Tail of the stationary solution of the stochastic equation $Y_{n+1}=a_{n} Y_{n}+b_{n}$ with Markovian coefficients

Benoîte de Saporta*
IRMAR, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
Received 26 May 2003; accepted 24 June 2005
Available online 1 August 2005

Abstract

In this paper, we deal with the real stochastic difference equation $Y_{n+1}=a_{n} Y_{n}+b_{n}, n \in \mathbb{Z}$, where the sequence $\left(a_{n}\right)$ is a finite state space Markov chain. By means of the renewal theory, we give a precise description of the situation where the tail of its stationary solution exhibits power law behavior. (c) 2005 Elsevier B.V. All rights reserved.

Keywords: Stochastic difference equation; Markov-switching auto-regression; Markov chains; Renewal theory; Non-negative matrices; Spectral radius; Random walk; Ladder heights

1. Introduction

We study the following stochastic difference equation:

$$
\begin{equation*}
Y_{n+1}=a_{n} Y_{n}+b_{n}, \quad n \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $\left(a_{n}\right)$ is a real, finite state space Markov chain, and $\left(b_{n}\right)$ is a sequence of real i.i.d. random variables. Equations of type (1) have many applications in stochastic modeling and statistics. Most of previously studied cases deal with i.i.d.

[^0]multiplicative coefficients $\left(a_{n}\right)$: see [13,14,16,9]. For more recent work, see also [15]. Here, we study the Markovian case. In statistical literature, Eq. (1) defines a so-called Markov-switching auto-regression. See [11] for interesting applications in econometrics. Such stochastic recursions are also a basic tool in queuing theory: see [3].

We assume throughout this paper that the following conditions are satisfied:

$$
\begin{align*}
& \mathbb{E} \log \left|a_{0}\right|<0, \\
& \mathbb{E} \log ^{+}\left|b_{0}\right|<\infty . \tag{2}
\end{align*}
$$

If in addition $\left(a_{n}, b_{n}\right)$ is stationary and ergodic, Brandt [5] proved that Eq. (1) has a unique stationary solution $\left(Y_{n}\right)$, where

$$
Y_{n}=\sum_{k=0}^{\infty} a_{n-1} a_{n-2} \cdots a_{n-k} b_{n-1-k}, \quad n \in \mathbb{Z}
$$

In the following, $\left(Y_{n}\right)$ will always denote the stationary solution of Eq. (1). We deal with the tail of Y_{1} : we investigate the asymptotic behavior of $\mathbb{P}\left(x Y_{1}>t\right)$, when t tends to infinity, and where $x \in\{-1,1\}$. Our approach is based on renewal-theoretic methods as developed in [16,9].

Our main results are the following two theorems, depending on the a_{n} being positive or not. Let \mathbb{R} be the set of real numbers, and \mathbb{R}_{+}^{*} the set of positive real numbers.

Theorem 1. Let $\left(a_{n}\right)$ be an irreducible, aperiodic, stationary Markov chain, with state space $E=\left\{e_{1}, \ldots, e_{p}\right\} \subset \mathbb{R}_{+}^{*}$, transition matrix $P=\left(p_{i j}\right)$ and stationary law v. Let $\left(b_{n}\right)$ be a sequence of non-zero real i.i.d. random variables, and independent of the sequence $\left(a_{n}\right)$. If the following conditions are satisfied:
(1) there is a $\lambda>0$ so that the matrix $P_{\lambda}=\operatorname{diag}\left(e_{i}^{\lambda}\right) P^{\prime}$ has spectral radius $1\left(P^{\prime}\right.$ denotes the transpose of P),
(2) the numbers $\log e_{i}$ are not integral multiples of the same number,
(3) there is a $\delta>0$ such that $\mathbb{E}\left|b_{0}\right|^{\lambda+\delta}<\infty$,
then we have for $x \in\{-1,1\}$

$$
t^{\lambda} \mathbb{P}\left(x Y_{1}>t\right) \underset{t \rightarrow \infty}{\longrightarrow} L(x),
$$

where $L(1)+L(-1)$ is positive. If $b_{0} \geqslant 0$ a.s., then $L(-1)=0$, and $L(1)>0$. If $b_{0} \leqslant 0$ a.s., then $L(1)=0$, and $L(-1)>0$.

