Contribution à l'estimation et au contrôle de processus stochastiques

Benoîte de Saporta Habilitation à diriger des recherches Université de Bordeaux

Plan

Processus BAR et division cellulaire

Introduction

BAR avec données manquantes

BAR à coefficient aléatoires

Conclusion et perspectives

Méthodes numériques pour les PDP

Introduction

Arrêt optimal

Méthodologie générale

Conclusion et perspectives

Division d'Escherichia coli

[Stewart & al. 2005]

Structure d'arbre binaire

Génération 0:

$$\mathbb{G}_0 = \{1\}$$

Structure d'arbre binaire

Génération 1:

$$\mathbb{G}_1 = \{2, 3\}$$

Structure d'arbre binaire

Génération n:

$$\mathbb{G}_n = \{2^n, 2^n + 1, \dots, 2^{n+1} - 1\}$$

Arbre jusqu'à la génération n:

$$\mathbb{T}_n = \bigcup_{\ell=0}^n \mathbb{G}_\ell$$

Observation d'une caractéristique X_k

BAR asymétrique

[Guyon 2007] Processus auto-régressif de bifurcation asymétrique

$$\begin{cases} X_{2k} = a + bX_k + \epsilon_{2k} \\ X_{2k+1} = c + dX_k + \epsilon_{2k+1} \end{cases}$$

$$(\epsilon_{2k}, \epsilon_{2k+1})$$
 gaussiennes iid, $\mathbb{E}[\epsilon_{2k+i}] = \sigma^2$, $\mathbb{E}[\epsilon_{2k}\epsilon_{2k+1}] = \rho$

Estimer les paramètres pour tester l'asymétrie

- ▶ (a, b) = (c, d)
- a/(1-b) = c/(1-d)

Méthode chaînes de Markov bifurquantes en utilisant la structure d'arbre par générations

Première contribution

Modèle BAR asymétrique

$$\begin{cases} X_{2k} = a + bX_k + \epsilon_{2k} \\ X_{2k+1} = c + dX_k + \epsilon_{2k+1} \end{cases}$$

Hypothèses affaiblies

 $\mathcal{F}_n = \sigma\{X_k, k \in \mathbb{T}_n\}$ filtration des générations

- moments d'ordre 8 pour le bruit
- \blacktriangleright différence de martingale $\mathbb{E}[\epsilon_{2k+i}|\mathcal{F}_n]=0$ pour tout $k\in\mathbb{G}_n$, ϵ_{2k+i} indépendant de ϵ_{2l+i} conditionnellement à \mathcal{F}_n pour tout $k \neq l \in \mathbb{G}_n$
- $\mathbb{E}[\epsilon_{2k+1}^2|\mathcal{F}_n] = \sigma^2$, $\mathbb{E}[\epsilon_{2k}\epsilon_{2k+1}|\mathcal{F}_n] = \rho$ pour tout $k \in \mathbb{G}_n$
- convergence des estimateurs avec vitesse
- méthode martingale

Convergence des martingales L^2

$$\begin{array}{l} (\textit{M}_n) \text{ martingale scalaire bornée dans } \textit{L}^2 \\ < \textit{M} >_n = \sum_{k=0}^n \mathbb{E}[(\textit{M}_{n+1} - \textit{M}_n)^2 \mid \mathcal{F}_n] \\ \text{Si } \lim_{n \to \infty} < \textit{M} >_n = +\infty, \text{ alors } \frac{\textit{M}_n}{<\textit{M} >_n} \to 0 \text{ p.s.} \\ + \text{ conditions de moment alors } \left(\frac{\textit{M}_n}{<\textit{M} >_n}\right)^2 = \mathcal{O}(\frac{\log(<\textit{M} >_n)}{<\textit{M} >_n}) \text{ p.s.} \\ \end{array}$$

Mise en œuvre

- identifier une martingale (vectorielle) pour la filtration des générations
- calculer la limite du crochet.
- ▶ redémontrer le théorème de vitesse de convergence pour une martingale sur un arbre binaire

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- ▶ 4 à 9 générations de cellules par généalogie
- mesure du taux de croissance des cellules
- aucune généalogie complète

Introduction

Données réelles

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- ▶ 4 à 9 générations de cellules par généalogie
- mesure du taux de croissance des cellules
- aucune généalogie complète

