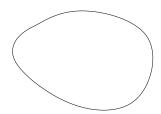




 X_t suit le flot déterministe jusqu'au premier temps de saut $T_1 = S_1$

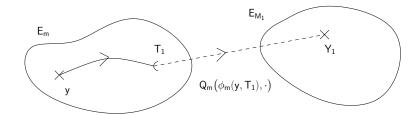
$$X_t = (m, \phi_m(y, t)) = \phi(x, t), \quad t < T_1$$





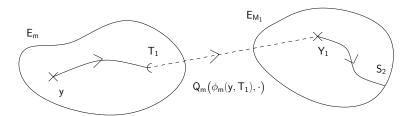
Position et mode après-saut $Z_1 = (M_1, Y_1)$ tirés suivant la loi

$$Q_m(\phi_m(y,T_1),\cdot)=Q(\phi(x,T_1),\cdot)$$



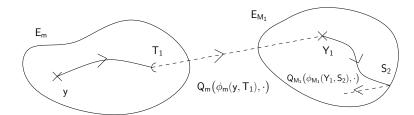
 X_t suit le flot déterministe jusqu'au prochain temps de saut T_2

$$X_{T_1+t} = (M_1, \phi_{M_1}(Y_1, t)) = \phi(Z_1, t - T_1), \quad t < S_2 = T_2 - T_1$$



Position et mode après-saut $Z_2 = (M_2, Y_2)$ tirés suivant la loi

$$Q_{M_1}(\phi_{M_1}(Y_1,S_2),\cdot)=Q(\phi(Z_1,S_2),\cdot)...$$



- ▶ Initialisation $X_0 = Z_0 = x = (m, y), S_0 = T_0 = 0$
- ▶ Récurrence pour tout $n \ge 0$
 - tirer S_{n+1} selon l'intensité λ et le temps d'atteinte de la frontière
 - poser $T_{n+1} = T_n + S_{n+1}$
 - ▶ pour $T_n \le t < T_{n+1}$, poser $X_t = \phi(Z_n, t T_n)$
 - tirer Z_{n+1} suivant $Q(\phi(Z_n, S_{n+1}), \cdot)$
 - \Rightarrow Processus de Markov fort (X_t)

Plan du cours : les PDMP

Qu'est-ce que c'est ?

Qu'est-ce que ça modélise ?
Trafic internet
Fiabilité dynamique
Mécanique
Biologie

Comment les simuler

Neurosciences

Pourquoi les simuler ?

Références

Domaines d'application

Premières applications

- gestion de stock
- ▶ files d'attente
- assurance
- modèles d'atelier

Applications plus récentes

- mécanique
- fiabilité dynamique
- biologie
- neurosciences

Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Trafic internet

Fiabilité dynamique

Mécanique

Biologie

Neurosciences

Comment les simuler ?

Pourquoi les simuler ?

Références

Transmission Control Protocol (TCP)

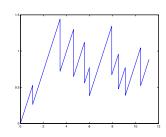
[F. Malrieu]

Modélisation simplifiée du traffic internet : X_t nombre de paquets transmis au temps t

- augmentation à vitesse constante 1
- événement aléatoires de congestion : nombre de paquets divisé par 2

Modélisation PDMP

- ▶ Espace d'états $[0, +\infty[$
- $\vdash \mathsf{Flot} \ \phi(\mathsf{x},\mathsf{t}) = \mathsf{x} + \mathsf{t}$
- ▶ Intensité $\lambda(x) = x$
- Noyau de saut Q(x, x/2) = 1



Plan du cours : les PDMP

Qu'est-ce que c'est ?

Qu'est-ce que ça modélise ?

Trafic internet

Fiabilité dynamique

Mécanique

Biologie

Neurosciences

Comment les simuler ?

Pourquoi les simuler ?

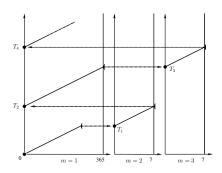
Références

Modèle d'atelier

[M. Davis] Description

Fonctionnement d'un atelier avec une machine

- peut fonctionner normalement
- peut tomber en panne et être envoyée en réparation
- peut fonctionner et être envoyée en maintenance

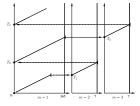


Modèle d'atelier

[M. Davis] Modélisation PDMP

$$X_t = (m_t, Y_t)$$

- $ightharpoonup m_t$: mode de fonctionnement
- Y_t: temps passé dans ce mode

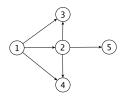


Modèle PDMP

- ► Espace d'états $M = \{1, 2, 3\}$, $E_1 = [0, 365[$, $E_2 = E_3 = [0, 7[$
- Flot $\phi_m(y,t) = y + t$
- Intensité Weibull($\alpha = 2$, $\beta = 600$) $\lambda_1(y) = \frac{\alpha}{\beta} \left(\frac{y}{\beta}\right)^{\alpha 1}$, $\lambda_2 = \lambda_3 = 0$
- Novau de saut $1 \rightarrow 2$ si réparation, $1 \rightarrow 3$ si maintenance

Groupe de climatisation

[Thales Optronique] Description



- ► Etat 1: état stable
- ► Etat 2: roulement à billes degradé
- ► Etat 3: panne de l'électrovanne
- ► Etat 4: panne électronique
- ▶ Etat 5: panne du roulement à billes

Groupe de climatisation

[Thales Optronique] Modélisation PDMP

$$X_t = (m_t, Y_t)$$

- ► *m*_t : état de l'équipement
- Y_t : temps passé depuis le début

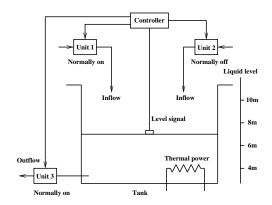
Modèle PDMP

- ► Espace d'états $M = \{1, 2, 3, 4, 5\}$, $E_1 = E_2 = [0, 10^5]$, $E_3 = E_4 = E_5 = \Delta$
- ► Flot $\phi_m(y, t) = y + t$, m = 1, 2
- ► Intensité et noyau de saut
 - ▶ $1 \rightarrow 2$, $1 \rightarrow 3$, $2 \rightarrow 3$ Weibull
 - ▶ $1 \rightarrow 4$, $2 \rightarrow 4$, 5 Exponentielle

Réservoir chauffé

$$X_t = (m_t, h_t, \theta_t)$$

- m_t : état des unités
- (h_t, θ_t) : hauteur et température du liquide



Qu'est-ce que c'est ?