Theorem 2. Let $\left(a_{n}\right)$ be an irreducible, aperiodic, stationary Markov chain, with state space $E=\left\{e_{1}, \ldots, e_{p}\right\} \subset \mathbb{R}$ such that e_{1}, \ldots, e_{ℓ} are positive and $e_{\ell+1}, \ldots, e_{p}$ are negative for a $0 \leqslant \ell \leqslant p-1\left(\ell=0\right.$ means that all the e_{i} are negative $)$. Let $P=\left(p_{i j}\right)$ be its transition matrix and v its stationary law. Let $\left(b_{n}\right)$ be a sequence of non-zero real i.i.d. random variables, and independent of the sequence $\left(a_{n}\right)$. If the following conditions
are satisfied:
(1) there is a $\lambda>0$ so that $P_{\lambda}=\operatorname{diag}\left(\left|e_{i}\right|^{\lambda}\right) P^{\prime}$ has spectral radius 1 ,
(2) the numbers $\log \left|e_{i}\right|$ are not integral multiples of the same number,
(3) there is a $\delta>0$ such that $\mathbb{E}\left|b_{0}\right|^{\lambda+\delta}<\infty$,
then we have, for $x \in\{-1,1\}$,

$$
t^{\lambda} \mathbb{P}\left(x Y_{1}>t\right) \underset{t \rightarrow \infty}{\longrightarrow} L(x)
$$

where $L(1)+L(-1)$ is positive. If in addition P^{\prime} is ℓ-irreducible (see Definition 3) then $L(1)=L(-1)>0$.

The last two hypotheses in these theorems are the same as in the i.i.d. case. In particular, Hypothesis (2) ascertains that the distribution of Y_{1} is non-lattice, and it is equivalent to requiring that the subgroup generated by the $\log e_{i}$ be dense in \mathbb{R}. On the contrary, Assumption (1) comes from the Markovian dependence considered here. Indeed, we will prove in Section 4.1 that the spectral radius $\rho\left(P_{\lambda}\right)$ of the matrix P_{λ} can be computed from the formula $\rho\left(P_{\lambda}\right)=\lim \left(\mathbb{E}\left|a_{0}, \ldots, a_{1-n}\right|^{\lambda}\right)^{1 / n}$. Therefore, this assumption is a suitable substitute for the classical relation $\mathbb{E}\left|a_{0}\right|^{\lambda}=1$ assumed in the i.i.d. case.

Note that the assumption of independence between the two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ can be avoided. Let \mathscr{F}_{-n} be the σ-field generated by a_{0}, \ldots, a_{-n} and b_{0}, \ldots, b_{-n}. Then $\left(b_{n}\right)$ is only required to be a sequence of random variables such that $\left(a_{n}, b_{n}\right)$ is a stationary process, and $b_{-(n+1)}$ is independent of \mathscr{F}_{-n}. We also need one more assumption (also assumed in the i.i.d. case): for all $i, \mathbb{P}\left(b_{0}+a_{0} x=x \mid a_{0}=e_{i}\right)<1$. The proofs run exactly the same, except that of Lemma 3, where $\min _{1 \leqslant i \leqslant p} \mathbb{P}\left(\mid b_{0}+\right.$ $\left.\left(e_{i}-1\right) m_{0} \mid>\varepsilon\right)$ must be replaced by $\min _{1 \leqslant i \leqslant p} \mathbb{P}\left(\left|b_{0}+\left(a_{0}-1\right) m_{0}\right|>\varepsilon \mid a_{0}=e_{i}\right)$. And thanks to the new assumption, we can again choose a positive ε such that the latter minimum is positive.

As the mapping $\lambda \longmapsto \log \rho\left(P_{\lambda}\right)$ is convex (see Section 4.1), that its right-hand derivative at 0 is negative and $\rho\left(P_{0}\right)=\rho(P)=1$, only two cases may occur. Either for all $\lambda>0, \rho\left(P_{\lambda}\right)<1$, in which case we can prove that $\mathbb{E}\left|Y_{1}\right|^{\lambda}<\infty$ for all λ, provided $\mathbb{E}\left|b_{0}\right|^{\lambda}<\infty$ (see Proposition 3), and therefore $\mathbb{P}\left(\left|Y_{1}\right|>t\right)=\mathrm{o}\left(t^{-\lambda}\right)$ for all λ; or there is a unique $\lambda>0$ so that $\rho\left(P_{\lambda}\right)=1$, this is the case we study here.