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- ▶ 4 à 9 générations de cellules par généalogie
- mesure du taux de croissance des cellules
- aucune généalogie complète

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- ▶ 4 à 9 générations de cellules par généalogie
- mesure du taux de croissance des cellules
- aucune généalogie complète

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- ▶ 4 à 9 générations de cellules par généalogie
- ▶ mesure du taux de croissance des cellules
- aucune généalogie complète

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- ▶ 4 à 9 générations de cellules par généalogie
- mesure du taux de croissance des cellules
- aucune généalogie complète

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- ▶ 4 à 9 générations de cellules par généalogie
- mesure du taux de croissance des cellules
- aucune généalogie complète

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- ▶ 4 à 9 générations de cellules par généalogie
- mesure du taux de croissance des cellules
- aucune généalogie complète

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- ▶ 4 à 9 générations de cellules par généalogie
- mesure du taux de croissance des cellules
- aucune généalogie complète

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- ▶ 4 à 9 générations de cellules par généalogie
- mesure du taux de croissance des cellules
- aucune généalogie complète

Données de [Stewart & al. 2005]

- ▶ 94 films = 94 généalogies
- 4 à 9 générations de cellules par généalogie
- mesure du taux de croissance des cellules
- aucune généalogie complète

On ne peut pas appliquer notre procédure d'estimation et de test à ces données

⇒ Nouvelle procédure d'estimation en tenant compte des données manquantes

Modélisation des données manquantes

[Delmas & Marsalle 2010]

- chaque cellule a un type 0 (pair-nouveau pôle) ou 1 (impair-ancien pôle)
- une cellule non observée n'a pas de descendante observée
- ▶ probabilité $p(j_0, j_1)$ d'avoir j_0 fille de type 0 et j_1 fille de type 1, tiré indépendamment pour chaque cellule
- Z_n nombre de cellules présentes à la génération n Galton-Watson
- inférence sur le BAR partiellement observé par méthode chaîne de Markov bifurquante

Le nombre de cellules filles de chaque type devrait aussi dépendre du type de la mère

Modèle de Galton-Watson à deux types

- $\delta_k = 1$ si la cellule k est observée, 0 sinon
- une cellule non observée n'a pas de descendante observée
- ▶ probabilité $p^{(i)}(j_0, j_1)$ pour une cellule mère de type i d'avoir j_0 fille de type 0 et j_1 fille de type 1, tiré indépendamment pour chaque cellule
- ▶ Z_n^i nombre de cellules de type i présentes à la génération n, (Z_n^0, Z_n^1) processus de Galton-Watson à deux types

Générations observées

Génération *n* observée:

$$\mathbb{G}_n^* = \{k \in \mathbb{G}_n \; ; \; \delta_k = 1\}$$

Arbre jusqu'à la génération n:

$$\mathbb{T}_n^* = \{k \in \mathbb{T}_n ; \ \delta_k = 1\} = \bigcup_{\ell=0}^n \mathbb{G}_\ell^*$$

BAR partiellement observé

$$\begin{cases} X_{2k} = \mathbf{a} + \mathbf{b} X_k + \epsilon_{2k} \\ X_{2k+1} = \mathbf{c} + \mathbf{d} X_k + \epsilon_{2k+1} \end{cases}$$

Hypothèses

- ▶ indépendance entre (δ_k) et (X_k) et $(\epsilon_{2k}, \epsilon_{2k+1})$
- bruit différence de martingale avec moments d'ordre 8

Estimation de $\theta = (a, b, c, d)^t$: minimiser

$$\Delta_n(\theta) = \frac{1}{2} \sum_{k \in \mathbb{T}_{n-1}} \frac{\delta_{2k} (X_{2k} - a - bX_k)^2 + \delta_{2k+1} (X_{2k+1} - c - dX_k)^2}{\delta_{2k} (X_{2k} - a - bX_k)^2 + \delta_{2k+1} (X_{2k+1} - c - dX_k)^2}.$$