Qu'est-ce que ça modélise ?

Trafic internet Fiabilité dynamique

Mécanique

Biologie

Neurosciences

Comment les simuler ?

Pourquoi les simuler ?

Ráfárances

[Astrium] Description

Structure de missile balistique stratégique soumis à corrosion

- support pour les équipements du missile
- structure de petite taille : un seul point de mesure
- ▶ longue durée de vie → surveillance de la perte d'épaisseur par corrosion

Profil d'emploi : Stockage dans 3 environnements différentes avec durées aléatoires

- 1. atelier
- 2. sous-marin nucléaire en mission
- 3. sous-marin en cale sèche

[Astrium] Dynamique

- ▶ Succession déterministe des environnements : $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$
- ▶ Temps aléatoire passé dans l'environnement i loi $Exp(\lambda_i)$
- Protection anti-corrosion initiale d'une durée aléatoire suivant une loi de Weibull
- ► Equation de la perte d'épaisseur dans l'environnement *i* :

$$d_t = \rho_i \Big(t - \eta_i + \eta_i \exp(-t/\eta_i) \Big)$$

- ρ_i taux de corrosion stable aléatoire suivant une loi uniforme dépendant de l'environnement i
- $\triangleright \eta_i$ durée de transition déterministe dans l'environnement i.

[Astrium] Modélisation PDMP

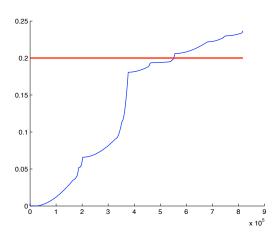
$$X_t = (m_t, Y_t)$$

- ▶ *m_t* : environnement
- Y_t: (γ_t, a_t) protection restante et temps ou (d_t, ρ_t, a_t) épaisseur perdue, taux de corrosion et temps

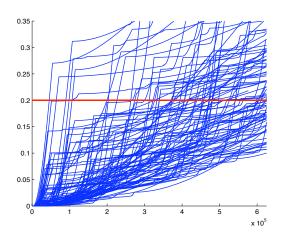
Modèle PDMP

- ▶ Espace d'états Modes $M = \{1, 2, 3\} \times \{0, 1\}$, $E_{(m,0)} = (0, +\infty) \times \mathbb{R}^+$, $E_{(m,1)} = \mathbb{R}^+ \times [\rho_m^-, \rho_m^+] \times \mathbb{R}^+$
- Flot $\phi_{(m,0)}(\gamma, a, s) = (\gamma s, a + s)$ $\phi_{(m,1)}(d, \rho, a, s) = (d + d_i(\rho, a + s) - d_i(\rho, a), \rho, a + s)$
- ► Intensité constante dans chaque mode
- Noyau de saut succession déterministe des environnements $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$, tirage du nouveau taux de corrosion

[Astrium] Exemples de trajectoires simulées



[Astrium] Exemples de trajectoires simulées



Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Trafic internet

Mécanique

Biologie

Neurosciences

Comment les simuler 1

Pourquoi les simuler ?

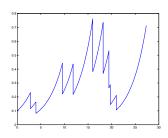
Références

Division cellulaire

[N. Krell]

 X_t taille d'une bactérie au temps t

- ► Espace d'états [0, ∞[
- ▶ Flot Croissance exponentielle $\phi(x, t) = xe^{\tau t}$
- ▶ Intensité Proportionnelle à la taille $\lambda(x) = \alpha x$
- Noyau de saut Division en 2 Q(x, x/2) = 1



Division cellulaire

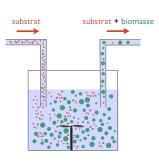
[C. Fritsch]

 X_t masse d'une population de bactéries au temps t

- mode = nombre de cellules
- \triangleright espace d'état $E_m =$ mesure ponctuelles prenant m valeurs

Dynamique

- croissance exponentielle des bactéries (en fonction du substrat)
- division des bactéries
- ▶ soutirage



Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Trafic internet Fiabilité dynamique Mécanique Biologie

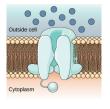
Neurosciences

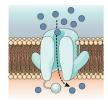
Comment les simuler ?

Pourquoi les simuler ?

Références

Canaux ioniques





Canaux ioniques

- Potassium
- Ouverts ou Fermés

Modèle déterministe

Modèle de Morris-Lecar

- V potentiel électrique
- m proportion de canaux K⁺ ouverts

$$\frac{d\frac{V}{dt}}{dt} = \frac{1}{C}(I - I_{ion}(m, V))$$

$$\frac{dm}{dt} = \frac{m_{\infty}(V) - m}{\tau_{\infty}(V)}$$

$$I_{ion}(m,V) = G_{Ca}m_{\infty}(V)(V - E_{Ca}) + G_{K}m(V - E_{K}) + G(V - V_{rest})$$

 $m_{\infty}(V) = \frac{1 + tanh((V+1)/15)}{2}, \quad \tau_{\infty}(V) = \frac{5}{\cosh(V/60)}$

Modèle déterministe

Trajectoires de
$$V$$
 ($m=m_{eq}=0.1078$)

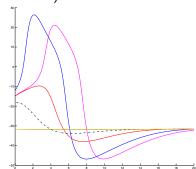
$$-V_0 = -12$$

$$-V_0 = -14.7$$

$$-V_0 = -14.8$$

$$-V_0 = -18$$

$$-V_0 = V_{eq} = -31.70$$



Modèle PDMP

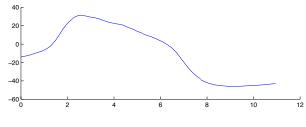
Canaux ioniques

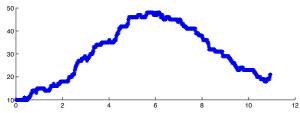
- ▶ Potassium : mouvement lent : stochastique N canaux $m \in \{0, \frac{1}{N}, \dots, \frac{N-1}{N}, 1\}$ proportion de canaux K^+ ouverts
- ▶ Mode $m \in \{0, \frac{1}{N}, \dots, \frac{N-1}{N}, 1\}$
- ► Intensité individuelle
 - ouverture d'un canal à intensité $\alpha(V) = \frac{m_{\infty}(V)}{\tau_{\infty}(V)}$
 - fermeture d'un canal à intensité $\beta(V) = \frac{1 m_{\infty}(V)}{\tau_{\infty}(V)}$
- ► Intensité globale

$$\lambda(m, V) = N(m\beta(V) + (1 - m)\alpha(V))$$

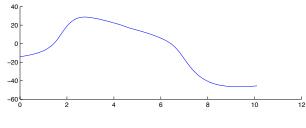
Noyau de saut $m \longrightarrow m \pm 1/N$