Similar results have already been proved in the i.i.d. multidimensional case: a_{n} are matrices and Y_{n} and b_{n} vectors. Renewal theory is used by Kesten [13] when the a_{n} either have a density or are non-negative. These results were extended by Le Page [16] to all i.i.d. random matrices satisfying similar assumptions as in our theorems. Finally Goldie [9] proved a new specific implicit renewal theorem and derived the same results as Kesten in the i.i.d. one-dimensional case. He also studies the tails of the stationary solutions of several other one-dimensional random equations with i.i.d. coefficients.

The paper is organized as follows. In Section 2, we introduce some notation and state a new renewal theorem. In Section 3 we derive the renewal equations corresponding to our problem. In Sections 4 and 5, we prove Theorem 1, Section 5 being dedicated to the proof that the sum of the limits is non-zero. And finally in Section 6 we prove Theorem 2.

2. A renewal theorem

Our approach is based on a new renewal theorem for systems of renewal equations. First, we give some notation and conventions that will apply throughout.

Let $F=\left(F_{i j}\right)_{1 \leqslant i, j \leqslant p}$ be a matrix of distributions: non-decreasing, right-continuous functions from \mathbb{R} to \mathbb{R}_{+}with limit 0 at $-\infty$.

Definition 1. For all $r \geqslant 1$ and all $p \times r$ vector or matrix H of Borel measurable, real valued functions $H_{i j}$ on \mathbb{R} that are bounded on compact intervals, we define the convolution product $F * H$ by

$$
(F * H)_{i j}(t)=\sum_{k=1}^{p} \int_{-\infty}^{\infty} H_{k j}(t-u) F_{i k}(\mathrm{~d} u)
$$

where it exists.
We study the renewal equation $Z=F * Z+G$, where $G=\left(G_{1}, \ldots, G_{p}\right)^{\prime}$ is a vector of Borel measurable, real valued functions, bounded on compact intervals, and $Z=\left(Z_{1}, \ldots, Z_{p}\right)^{\prime}$ is a vector of functions. The renewal theorem will give the limit of Z at $+\infty$.

For all real t, set:

- $B=\left(b_{i j}\right)_{1 \leqslant i, j \leqslant p}$ where $b_{i j}=\int u F_{i j}(\mathrm{~d} u)$ if it exists, the expectation of F,
- $F^{(0)}(t)=\left(\delta_{i j}(t)\right)_{1 \leqslant i, j \leqslant p}$ where $\delta_{i j}(t)=\mathbf{1}_{t \geqslant 0}$ if $i=j$ and 0 otherwise, so that $F^{(0)} * H=H$ for all H as in the definition above,
- $F^{(n)}(t)=F * F^{(n-1)}(t)$, the n-fold convolution of F,
- $U(t)=\sum_{n=0}^{\infty} F^{(n)}(t)$, the renewal function associated with F.

Assume that all the measures $F_{i j}$ are finite:

$$
F_{i j}(\infty)=\lim _{t \rightarrow \infty} F_{i j}(t)<\infty
$$

and that $F(\infty)$ is an irreducible matrix (see e.g. [12] for a definition and PerronFrobenius theory). By Perron-Frobenius theorem, the spectral radius $\rho(F(\infty))$ of $F(\infty)$ is a simple eigenvalue with right and left positive eigenvectors. Assume that $\rho(F(\infty))=1$, and let m and u be two positive eigenvectors such that:

$$
F(\infty) m=m, \quad u^{\prime} F(\infty)=u^{\prime}, \quad \sum_{i=1}^{p} m_{i}=1, \quad \sum_{i=1}^{p} u_{i} m_{i}=1 .
$$

Assume also that the sequence $\left(\left\|F(\infty)^{n}\right\|\right.$) is bounded (for instance if $F(\infty)$ is aperiodic, this is true). We recall the following definition:

Definition 2. The matrix of distributions F is lattice if the following conditions are satisfied:

- For all $i \neq j, F_{i j}$ is concentrated on a set of the form $b_{i j}+\lambda_{i j} \mathbb{Z}$.
- For all $i, F_{i i}$ is concentrated on a set of the form $\lambda_{i i} \mathbb{Z}$.
- Each $\lambda_{i i}$ is an integral multiple of the same number.

We take λ to be the largest such number.

- For all $a_{i j}, a_{j k}, a_{i k}$ points of increase of $F_{i j}, F_{j k}, F_{i k}$, respectively, $a_{i j}+a_{j k}-a_{i k}$ is an integral multiple of λ.