Estimateurs empiriques des moments du bruit

Estimateur de θ

Estimateur des moindres carrés pour heta

$$\widehat{\boldsymbol{\theta}}_{n} = \begin{pmatrix} \widehat{\boldsymbol{a}}_{n} \\ \widehat{\boldsymbol{b}}_{n} \\ \widehat{\boldsymbol{c}}_{n} \\ \widehat{\boldsymbol{d}}_{n} \end{pmatrix} = \boldsymbol{S}_{n-1}^{-1} \sum_{k \in \mathbb{T}_{n-1}} \begin{pmatrix} \delta_{2k} X_{2k} \\ \delta_{2k} X_{k} X_{2k} \\ \delta_{2k+1} X_{2k+1} \\ \delta_{2k+1} X_{k} X_{2k+1} \end{pmatrix}$$

avec

$$\boldsymbol{S}_n = \left(\begin{array}{cc} \boldsymbol{S}_n^0 & 0 \\ 0 & \boldsymbol{S}_n^1 \end{array}\right)$$

$$oldsymbol{S}_n^0 = \sum_{k \in \mathbb{T}_n} rac{\delta_{2k}}{2k} \left(egin{array}{cc} 1 & X_k \ X_k & X_k^2 \end{array}
ight) \qquad oldsymbol{S}_n^1 = \sum_{k \in \mathbb{T}_n} rac{\delta_{2k+1}}{2k} \left(egin{array}{cc} 1 & X_k \ X_k & X_k^2 \end{array}
ight)$$

Convergence avec vitesse

Théorème

$$\mathbb{1}_{\left\{|\mathbb{G}_{n}^{*}|>0\right\}} \parallel \widehat{\boldsymbol{\theta}}_{n} - \boldsymbol{\theta} \parallel^{2} = \mathbb{1}_{\left\{|\mathbb{G}_{n}^{*}|>0\right\}} \mathcal{O}\left(\frac{\log|\mathbb{T}_{n-1}^{*}|}{|\mathbb{T}_{n-1}^{*}|}\right)$$

Preuve: méthode martingale

- identifier une martingale (vectorielle) pour la filtration des générations (augmentée de tout le processus d'observation)
- calculer la limite du crochet
- ▶ théorème de vitesse de convergence pour une martingale sur un arbre binaire de Galton-Watson

Martingale principale

 $\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta} = \boldsymbol{S}_{n-1}^{-1} \boldsymbol{M}_n$, avec (\boldsymbol{M}_n) martingale pour la filtration des générations et observations

$$\boldsymbol{M}_{n} = \sum_{k \in \mathbb{T}_{n-1}} \begin{pmatrix} \delta_{2k} \epsilon_{2k} \\ \delta_{2k} X_{k} \epsilon_{2k} \\ \delta_{2k+1} \epsilon_{2k+1} \\ \delta_{2k+1} X_{k} \epsilon_{2k+1} \end{pmatrix}$$

 $(\boldsymbol{M}_n)_{n \geq 1}$ de carré intégrable et de crochet $<\boldsymbol{M}>_n = \boldsymbol{\Gamma}_{n-1}$

$$\mathbf{\Gamma}_n = \begin{pmatrix} \sigma^2 \mathbf{S}_n^0 & \rho \mathbf{S}_n^{0,1} \\ \rho \mathbf{S}_n^{0,1} & \sigma^2 \mathbf{S}_n^1 \end{pmatrix} \quad \text{and} \quad \mathbf{S}_n^{0,1} = \sum_{k \in \mathbb{T}_n} \delta_{2k} \delta_{2k+1} \begin{pmatrix} 1 & X_k \\ X_k & X_k^2 \end{pmatrix}$$

Convergence du crochet

Lois des grands nombres pour les observations (δ_k) , le bruit $(\delta_k \epsilon_k)$, le BAR $(\delta_{2k+i} X_k^q)$

- martingales scalaires pour différentes filtrations
- ► forme spécifique de l'auto-régression
- ▶ hypothèse $\max\{|b|, |d|\} < 1$

Théorème central limite

Théorème

Conditionnellement à la non extinction

$$\sqrt{|\mathbb{T}_{n-1}^*|}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \boldsymbol{S}^{-1}\boldsymbol{\Gamma}\boldsymbol{S}^{-1})$$

Deux difficultés

- ▶ normalisation $|\mathbb{T}_{n-1}^*|$ aléatoire
- résultat conditionné à la non extinction : valable sur l'ensemble de non extinction $\overline{\mathcal{E}} = \cap \{ |\mathbb{G}_n^*| > 0 \}$ muni de la probabilité $\mathbb{P}_{\overline{\mathcal{E}}}(\cdot) = \mathbb{P}(\cdot \cap \overline{\mathcal{E}})/\mathbb{P}(\overline{\mathcal{E}})$