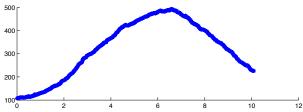
$$N = 100$$
, $V_0 = -14$, $m_0 = 0.1$





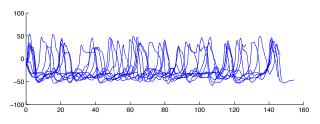
$$N = 1000$$
, $V_0 = -14$, $m_0 = 0.108$

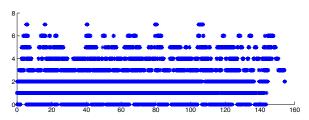




Dispersion de 10 trajectoires aléatoires

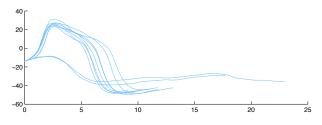
$$N = 10$$
, $V_0 = -14$, $m_0 = 0.1$

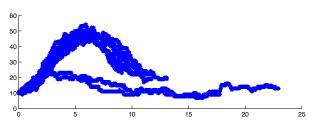




Dispersion de 10 trajectoires aléatoires

$$N = 100$$
, $V_0 = -14$, $m_0 = 0.10$





Construire un PDMP

Equations déterministes (physique, chimie, biologie,...)

- + un mécanisme de sauts aléatoire
 - changement ponctuel d'environnement, de paramètres, pannes
 - petite population

Avantages

- faciles à définir de façon itérative (pas besoin de calcul stochastique...)
- ► faciles à interpréter : description du comportement physique
- modèle très souple

Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Comment les simuler?

Préliminaire : simuler la loi exponentielle Inversion de la fonction de répartition Méthodes de rejet

Pourquoi les simuler?

Références

Simulation d'une loi exponentielle

Inversion de la fonction de répartition

Si
$$U \sim Unif[0,1]$$
 alors $-\frac{1}{\lambda}\log(U) \sim Exp(\lambda)$

$$\mathbb{P}(-rac{1}{\lambda}\log(U) > t) = \mathbb{P}(\log(U) < -\lambda t)$$
 $= \mathbb{P}(U < \exp(-\lambda t))$
 $= \exp(-\lambda t)$

Simulation d'un minimum de lois exponentielles

 $X_1, \ldots X_n$ lois exponentielles indépendantes de paramètre respectif $\lambda_1, \ldots, \lambda_n$, correspondant à la survenue d'événements de type 1 à n

Simuler $T = \min\{X_1, \dots X_n\}$ et I l'indice de la variable qui réalise le minimum

Pour simuler T et I

Il est équivalent de

- Simuler $X_1, ... X_n$ et prendre leur minimum, choisir l'indice correspondant
- ► Simuler une seule loi $Exp(\lambda_1 + \cdots + \lambda_n)$ et choisir indépendamment i avec probabilité $\frac{\lambda_i}{\lambda_1 + \cdots + \lambda_n}$

Minimum de lois exponentielles

Intensité constante

Théorème

Soit $X \sim Exp(\lambda)$, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}, I = \operatorname{argmin}\{X, Y\}$ Alors T et I sont indépendantes, $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X) = \lambda/(\lambda + \mu)$.

$$\mathbb{P}(T > t, I = X) = \mathbb{P}(X > t, Y > X)$$

Intensité constante

Théorème

Soit $X \sim Exp(\lambda)$, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors T et I sont indépendantes, $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X) = \lambda/(\lambda + \mu)$.

$$\mathbb{P}(T > t, I = X) = \mathbb{P}(X > t, Y > X)$$
$$= \int_{t}^{\infty} \int_{x}^{\infty} \mu e^{-\mu y} \lambda e^{-\lambda x} dy dx$$

Intensité constante

Théorème

Soit $X \sim Exp(\lambda)$, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors T et I sont indépendantes, $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X) = \lambda/(\lambda + \mu)$.

$$\mathbb{P}(T > t, I = X) = \mathbb{P}(X > t, Y > X)$$

$$= \int_{t}^{\infty} \int_{x}^{\infty} \mu e^{-\mu y} \lambda e^{-\lambda x} dy dx$$

$$= \int_{t}^{\infty} e^{-\mu x} \lambda e^{-\lambda x} dx$$

Minimum de lois exponentielles

Intensité constante

Théorème

Soit $X \sim Exp(\lambda)$, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}, I = \operatorname{argmin}\{X, Y\}$ Alors T et I sont indépendantes, $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X) = \lambda/(\lambda + \mu)$.

$$\mathbb{P}(T > t, I = X) = \mathbb{P}(X > t, Y > X)$$

$$= \int_{t}^{\infty} \int_{x}^{\infty} \mu e^{-\mu y} \lambda e^{-\lambda x} dy dx$$

$$= \int_{t}^{\infty} e^{-\mu x} \lambda e^{-\lambda x} dx$$

$$= e^{-(\lambda + \mu)t} \frac{\lambda}{\lambda + \mu}$$

Minimum de lois exponentielles

Intensité variables

Théorème

Soit
$$X \sim Exp(\lambda)$$
, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X | T = t) = \frac{\lambda(\phi(x, t))}{\left(\lambda(\phi(x, t)) + \mu(\phi(x, t))\right)}$.

$$\mathbb{P}(T > t, I = X)$$

Intensité variables

Théorème

Soit
$$X \sim Exp(\lambda)$$
, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X | T = t) = \frac{\lambda(\phi(x, t))}{\left(\lambda(\phi(x, t)) + \mu(\phi(x, t))\right)}$.

$$\mathbb{P}(T > t, I = X)$$

$$= \int_{t}^{\infty} \int_{u}^{\infty} \mu(\phi(x, v)e^{-\int_{0}^{v} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} dv du)$$

Minimum de lois exponentielles

Intensité variables

Théorème

Soit
$$X \sim Exp(\lambda)$$
, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X | T = t) = \frac{\lambda(\phi(x, t))}{\left(\lambda(\phi(x, t)) + \mu(\phi(x, t))\right)}$.

$$\mathbb{P}(T > t, I = X) \\
= \int_{t}^{\infty} \int_{u}^{\infty} \mu(\phi(x, v)e^{-\int_{0}^{v} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} dv du) \\
= \int_{t}^{\infty} e^{-\int_{0}^{u} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} du)$$

