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Introduction

Maintenance optimization

Equipments
I with several components
I subject to random degradation and failures

Maintenance optimization problem: find some optimal balance
between

I repairing/changing components too often
I do nothing and wait for the total failure of the system

Optimize some criterion
I minimize a cost: repair, maintenance, unavailability penalty,

failure penalty, . . .
I maximize a reward: availability, production, . . .
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Introduction

Equipment model
Typical model with 4 components

I Component 1: 2 states – stable Exponential−−−−−−−→ failed
I Component 2: 2 states – stable Weibull−−−−→ failed
I Components 3 and 4: 3 states

stable Weibull−−−−→ degraded Exponential−−−−−−−→ failed
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Introduction

Maintenance operations
Possible maintenance operations

I All components, all states: do nothing
I Components 1 and 2: change in failed state
I Components 3 and 4: change in degraded or failed states,

repair only in degraded state
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Introduction

Criterion to optimize

Minimize the unavailability + maintenance costs
I unavailability cost proportional to time spend in failed state
I fixed cost for going to the workshop + repair < change costs
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Introduction

Aim and roadmap

Objective
I design a feasible maintenance policy that minimizes the

average unavailability + maintenance costs

Resolution roadmap
I model the system dynamics as a Piecewise deterministic

Markov process (PDMP) and the maintenance optimization
problem as an impulse control problem for PDMPs

I implement a simulation-based algorithm to solve the impulse
control problem
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Step 1: PDMP model and exact simulations

PDMP model of the equipment

I Euclidean variables: 5 time variables
I functioning time of components 2, 3 and 4
I calendar time
I time spent in the workshop

I Discrete variables: 225 modes
I state of the components / maintenance operations
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Step 1: PDMP model and exact simulations

Exact simulation of the PDMP for reference policies

Implementation of an exact simulator for reference policies to serve
as benchmark

I Policy 1: do nothing
I Policy 2: send equipment to workshop 1 day after failure,

repair all degraded components, change all failed ones
I Policy 3: send equipment to workshop 1 day after degradation,

repair all degraded components, change all failed ones

Policy 1 2 3
Mean cost 18140 13060 10270
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Step 2: Approximation of the optimal cost

Approximation of the optimal cost

Algorithm from [dSD 12]: many parameters to tune
I Number of point in the discretized spaces : one different grid

at each jump time of the process
I Number of iterations of the algorithm ' allowed number of

jumps + interventions
I Time discretization step ' minimum lag between interventions

Use the reference policies for the empirical tuning
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Step 2: Approximation of the optimal cost

Discretizations
I replace the continuous state space by a finite one using

optimal quantization
I select a finite number of starting points after a maintenance

operation
I compromise between precision and complexity

Number of starting points after an intervention – Tests on policy 3
Number relative

Grid of points error
3 × 3 × 3 × 5 246 0.1034
4 × 4 × 4 × 5 331 0.0241
5 × 5 × 5 × 5 592 0.0062

3 × 3 × 3 × 11 615 0.0341
4 × 4 × 4 × 11 923 0.0819
5 × 5 × 5 × 11 1855 0.0186
3 × 3 × 3 × 21 1230 0.0034
4 × 4 × 4 × 21 1899 0.0170
5 × 5 × 5 × 21 2960 0.0095
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Step 2: Approximation of the optimal cost

Number of allowed jumps + interventions

Number of iterations
I up to 5 for Policy 1
I up to 30 for Policy 2 (mean 6)
I up to 25 for Policy 3 (mean 6)

Pol. 1 Pol. 2 Pol. 3
Mean cost 18140 13060 10270
Number of iterations 6 10 15 20
Approximation of the
minimal cost 10140 7340 7190 7160

30% relative gain compared to Policy 3 (intervention gap: 11 days)
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Step 3: Optimal policy

Construction of an optimal policy

I (approximate) optimal operations at each point of the
discretized space and each time step can be obtained as a
by-product of the computation of the optimal cost

I Simulation of optimally controlled trajectories: after each
jump
1. project the true value onto the corresponding quantization grid
2. retrieve the optimal intervention date and corresponding action
3. if no natural jump occurs before the set intervention date,

perform intervention at set date
4. otherwise allow natural jump and go back to step 1

I evaluate cost through Monte Carlo simulations
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Step 3: Optimal policy

Performance of the optimal policy

I simulation of optimally controlled trajectories
⇒ optimal to do nothing if short time left as
unavailability cost � repair/replace costs

I Policy 4: same as Policy 3 but do nothing if short time left

Pol. 1 Pol. 2 Pol. 3 Pol. 4 Optimal
Mean cost 18140 13060 10270 7560 7160

only 5% relative gain compared to Policy 4: within the
approximation error
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Step 3: Optimal policy

Performance of the optimal policy – new parameters

Divide by 1000 the maintenance cost so that maintenance and
unavailability costs are of the same magnitude

Pol. 1 Pol. 2 Pol. 3 Value function Optimal
Mean cost 18140 28.26 26.54 17.64 18.27

I no apparent structure in the optimal policy
I mean number of visits to the workshop decreased by 7%
I mean unavailability cost decreased by 42%
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Step 3: Optimal policy

An example of optimally controlled trajectory
I starting point: (s,s,s,s) at calendar time 0 prop: never
I natural jump: (s,s,d,s) at 1314.43 prop: in 1 day
I no jump before planned intervention date: impulse: (s,s,r,s) at 1315.4

out of workshop (s,s,s,s) at 1350.43 prop: never
I natural jump: (f,s,s,s) at 1857.20 prop: in 1 day
I no jump before planned intervention date: impulse: (c,s,s,s) at 1858.20

out of workshop (s,s,s,s) at 1893.20 prop: never
I natural jump: (s,f,s,s) at 3366.65 prop: in 1 day
I no jump before planned intervention date: impulse: (s,c,c,s) at 3367.65

out of workshop (s,s,s,s) at calendar time 3402.65 prop: never
I natural jump: (s,s,d,s) at calendar time 3410.82 prop: in 24 days
I natural jump before planned maintenance (f,s,d,s) at 3414.68 prop: in 1

day
I no jump before planned intervention date: impulse: (c,s,r,s) at 3415.68

out of workshop (s,s,s,s) at calendar time 3450.68
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Conclusion

Conclusion

Numerical method to derive a feasible optimal strategy
I rigorously validated, with general error bounds for the

approximation of the value function [dSD 12, dSDG 17]
I numerically demanding but viable in low dimensional examples
I consistent results on the use case with different parameter

values
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Conclusion
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