Analyse des données E. coli

51 généalogies comportant 8 ou 9 générations

- ▶ test (a, b) = (c, d) 42 p-valeurs ≤ 0.05
- ► test a/(1-b) = c/(1-d) 41 p-valeurs ≤ 0.05

Simulations ⇒ faible puissance des tests pour 8 ou 9 générations

Utiliser toutes les données disponibles

Estimateur multi-arbres

Estimateur des moindres carrés pour heta

$$\widehat{\boldsymbol{\theta}}_{n} = \boldsymbol{S}_{n-1}^{-1} \sum_{j=1}^{m} \sum_{k \in \mathbb{T}_{n-1}} \begin{pmatrix} \delta_{j,2k} X_{j,2k} \\ \delta_{j,2k} X_{j,k} X_{j,2k} \\ \delta_{j,2k+1} X_{j,2k+1} \\ \delta_{j,2k+1} X_{j,k} X_{j,2k+1} \end{pmatrix}$$

avec

$$\mathbf{S}_{n} = \begin{pmatrix} \mathbf{S}_{n}^{0} & 0 \\ 0 & \mathbf{S}_{n}^{1} \end{pmatrix}$$

$$\mathbf{S}_{n}^{i} = \sum_{i=1}^{m} \sum_{k \in \mathbb{T}_{n}} \delta_{j,2k+i} \begin{pmatrix} 1 & X_{j,k} \\ X_{j,k} & X_{j,k}^{2} \end{pmatrix}$$

Analyse multi-arbres des données E. coli

Estimation de $\theta \Longrightarrow$ hypothèse $\max\{|b|,|d|\}<1$ vraie

а	0.0204 [0.0203; 0.0205]	С	0.0201 [0.0200; 0.0202]
b	0.4686 [0.4536; 0.4837]	d	0.4518 [0.4366; 0.4669]

Estimation des moments du bruit

Tests : hypothèse (a,b)=(c,d) rejetée (p-valeur $< 10^{-10}$) hypothèse a/(1-b)=c/(1-d) rejetée (p-valeur $< 10^{-10}$)

Modèle à coefficients aléatoires

$$\begin{cases} X_{2k} = (a + \varepsilon_{2k}) + (b + \eta_{2k}) X_k \\ X_{2k+1} = (c + \varepsilon_{2k+1}) + (d + \eta_{2k+1}) X_k \end{cases}$$

Hypothèses

- $\triangleright (\varepsilon_{2k}, \eta_{2k}, \varepsilon_{2k+1}, \eta_{2k+1}) \text{ iid}$
- moments d'ordre 32
- donnés manquantes Galton Watson simple
- ightharpoonup Estimateur des moindres carrés pour heta : même formule
- Estimateurs des moindres carrés modifiés pour les moments du bruit

Convergence

Vitesse de convergence

$$\mathbb{1}_{\left\{|\mathbb{G}_{n}^{*}|>0\right\}} \parallel \widehat{\boldsymbol{\theta}}_{n} - \boldsymbol{\theta} \parallel^{2} = \mathbb{1}_{\left\{|\mathbb{G}_{n}^{*}|>0\right\}} \mathcal{O}\left(\frac{\log|\mathbb{T}_{n-1}^{*}|}{|\mathbb{T}_{n-1}^{*}|}\right)$$

Théorème central limite

Conditionnellement à la non extinction

$$\sqrt{|\mathbb{T}_{n-1}^*|}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) \xrightarrow{\mathcal{L}} \mathcal{N}(\mathbf{0}, \boldsymbol{S}^{-1}\boldsymbol{\Gamma}\boldsymbol{S}^{-1})$$

- identifier une martingale (vectorielle) pour la filtration des générations et observations
- calculer la limite du crochet
- ▶ théorème de vitesse de convergence pour une martingale sur un arbre binaire de Galton-Watson

Martingale principale

 $\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta} = \boldsymbol{S}_{n-1}^{-1} \boldsymbol{M}_n$, avec (\boldsymbol{M}_n) martingale pour la filtration des générations et observations

$$\boldsymbol{M}_{n} = \sum_{k \in \mathbb{T}_{n-1}} \begin{pmatrix} \delta_{2k} \epsilon_{2k} \\ \delta_{2k} X_{k} \epsilon_{2k} \\ \delta_{2k+1} \epsilon_{2k+1} \\ \delta_{2k+1} X_{k} \epsilon_{2k+1} \end{pmatrix}$$

$$\begin{cases} \epsilon_{2k} = \delta_{2k}(\varepsilon_{2k} + \eta_{2k}X_k), \\ \epsilon_{2k+1} = \delta_{2k+1}(\varepsilon_{2k+1} + \eta_{2k+1}X_k), \end{cases}$$