Minimum de lois exponentielles

Intensité variables

Théorème

Soit
$$X \sim Exp(\lambda)$$
, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X | T = t) = \frac{\lambda(\phi(x, t))}{\left(\lambda(\phi(x, t)) + \mu(\phi(x, t))\right)}$.

$$\begin{split} &\mathbb{P}(T > t, I = X) \\ &= \int_{t}^{\infty} \int_{u}^{\infty} \mu(\phi(x, v)e^{-\int_{0}^{v} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} dv du) \\ &= \int_{t}^{\infty} e^{-\int_{0}^{u} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} du) \\ &= \int_{t}^{\infty} \frac{\lambda(\phi(x, u))}{\lambda(\phi(x, u)) + \mu(\phi(x, u))} (\lambda(\phi(x, u)) + \mu(\phi(x, u))) e^{-\int_{0}^{u} (\lambda(\phi(x, s)) + \mu(\phi(x, s))) ds} du \end{split}$$

Minimum de lois exponentielles

Intensité variables

Théorème

Soit
$$X \sim Exp(\lambda)$$
, $Y \sim Exp(\mu)$ indépendantes, $T = \min\{X, Y\}$, $I = \operatorname{argmin}\{X, Y\}$ Alors $T \sim Exp(\lambda + \mu)$ et $\mathbb{P}(I = X | T = t) = \frac{\lambda(\phi(x, t))}{\left(\lambda(\phi(x, t)) + \mu(\phi(x, t))\right)}$.

$$\begin{split} &\mathbb{P}(T > t, I = X) \\ &= \int_{t}^{\infty} \int_{u}^{\infty} \mu(\phi(x, v)e^{-\int_{0}^{v} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} dv du) \\ &= \int_{t}^{\infty} e^{-\int_{0}^{u} \mu(\phi(x, s))ds} \lambda(\phi(x, u)e^{-\int_{0}^{u} \lambda(\phi(x, s))ds} du) \\ &= \int_{t}^{\infty} \frac{\lambda(\phi(x, u))}{\lambda(\phi(x, u)) + \mu(\phi(x, u))} \left(\lambda(\phi(x, u)) + \mu(\phi(x, u))\right) e^{-\int_{0}^{u} \left(\lambda(\phi(x, s)) + \mu(\phi(x, s))\right)ds} du \\ &= \int_{t}^{\infty} \mathbb{P}(I = X | T = u) \mathbb{P}(T \in du) \end{split}$$

Simulation d'un minimum de lois exponentielles

Intensité variable

 $X_1, \ldots X_n$ v.a. indépendantes d'intensité respective $\lambda_1, \ldots, \lambda_n$ correspondant à la survenue d'événements de type 1 à n

 $T = \min\{X_1, \dots X_n\}$ et / l'indice de la variable qui réalise le minimum

Pour simuler \overline{T} et I

Il est équivalent de

- \triangleright Simuler $X_1, \ldots X_n$ et prendre leur minimum, choisir l'indice correspondant
- ▶ Simuler une seule loi d'intensité $\lambda_1 + \cdots + \lambda_n$ et une fois T=t tiré choisir i avec probabilité $\frac{\lambda_i}{\lambda_1+\cdots+\lambda_n}(\phi(x,t))$

Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Comment les simuler?

Préliminaire : simuler la loi exponentielle

Inversion de la fonction de répartition

Méthodes de rejet

Pourquoi les simuler ?

Références

Solution à privilégier quand c'est possible

- ► Si on sait calculer explicitement la fonction de répartition le long du flot
- ► Et si on sait l'inverser explicitement

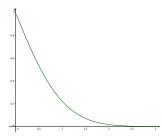
Exemples

ightharpoonup TCP $\lambda \circ \phi(x,t) = x + t$ Fonction de survie

Inverse

$$\mathbb{P}(T > t) = \exp(-xt - t^2/2)$$

$$\mathbb{P}(T > t) = \exp(-xt - t^2/2)$$
 $f(U) = -x + \sqrt{x^2 - 2\log(U)}$



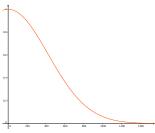
Exemples

Loi de Weibull (climatisation, atelier) $\lambda \circ \phi(x,t) = \frac{\alpha}{\beta} \left(\frac{x+t}{\beta}\right)^{\alpha-1}$ pour x=0

 $\mathbb{P}(\mathit{T} > t) = \expig(-(rac{t}{eta})^lphaig)$

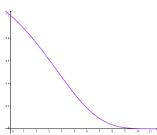
Fonction de survie

Inverse $f(U) = \beta \big(-\log(U) \big)^{1/\alpha}$



Exemples

$$\mathbb{P}(T > t) = \exp\big(-\frac{\alpha x}{\tau}(e^{\tau t} - 1)\big) \qquad f(U) = \frac{1}{\tau}\log\big(1 - \frac{\tau}{\alpha x}\log(U)\big)$$



Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Comment les simuler?

Préliminaire : simuler la loi exponentielle Inversion de la fonction de répartition

Méthodes de rejet

Pourquoi les simuler?

Références

Simuler la loi de Poisson

T suit la loi de Poisson de paramètre λ si $\mathbb{P}(T=n)=e^{-\lambda}\frac{\lambda^n}{n!}, n\in\mathbb{N}.$

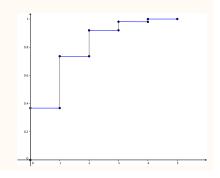
Simulation de la loi de Poisson de paramètre λ

- ▶ Initialisation $i \leftarrow 0$, $p \leftarrow e^{-\lambda}$, $F \leftarrow p$, stop $\leftarrow 0$
- ► Tant que stop=0 faire
 - ▶ tirer $U \sim Unif[0,1]$
 - ▶ Si U< F faire</p>
 - renvoyer i
 - stop← 1
 - Sinon faire

$$F \leftarrow F + p$$

$$rac{1}{2} \leftarrow F + f$$

$$i \leftarrow i + 1$$



[Cocozza] Simuler une intensité variable

Simulation de la loi d'intensité variable $\lambda(x)$

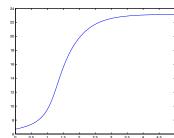
- ▶ Initialisation choisir A > 0, $a \leftarrow 0$, $S \leftarrow \emptyset$
- ▶ Tant que $S = \emptyset$ faire
 - ▶ choisir $L \ge \sup_{a \le x \le a+A} \lambda(x)$
 - ▶ tirer $N \sim Poisson(\bar{L} \times A)$
 - ▶ Si $N \neq 0$ faire
 - ▶ Pour 1 < k < N faire
 - tirer $U \sim Unif[a, a + A]$
 - tirer *V* ∼ *Unif* [0, *L*]
 - Si $U \leq V$ faire $S \leftarrow S \cup \{U\}$
 - \triangleright $a \leftarrow a + A$
- ► renvoyer min *S*