 $(\boldsymbol{M}_n)_{n\geq 1}$ de carré intégrable et de crochet $<\boldsymbol{M}>_n=\boldsymbol{\Gamma}_{n-1}$ faisant intervenir des termes en $\sum_{k\in\mathbb{T}_{n-1}}\delta_{2k+i}X_k^q$, $0\leq q\leq 4$

Convergence du crochet

On ne veut pas imposer

$$\max\{|b+\eta_2|,|d+\eta_3|\}<1$$

⇒ plus de majoration qui gomme l'asymétrie impossibilité d'utiliser la méthode martingale directe

Convergence du crochet

On ne veut pas imposer

$$\max\{|b+\eta_2|,|d+\eta_3|\}<1$$

plus de majoration qui gomme l'asymétrie impossibilité d'utiliser la méthode martingale directe

⇒ lois des grands nombres par la méthode chaîne de Markov bifurquante

Méthode par chaîne de Markov bifurquante

[Guyon 2007]

 définition d'un modèle de chaîne de Markov sur un arbre binaire complet

$$\mathbb{E}\left[\prod_{k\in\mathbb{G}_n}f_k(X_{2k},X_{2k+1})\;\Big|\;\sigma(X_j,j\in\mathbb{T}_n)\right]=\prod_{k\in\mathbb{G}_n}Pf_k(X_k)$$

 comportement asymptotique de (X_k) donnée par la chaîne induite

$$\begin{cases} Y_0 = X_1, \\ Y_{n+1} = A_{n+1} + B_{n+1} Y_n \end{cases}$$

$$(A_n, B_n)$$
 iid de loi $(a + \epsilon_2, b) \mathbb{1}_{\{\zeta=1\}} + (c + \epsilon_3, d) \mathbb{1}_{\{\zeta=0\}}$, $\zeta \sim \text{Bernoulli}(1/2)$ lignée aléatoire

Chaîne de Markov bifurquante sur un arbre GW

Chaîne bifurquante sur $\mathbb{R} \cup \partial$

$$X_k^* = X_k \mathbb{1}_{\{\delta_k = 1\}} + \partial \mathbb{1}_{\{\delta_k = 0\}}$$

Noyau markovien sur $(\mathbb{R} \cup \partial)^3$: $Pf(\partial) = f(\partial, \partial, \partial)$ et

$$Pf(x) = p(1,1)\mathbb{E}\left[f(x,(b+\eta_2)x+a+\varepsilon_2,(d+\eta_3)x+c+\varepsilon_3)\right] \\ + p(1,0)\mathbb{E}\left[f(x,(b+\eta_2)x+a+\varepsilon_2,\partial)\right] \\ + p(0,1)\mathbb{E}\left[f(x,\partial,(d+\eta_3)x+c+\varepsilon_3)\right] \\ + p(0,0)f(x,\partial,\partial)$$

Chaîne induite

$$\begin{array}{l} (A_n,B_n) \text{ iid de loi } (a+\epsilon_2,b+\eta_2)\mathbb{1}_{\{\zeta=1\}}+(c+\epsilon_3,d+\eta_3)\mathbb{1}_{\{\zeta=0\}}, \\ \zeta \sim \text{Bernoulli}(\frac{p(1,0)+p(1,1)}{p(1,0)+p(0,1)+2p(1,1)}) \\ \qquad \qquad \left\{ \begin{array}{ccc} Y_0 & = & X_1, \\ Y_{n+1} & = & A_{n+1}+B_{n+1}Y_n \end{array} \right. \end{array}$$

- ▶ loi invariante $\mu \sim \sum B_1 \cdots B_{n-1} A_n$
- ergodicité géométrique pour x^q dès que

$$\mathbb{E}[|B_1|^q] = \frac{p(1,0) + p(1,1)}{m} \mathbb{E}[|b + \eta_2|^q] + \frac{p(0,1) + p(1,1)}{m} \mathbb{E}[|d + \eta_3|^q] < 1$$

remplace l'hypothèse $\max\{|b|,|d|\}<1$

Analyse multi-arbres des données E. coli (coefficients aléatoires)

	0.0204 [0.0197; 0.0210]		
b	0.4686 [0.4511; 0.4861]	d	0.4518 [0.4336; 0.4700]

Estimation des moments du bruit

Test : hypothèse $\sigma_n^2 = 0$ rejetée (p-valeur= 10^{-3})

Conclusion et perspectives

Comparatif méthode chaîne de Markov et méthode martingale

	Martingale	Chaîne de Markov
	différence de martingale	iid
bruit	moments d'ordre <i>q</i>	moments d'ordre 4 <i>q</i>
b et d	max < 1	moyenne pondérée < 1
	Galton-Watson	Galton-Watson
observations	à deux types	simple
		deux types?

Perspectives

- remise en cause de l'asymétrie par de nouvelles expériences biologiques
- modélisation du vieillissement par accumulation de déchets
- dynamique des mitochondries

Plan

Processus BAR et division cellulaire

- Introduction
- BAR avec données manquantes
- BAR à coefficient aléatoires
- Conclusion et perspectives

Méthodes numériques pour les PDP

- Introduction
- Arrêt optimal
- Méthodologie générale
- Conclusion et perspectives

Définition des PDP

Davis (80's)

Classe générale de processus stochastiques hybrides de type non-diffusion : mouvement deterministe ponctué de sauts aléatoires

Domaines d'application

ingénierie, optimisation, recherche opérationnelle, files d'attente, assurance, biologie, trafic internet, neurosciences, fiabilité dynamique . . .

Dynamique

Processus hybride $X_t = (m_t, y_t)$

- ▶ mode discret $m_t \in \{1, 2, ..., p\}$
- ightharpoonup variables d'état euclidiennes $y_t \in \mathbb{R}^n$

Caractéristiques locales dans le mode m

- ▶ E_m ouvert de \mathbb{R}^d , ∂E_m sa frontière, \overline{E}_m sa fermeture, $E = \bigcup (\{m\} \times E_m)$ espace d'états
- ► Flot ϕ_m : $\mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ groupe d'homéomorphismes, mouvement déterministe
- ▶ Intensité λ_m : $\overline{E}_m \to \mathbb{R}_+$ intensité des sauts
- Noyau markovien Q_m on $(\overline{E}_m, \mathcal{B}(\overline{E}_m))$ sélectionne les nouvelles positions après saut

Deux types de sauts

 \triangleright temps d'atteinte de la frontière $t^*(m, y)$ deterministe

$$t^*(m,y) = \inf\{t > 0 : \phi_m(y,t) \in \partial E_m\}$$

▶ loi du premier temps de saut T₁

$$\mathbb{P}_{(m,y)}(T_1 > t) = \begin{cases} e^{-\int_0^t \lambda_m \left(\phi_m(y,s)\right) ds} & \text{si} \quad t < t^*(m,y) \\ 0 & \text{si} \quad t \ge t^*(m,y) \end{cases}$$

 $ightharpoonup T_1$ a une densité sur $[0, t^*(m, y)]$ et un atome en $t^*(m, y)$:

$$\mathbb{P}_{(m,y)}(T_1=t^*(m,y))>0$$

Benoîte de Saporta 3 Juillet 2013 33/56

Point de départ

$$X_0 = Z_0 = (m, y)$$

 X_t suit le flot déterministe jusqu'au premier temps de saut $T_1 = S_1$

$$X_t = (m, \phi_m(y, t)), \quad t < T_1$$

Position et mode après-saut $Z_1=(M_1,Y_1)$ tirés suivant la loi $Q_m(\phi_m(y,T_1),\cdot)$

 X_t suit le flot déterministe jusqu'au prochain temps de saut T_2

$$X_{T_1+t} = (M_1, \phi_{M_1}(Y_1, t)), \quad t < S_2 = T_2 - T_1$$

HdR 3 Juillet 2013 Benoîte de Saporta 34/56

Position et mode après-saut $Z_2=(M_2,Y_2)$ tirés suivant la loi $Q_{M_1}(\phi_{M_1}(Y_1,S_2),\cdot)\dots$

Chaîne induite

 Z_n position et mode après le saut n S_n durée entre le saut n et le saut n-1

Propriété fondamentale

 (Z_n, S_n) est une chaîne de Markov qui contient tout l'aléa du processus :