Exemple de Morris Lecar

N=100, Point de départ : $m_0=0.1=10/100$, $V_0=-14$ Intensité le long du flot à simuler pour le premier temps de saut

$$\lambda(m, V) = N\left(m\frac{1 - m_{\infty}(V)}{\tau_{\infty}(V)} + (1 - m)\frac{m_{\infty}(V)}{\tau_{\infty}(V)}\right)$$

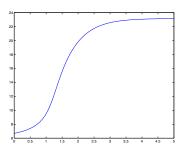
$$m_{\infty}(V)=rac{1+tanh((V+1)/15)}{2} \ 0 \leq m_{\infty} \leq 1 \ au_{\infty}(V)=rac{5}{cosh(V/60)} \ ext{non minor\'e}$$



Exemple de Morris Lecar

Mise en oeuvre de l'algorithme A = 0.5

$$ightharpoonup$$
 $a=0$



Exemple de Morris Lecar

Mise en oeuvre de l'algorithme A = 0.5

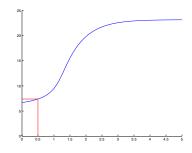
$$\rightarrow a = 0$$

►
$$L = \max_{t \in [a, a+A]} \lambda \circ \phi(x, t)$$

calculé numériquement
(pas= 10^{-3}) $L = 7.39$

▶

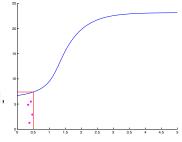
•



Exemple de Morris Lecar

Mise en oeuvre de l'algorithme A = 0.5

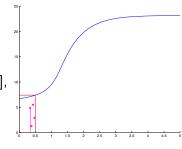
- $\rightarrow a = 0$
- ► $L = \max_{t \in [a, a+A]} \lambda \circ \phi(x, t)$ calculé numériquement (pas= 10^{-3}) L = 7.39
- ▶ tirer $N \sim Poisson(L \times A)$, N = 4, tirer $U \sim Unif[a, a + A]$, tirer $V \sim Unif[0, L]$



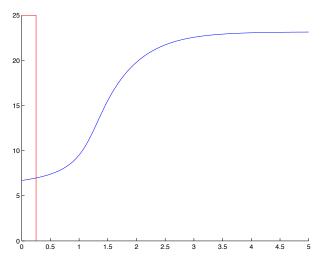
Exemple de Morris Lecar

Mise en oeuvre de l'algorithme A = 0.5

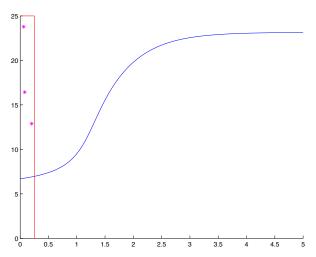
- $\rightarrow a = 0$
- ► $L = \max_{t \in [a, a+A]} \lambda \circ \phi(x, t)$ calculé numériquement (pas= 10^{-3}) L = 7.39
- tirer $N \sim Poisson(L \times A)$, N = 4, tirer $U \sim Unif[a, a + A]$, tirer $V \sim Unif[0, L]$
- sélectionner la plus petite abscisse des points sous la courbe 0.3394



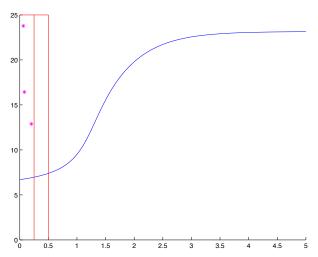
Exemple de Morris Lecar



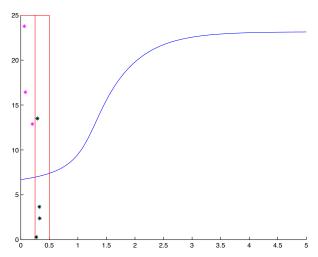
Exemple de Morris Lecar



Exemple de Morris Lecar



Exemple de Morris Lecar



Bilan

Avantages

- ▶ Uniquement besoin d'un maximum local
- Simulation exacte si le flot est connu
- ▶ Marche avec les intensités individuelles et l'intensité globale

Inconvénients

- ► Calculer un maximum local / global
- Nombre d'itérations inconnu, aléatoire
- Si flot numérique, nombre d'appels à la fonction flot inconnu, aléatoire, Simuler séparément les temps de sauts et la trajectoire le long du flot

Rejet à base de loi exponentielle

Dans quels cas?

Algorithme de type Gillespie

- un grand nombre d'événements concurrents (bcp de cellules qui se divisent, bcp de canaux ioniques)
- utilise l'intensité individuelle (taux de division/soutirage, taux d'ouverture/fermeture d'un canal), tous les individus doivent avoir la même
- majorant de l'intensité individuelle
- calcule simultanément le flot et les sauts : utile pour les flots numériques
- algorithme de rejet : nombre d'itérations inconnu, aléatoire

Rejet à base d'exponentielle

Modèle de Morris Lecar

Simulation de la trajectoire $(X_t = (m_t, V_t))$ d'un PDMP

Paramètres

- $x_0 = (m_0, v_0)$ point de départ du processus
- $\overline{\lambda} = \overline{\alpha} + \overline{\beta} = 0.25$ majorant de l'intensité individuelle (pour V raisonnable)
- T_{max} temps jusqu'auquel simuler
- N nombre de canaux

Rejet à base d'exponentielle

Modèle de Morris Lecar

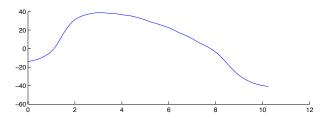
Simulation de la trajectoire $(X_t = (m_t, V_t))$ d'un PDMP

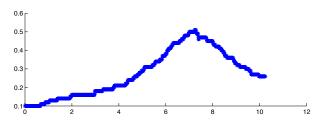
Algorithme

- ▶ Initialisation $t \leftarrow 0$ $m \leftarrow m_0$ $v \leftarrow v_0$
- ▶ Tant que $t < T_{max}$ faire
 - tirer $T \sim Exp(N\overline{\lambda})$
 - ightharpoonup calculer le flot sur [t, t + T]
 - $t \leftarrow t + T, v \leftarrow \phi_m(v, t)$
 - ▶ tirer *U* ~ *Unif* [0, 1]
 - ▶ Si $U \leq \frac{m*\alpha(v)}{\overline{\lambda}}$ faire
 - $lacktriangledown m \leftarrow m + 1/N$ ouverture d'un canal
 - ▶ Sinon si $U \leq \frac{m*\alpha(v)+(1-m)*\beta(v)}{\sqrt{1}}$ faire
 - ▶ $m \leftarrow m 1/N$ fermeture d'un canal
- renvoyer la trajectoire

Potentiel électrique le long d'un neurone

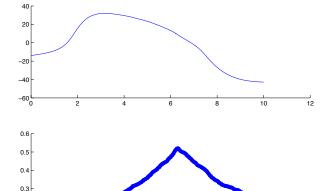
$$N = 100$$
, $V_0 = -14$, $m_0 = 0.1$





Potentiel électrique le long d'un neurone

$$N = 1000$$
, $V_0 = -14$, $m_0 = 0.108$



0.2

10

Quand le flot n'est pas explicite

En pratique

on remplace par une approximation numérique et on applique l'une des méthodes de simulation

En théorie

quasiment pas de résultat sur l'erreur qu'on commet : modifier le flot modifie t*, l'intensité le long du flot, le point de départ pour la noyau de saut... La régularité du flot ne suffit probablement pas à ce que tout se passe bien

Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Comment les simuler ?

Pourquoi les simuler?

Quantification optimale

Temps de sortie

Optimisation

Résultats théoriques

Références

Méthodes numériques pour les PDMP

- fort potentiel d'applications
- nombreux résultats théoriques[Davis 93], [Jacobsen 06], [Costa-Dufour 13]
- processus faciles à simuler
- méthodes d'approximation numérique dédiées basées sur des discrétisations intelligentes et les simulations

Objectif des travaux présentés

Proposer des méthodes numériques

- adaptées aux spécificités des PDMP
- avec des preuves (et des vitesses) de convergence
- utilisables en pratique

Pour calculer

- ▶ la loi d'un temps de sortie
- un temps d'arrêt optimal

Objectif des travaux présentés

Proposer des méthodes numériques

- adaptées aux spécificités des PDMP
- avec des preuves (et des vitesses) de convergence
- utilisables en pratique

Pour calculer

- ▶ la loi d'un temps de sortie
- un temps d'arrêt optimal

Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Comment les simuler

Pourquoi les simuler ? Quantification optimale

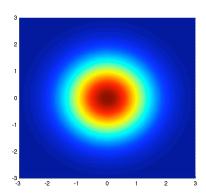
Temps de sortie Optimisation Résultats théoriques

Références

Méthode de quantification

[G. Pagès]

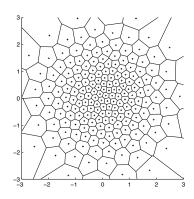
Approcher une loi continue par une loi discrète de façon optimisée Exemple: $\mathcal{N}(0, I_2)$

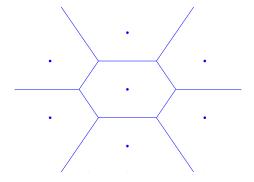


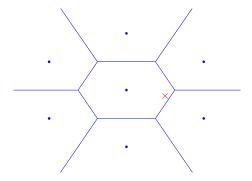
Méthode de quantification

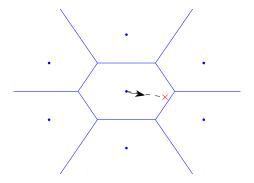
[G. Pagès]

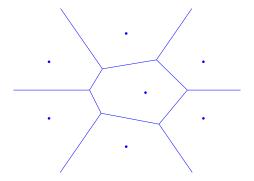
Approcher une loi continue par une loi discrète de façon optimisée Exemple: $\mathcal{N}(0, I_2)$











Avantages et inconvénients de la quantification

Avantages

- un simulateur de la loi cible suffit
- construction automatique des grilles
- ▶ vitesse de convergence pour $\mathbb{E}[|f(X) f(\widehat{X})|]$ si f Lipschitz

Inconvénients

- temps de calcul des grilles
- fléau de la dimension.
- questions ouvertes sur la convergence des algorithmes

Quantifier un PDMP

Utiliser la chaîne induite (Z_n, S_n)

- $ightharpoonup Z_n$ mode et position après le *n*-ème saut
- $ightharpoonup S_n = T_n T_{n-1}$ durée entre le saut n-1 et le saut n

Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Comment les simuler ?

Pourquoi les simuler?

Quantification optimale

Temps de sortie

Optimisation

Résultats théoriques

Références

Approximation de la loi d'un temps de sortie

 $U \subset E, X_0 \in U$. Temps de sortie de U:

$$\tau = \inf\{s \ge 0 : X_s \notin U\}$$

Objectif

Proposer une méthode numérique pour approcher la loi de τ

$$s \longmapsto \mathbb{P}(\tau > s)$$

Application

Calculer la durée de service de la structure métallique : temps de sortie de [0, 0.02].

Formulation récursive du problème

Constat
$$\{\tau \leq T_{k+1}\} = \{\tau \leq T_k\} \cup \{T_k < \tau \leq T_{k+1}\}$$

Conséquence : calcul récursif de $\mathbb{P}(\tau > s | \tau \leq T_n)$

$$\mathbb{P}(\tau > s | \tau \leq T_{k+1}) = \frac{\mathbb{P}(\tau > s | \tau \leq T_k) \mathbb{P}(\tau \leq T_k) + \mathbb{P}(\{\tau > s\} \cap \{T_k < \tau \leq T_{k+1}\})}{\mathbb{P}(\tau \leq T_{k+1})}$$

$$\mathbb{P}(\tau > s | \tau \leq T_0) = 0$$

Deux quantités à calculer

- $ightharpoonup \mathbb{P}(\tau \leq T_k)$
- ▶ $\mathbb{P}(\{\tau > s\} \cap \{T_k < \tau \leq T_{k+1}\})$

Stratégie

Deux quantités à calculer

- $ightharpoonup \mathbb{P}(\tau \leq T_k)$
- $\blacktriangleright \mathbb{P}(\{\tau > s\} \cap \{T_k < \tau \leq T_{k+1}\})$

Stratégie

• faire apparaître la chaîne de Markov (Z_n, T_n)