 X_t connu pour tout $t \Longrightarrow (Z_n, S_n)$ connus pour tout n (Z_n, S_n) connus pour tout $n \Longrightarrow X_t$ connu pour tout t

Exemple Astrium

Structure de missile balistique stratégique soumis à corrosion

Profil d'emploi

Stockage dans 3 environnements différentes avec durées aléatoires

- 1. atelier
- 2. sous-marin nucléaire en mission
- 3. sous-marin en cale sèche

Exigence du sûreté très forte

Maîtriser l'évolution de l'épaisseur

Dynamique du processus de dégradation

- ► Succession déterministe des environnements : $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \cdots$
- ▶ Temps aléatoire passé dans l'environnement i loi $Exp(\lambda_i)$
- Protection anti-corrosion initiale d'une durée aléatoire suivant une loi de Weibul
- ► Equation de la perte d'épaisseur dans l'environnement *i* :

$$d_t = \rho_i \Big(t - \eta_i + \eta_i \exp(-t/\eta_i) \Big)$$

- ρ_i taux de corrosion stable aléatoire suivant une loi uniforme dépendant de l'environnement i
- $\triangleright \eta_i$ durée de transition déterministe dans l'environnement i.

On dispose de valeurs numériques pour tous les paramètres.

Structure inutilisable si $d_t \geq 0.2mm$

Exemples de trajectoires simulées

Méthodes numériques

Constat

Très peu de méthodes numériques pour les PDP dans la littérature [Costa Davis 88, 89]

Objectif

Proposer des méthodes numériques

- adaptées aux spécificités des PDP
- avec des preuves (et des vitesses) de convergence
- utilisables en pratique

Motivation: maintenance préventive

Machine pouvant tomber en panne

Problème de maintenance

Trouver un équilibre optimal entre

- changer les pièces trop tôt/souvent
- ▶ ne rien faire jusqu'à la panne totale

Problème mathématique

- arrêt optimal
- contrôle impulsionnel

- ► Fonction de performance g
- \triangleright Horizon aléatoire : N-ème temps de saut T_N du PDP
- $ightharpoonup \mathcal{M}_N$ ensemble des temps d'arrêt $\tau \leq T_N$

Problème d'arrêt optimal

calculer la fonction valeur

$$V(x) = \sup_{ au \in \mathcal{M}_N} \mathbb{E}_x[g(X_{ au})]$$

 \blacktriangleright trouver un temps d'arrêt ε -optimal τ^* qui atteint $V(x) - \varepsilon$

[Gugerli,1986]

Equation de programmation dynamique

$$\triangleright v_N(Z_N) = g(Z_N)$$

$$\triangleright$$
 $v_n(Z_n) = L(v_{n+1}, g)(Z_n)$ pour $n \le N-1$

$$v_0(Z_0) = \sup_{\tau \in \mathcal{M}_N} \mathbb{E}_{\mathsf{X}}[g(X_\tau)]$$

$$L(v_{n+1}, g)(Z_n) = \sup_{u \le t^*(Z_n)} \left\{ \mathbb{E} \left[v_{n+1}(Z_{n+1}) \mathbb{1}_{\{S_{n+1} < u\}} + g(\phi(Z_n, u)) \mathbb{1}_{\{S_{n+1} \ge u\}} \mid Z_n \right] \right\} \\ \vee \mathbb{E} \left[v_{n+1}(Z_{n+1}) \mid Z_n \right]$$

Choix de la méthode de discrétisation

[Pagès 98], [Bally, Pagès 03, 05], [Pagès, Pham, Printems 04]...

Quantification d'une variable aléatoire $X \in L^p(\mathbb{R}^d)$

Approcher X par \widehat{X} à support fini pour miniser $\|X - \widehat{X}\|_p$

- ▶ grille finie pondérée Γ avec $|\Gamma| = K$
- $\hat{X} = p_{\Gamma}(X)$ projection au plus proche voisin

Propriétés asymptotiques

Si
$$E[|X|^{p+\eta}] < +\infty$$
 alors

$$\lim_{K \to \infty} \min_{|\Gamma| < K} \|X - \widehat{X}^{\Gamma}\|_p \simeq K^{-1/d}$$