Deux quantités à calculer

- $\mathbb{P}(\tau \leq T_k) = \mathbb{E}[\mathbb{1}_{U^c}(Z_k)]$
- $\begin{array}{l} \blacktriangleright \ \mathbb{P}(\{\tau > s\} \cap \{T_k < \tau \leq T_{k+1}\}) \\ = \mathbb{E}[\mathbb{1}_{\{T_k + u^*(Z_k) \wedge T_{k+1} > s\}} \mathbb{1}_{U}(Z_k) \mathbb{1}_{U^c}(Z_{k+1})] \end{array}$

Stratégie

• faire apparaître la chaîne de Markov (Z_n, T_n)

Deux quantités à calculer

- $\mathbb{P}(\tau \leq T_k) = \mathbb{E}[\mathbb{1}_{U^c}(Z_k)]$
- $\begin{array}{l} \blacktriangleright \ \mathbb{P}(\{\tau > s\} \cap \{T_k < \tau \leq T_{k+1}\}) \\ = \mathbb{E}[\mathbb{1}_{\{T_k + u^*(Z_k) \wedge T_{k+1} > s\}} \mathbb{1}_{U}(Z_k) \mathbb{1}_{U^c}(Z_{k+1})] \end{array}$

Stratégie

- faire apparaître la chaîne de Markov (Z_n, T_n)
- ▶ Discrétiser la chaîne de Markov (Z_n, T_n) par quantification

Mise en œuvre de la stratégie

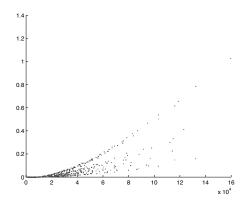
- ▶ Remplacer (Z_n, T_n) par son approximation quantifiée $(\widehat{Z}_n, \widehat{T}_n)$
- Prouver la convergence de la méthode sous des hypothèses lipschitz

Points difficiles

- ▶ si $Z_k \in U$, on n'a pas forcément $\widehat{Z}_k \in U \Longrightarrow$ hypothèse de convexité sur *U*
- besoin de contrôler la probabilité de sauter près de la frontière de II
- dénominateur dans la relation de récurrence

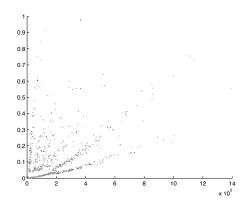
Grilles pour le processus de corrosion

Dans l'ambiance 2 après le 1er saut



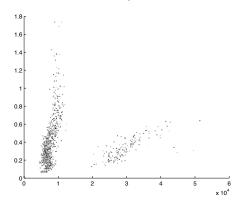
Grilles pour le processus de corrosion

Dans l'ambiance 3 après le 2ème saut



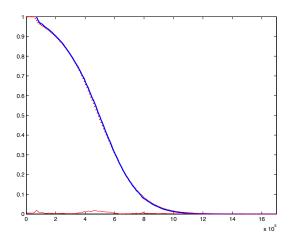
Grilles pour le processus de corrosion

Dans l'ambiance 1 après le 15ème saut



Résultats numériques : modèle de corrosion

U = [0, 0.2]mm, $\tau =$ durée de service de la structure



Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Comment les simuler ?

Pourquoi les simuler?

Quantification optimale Temps de sortie

Optimisation

Résultats théoriques

Références

Motivation: maintenance préventive

Machine pouvant tomber en panne

Problème de maintenance

Trouver un équilibre optimal entre

- changer les pièces trop tôt/souvent
- ▶ ne rien faire jusqu'à la panne totale

Motivation: maintenance préventive

Machine pouvant tomber en panne

Problème de maintenance

Trouver un équilibre optimal entre

- changer les pièces trop tôt/souvent
- ne rien faire jusqu'à la panne totale

Problème mathématique

- arrêt optimal
- contrôle impulsionnel

Problème d'arrêt optimal

- ► Fonction de performance g
- \blacktriangleright Horizon aléatoire : N-ème temps de saut T_N du PDMP
- $ightharpoonup \mathcal{M}_N$ ensemble des temps d'arrêt $au \leq T_N$

Problème d'arrêt optimal

calculer la fonction valeur

$$V(x) = \sup_{\tau \in \mathcal{M}_N} \mathbb{E}_x[g(X_\tau)]$$

ightharpoonup trouver un temps d'arrêt (arepsilon-)optimal au^* qui atteint V(x)(-arepsilon)

Ecriture récursive des fonctions

[Gugerli]

Equation de programmation dynamique rétrograde

$$v_N = g$$

$$v_n = L(v_{n+1}, g) \text{ pour } n \le N - 1$$

$$v_0(x) = \sup_{\tau \in \mathcal{M}_N} \mathbb{E}_x[g(X_\tau)] = V(x)$$

$$L(w,g)(x) = \sup_{u \le t^*(Z_n)} \left\{ \mathbb{E} \left[w(Z_{n+1}) \mathbb{1}_{\{S_{n+1} < u\}} + g(\phi(Z_n, u)) \mathbb{1}_{\{S_{n+1} \ge u\}} \mid Z_n = x \right] \right\} \\ \vee \mathbb{E} \left[w(Z_{n+1}) \mid Z_n = x \right]$$

Construction itérative de variables aléatoires

Equation de programmation dynamique rétrograde

$$\triangleright v_N(Z_N) = g(Z_N)$$

$$\triangleright$$
 $v_n(Z_n) = L(v_{n+1}, g)(Z_n)$ pour $n \le N-1$

$$v_0(Z_0) = \sup_{ au \in \mathcal{M}_N} \mathbb{E}_{\scriptscriptstyle X}[g(X_{\scriptscriptstyle T})]$$

$$\frac{v_{n}(Z_{n})}{v_{n}(Z_{n})} = L(v_{n+1}, g)(Z_{n})
= \sup_{u \leq t^{*}(Z_{n})} \left\{ \mathbb{E}\left[v_{n+1}(Z_{n+1})\mathbb{1}_{\{S_{n+1} < u\}} + g(\phi(Z_{n}, u))\mathbb{1}_{\{S_{n+1} \geq u\}} \mid Z_{n}\right] \right\}
\vee \mathbb{E}\left[v_{n+1}(Z_{n+1}) \mid Z_{n}\right]$$