Grilles pour le processus de corrosion

Dans l'ambiance 2 après le 1er saut

Grilles pour le processus de corrosion

Dans l'ambiance 3 après le 2ème saut

Grilles pour le processus de corrosion

Dans l'ambiance 1 après le 15ème saut

Approximation de la fonction valeur

- $\widehat{v}_N(\widehat{Z}_N) = g(\widehat{Z}_N)$
- $ightharpoonup \widehat{v}_n(\widehat{Z}_n) = \widehat{L}_d(\widehat{v}_{n+1}, g)(\widehat{Z}_n)$ pour $n \leq N-1$

$$\begin{split} \widehat{L}_{d}(v_{n+1}, g)(\widehat{Z}_{n}) \\ &= \max_{u \in G(\widehat{Z}_{n})} \left\{ \mathbb{E}\left[v(\widehat{Z}_{n+1})\mathbb{1}_{\{\widehat{S}_{n+1} < u\}} + g(\phi(\widehat{Z}_{n}, u))\mathbb{1}_{\{\widehat{S}_{n+1} \ge u\}} \mid \widehat{Z}_{n}\right] \right\} \\ &\vee \mathbb{E}\left[v(\widehat{Z}_{n+1}) \mid \widehat{Z}_{n}\right] \end{split}$$

Vitesse de convergence

Théorème.

Hypothèses de régularité Lipschitz sur ϕ , λ , Q, t^* et g

$$|v_0(x) - \widehat{v}_0(x)| \leq C\sqrt{EQ}$$

C constante explicite, EQ erreur de quantification

√ due aux indicatrices

Règle d'arrêt calculable $\hat{ au}$

- construction itérative explicite
- pas de calculs supplémentaires
- \triangleright vrai temps d'arrêt pour la filtration du processus (X_t)

Théorème

Mêmes hypothèses

$$|v_0(x) - \mathbb{E}_x[g(X_{\hat{\tau}})]| \leq C_1 EV + C_2 \sqrt{EQ}$$

 C_1 , C_2 constantes explicites

EV erreur de la fonction valeur

EQ erreur de quantification

Autre approximation de la fonction valeur par Monte Carlo

Politique de maintenance pour le modèle de corrosion

Une seule intervention avant la rupture \Rightarrow remise à neuf de la structure

Optimisation de la maintenance : équilibre entre

- une maintenance trop précoce coûteux
- une maintenance trop tardive dangereux

Optimisation des marges

En phase de conception

- consolider les marges de dimensionnement par rapport aux spécifications
- ▶ assurer à 95% qu'aucune maintenance ne sera nécessaire avant la date objective contractuelle

Règle d'arrêt itérative

Optimisation des marges

Seuil	Probabilité			
5 ans	0.0002			
10 ans	0.0304			
15 ans	0.0524			
20 ans	0.0793			
40 ans	0.2647			
60 ans	0.6048			
80 ans	0.8670			
100 ans	0.9691			
150 ans	0.9997			

Calcul de la fonction valeur

Résultats numériques (vraie valeur : 4)

Nombre de points dans	Fonction valeur	Fonction valeur
les grilles de quantification	approchée	par Monte Carlo
10	2.48	0.94
50	2.70	1.84
100	2.94	2.10
200	3.09	2.63
500	3.39	3.15
1000	3.56	3.43
2000	3.70	3.60
5000	3.82	3.73
8000	3.86	3.75

Stratégie numérique générale

Propriété

Toute quantité concernant la loi du processus peut s'exprimer uniquement à l'aide de la suite (Z_n, S_n)

- ▶ trouver une expression (récursive) du problème en fonction de la suite (Z_n, S_n)
- ightharpoonup discrétiser (Z_n, S_n) pour obtenir une approximation numérique

Autres résultats

- arrêt optimal sur un cas test de réservoir (128 modes)
- arrêt optimal sous observation partielle
- contrôle impulsionnel

HdR 3 Juillet 2013 54/56 Benoîte de Saporta

- arrêt optimal sur un cas test de réservoir (128 modes)
- arrêt optimal sous observation partielle
- contrôle impulsionnel
- \triangleright espérance de fonctionnelles de X_t dépendant du temps
- ▶ distribution et moment de temps de sortie

Conclusion et perspectives

Avantages et inconvénients des méthodes numériques

- méthode utilisable en pratique
- temps de calcul on line/off line
- dimension

Perspectives

- stratégie optimale pour le contrôle impulsionnel
- méthodes numériques pour les MDP
- pré-calcul d'équations différentielles matricielles