Discrétisation

Approximation de la fonction valeur

$$\widehat{v}_N(\widehat{Z}_N) = g(\widehat{Z}_N)$$

$$\widehat{v}_n(\widehat{Z}_n) = \widehat{L}_d(\widehat{v}_{n+1}, g)(\widehat{Z}_n)$$
 pour $n \leq N-1$

$$\widehat{L}_{d}(v_{n+1}, g)(Z_{n}) = \max_{u \in G(Z_{n})} \left\{ \mathbb{E}\left[v(\widehat{Z}_{n+1})\mathbb{1}_{\{\widehat{S}_{n+1} < u\}} + g(\phi(Z_{n}, u))\mathbb{1}_{\{\widehat{S}_{n+1} \ge u\}} \mid \widehat{Z}_{n}\right] \right\} \\
\vee \mathbb{E}\left[v(Z_{n+1}) \mid \widehat{Z}_{n}\right]$$

Vitesse de convergence

Théorème

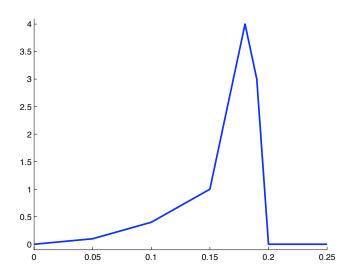
Hypothèses de régularité Lipschitz sur ϕ , λ , Q, t^* et g

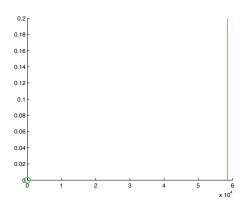
$$|v_0(x) - \widehat{v}_0(x)| \leq C\sqrt{EQ}$$

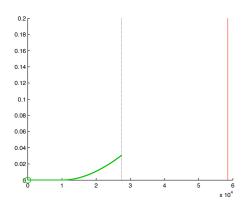
C constante explicite, EQ erreur de quantification

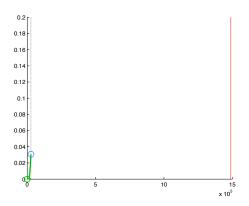
√ due aux indicatrices

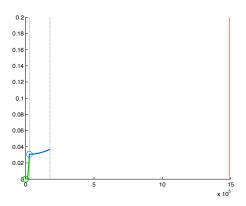
Fonction de performance

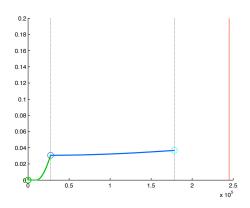


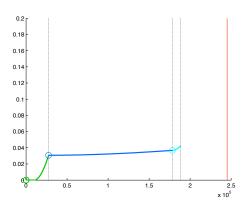


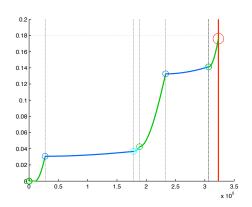












Calcul de la fonction valeur

Exemple de la corrosion

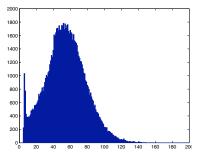
Résultats numériques (vraie valeur : 4)

Nombre de points dans	Fonction valeur	Fonction valeur
les grilles de quantification	approchée	par Monte Carlo
10	2.48	0.94
50	2.70	1.84
100	2.94	2.10
200	3.09	2.63
500	3.39	3.15
1000	3.56	3.43
2000	3.70	3.60
5000	3.82	3.73
8000	3.86	3.75

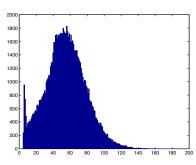
Comparaison avec Monte Carlo

Exemple de la corrosion

Temps d'arrêt optimal $\tau^* = \inf\{t : d_t \ge 0.02\}$



temps d'arrêt approché



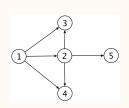
temps d'arrêt théorique

Problème industriel de Thales optronique

Exemple de la climatisation

Calculer une date de maintenance pour un équipement soumis à différents types de pannes

Goupe de climatisation



- ► Etat 1: état stable
- ► Etat 2: roulement à billes degradé
- Etat 3: panne de l'électrovanne
- ► Etat 4: panne électronique
- Etat 5: panne du roulement à billes

Fonction de performance

Exemple de la climatisation

$$g(m,t)=\frac{t}{p(m)}$$

- \triangleright p(1) = 6 coût de maintenance dans l'état stable
- p(2) = 6 coût de maintenance pour roulement à bille dégradé
- p(3) = 5 coût de réparation de l'électrovanne
- p(4) = 3.5 coût de réparation d'une panne électronique
- ho p(5) = 12 coût de réparation du roulement à billes

Optimisation de maintenance

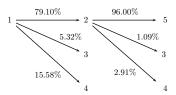
- ▶ Il vaut mieux déclencher une maintenance en mode dégradé 2 qu'attendre la panne totale 5
- Les coûts de réparation en mode 3 et 4 sont moins chers que le coût de maintenance

Performance movenne sans maintenance: 342.72

Performance avec maintenance optimisée

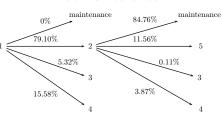
Exemple de la climatisation

Sansmaintenance



Performance moyenne 342.72

Avec maintenance

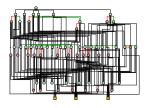


Performance moyenne 592.47

Autres résultats

Approximation d'espérances

 Optimisation de maintenance du réservoir chauffé



- Arrêt optimal partiellement observé
- Contrôle impulsionnel
 - approximation de la fonction valeur
 - stratégie optimale : travaux en cours

Plan du cours : les PDMP

Qu'est-ce que c'est?

Qu'est-ce que ça modélise ?

Comment les simuler?

Pourquoi les simuler?

Références

Références

Livres

- M. Davis Markov models and optimization
- M. Jacobsen Point process theory and applications
- P. Bressloff Stochastic processes in cell biology
- C. Cocozza Processus stochastiques et fiabilité des systèmes
- B. de Saporta, F. Dufour, H. Zhang Numerical methods for simulation and optimization of piecewise deterministic Markov processes
- O. Costa, F. Dufour Continuous average control of piecewise deterministic Markov processes

Références

Quelques personnes travaillant sur les PDMP en France

Applications en neurosciences

Michèle Thieullen http://www.proba.jussieu.fr/pageperso/thieullen/

Applications en biologie

Coralie Fritsch https://coraliefritsch.wordpress.com/

Nathalie Krell https://perso.univ-rennes1.fr/nathalie.krell/

Contrôle

François Dufour http://www.math.u-bordeaux1.fr/~frdufour/

Convergence vers la loi invariante

Florent Malrieu http://www.lmpt.univ-tours.fr/~malrieu/

Statistique

Romain Azais http://iecl.univ-lorraine.fr/~Romain.Azais/

Projet ANR PIECE http://wiki-math.univ-mlv.fr/pdmp/doku.php/