Our basic tool is the following renewal theorem from [17]. It extends a previous result of Crump [7] and Athreya and Rama Murthy [4] which deals with the case where each distribution $F_{i j}$ has support on \mathbb{R}_{+}.

Renewal Theorem A. Assume that F is a matrix of distributions satisfying the assumptions above, that it is non-lattice, and that
(1) its expectation B exists,
(2) for all $t \in \mathbb{R}, U(t)$ is finite.

If in addition G is directly Riemann integrable (see [8]), and $Z=U * G$ exists, then for all i, we have:

$$
\lim _{t \rightarrow \infty} Z_{i}(t)=c m_{i} \sum_{j=1}^{p}\left[u_{j} \int_{-\infty}^{\infty} G_{j}(y) \mathrm{d} y\right],
$$

where m and u are the eigenvectors defined above and $c=\left(u^{\prime} B m\right)^{-1}$ (under these assumptions, $u^{\prime} B m \neq 0$).

We also recall Theorem 2.3 of [4] that will be used in Section 5.
Renewal Theorem B. Let F be a non-lattice matrix of distributions with support on the positive half-line, such that
(1) $\rho(F(0))<1$,
(2) $F(\infty)$ is finite, irreducible and aperiodic.

Assume also that there is a $\alpha>0$ such that $\rho\left(F_{\alpha}\right)=1$, where $\left(F_{\alpha}\right)_{i j}=\int_{0}^{\infty} \mathrm{e}^{-\alpha u} F_{i j}(\mathrm{~d} u)$. Then for all $h>0$, and all i, j, we have

$$
\lim _{t \rightarrow \infty} \int_{t}^{t+h} \mathrm{e}^{-\alpha y} U_{i j}(\mathrm{~d} y)=c m_{i} u_{j} h
$$

where m and u are right and left eigenvectors of F_{α}, with the same normalization as above, $c=\left(u^{\prime} B m\right)^{-1}$, and $B=\left(b_{i j}\right)$ with $b_{i j}=\int_{0}^{\infty} u \mathrm{e}^{-\alpha u} F_{i j}(\mathrm{~d} u)$, c being interpreted as zero if some $b_{i j}$ is equal to infinity.

Note that this theorem can now be seen as a corollary of Theorem A. Indeed, the first assumption ascertains that $U(t)$ is finite for all t. In the positive case, the expectation B and the convolution product $U * G$ are always defined (possibly infinite). Applying Theorem A with $F=F_{\alpha}$ and $G=\mathbf{1}_{[t, t+h]}$ (which is obviously directly Riemann integrable) yields Theorem B.

3. The renewal equations

Let

$$
z(x, t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(x Y_{1}>u\right) \mathrm{d} u
$$

For all $(x, t) \in\{-1,1\} \times \mathbb{R}$, we have: $z(x, t)=\sum_{i=1}^{p} Z_{i}(x, t)$, where

$$
Z_{i}(x, t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(x Y_{1}>u, a_{0}=e_{i}\right) \mathrm{d} u
$$

Besides, $Y_{1}=a_{0} Y_{0}+b_{0}$, thus for all $(x, u) \in\{-1,1\} \times \mathbb{R}$, and for all i we have

$$
\mathbb{P}\left(x Y_{1}>u, a_{0}=e_{i}\right)=\mathbb{P}\left(x a_{0} Y_{0}>u, a_{0}=e_{i}\right)+\psi_{i}(x, u),
$$

where

$$
\psi_{i}(x, t)=\mathbb{P}\left(t-x b_{0}<x a_{0} Y_{0} \leqslant t, a_{0}=e_{i}\right)-\mathbb{P}\left(t<x a_{0} Y_{0} \leqslant t-x b_{0}, a_{0}=e_{i}\right) .
$$

Let $G_{i}(x, t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \psi_{i}(x, u) \mathrm{d} u$. We get

$$
z(x, t)=\sum_{i=1}^{p}\left[\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{2} \mathbb{P}\left(x a_{0} Y_{0}>u, a_{0}=e_{i}\right) \mathrm{d} u+G_{i}(x, t)\right] .
$$

Now we need to distinguish two cases. Indeed, we make a change of variable that involves the sign of a_{0}. We start with the easier special case when all the states of our Markov chain are positive, therefore the sign of a_{0} is non-random.

3.1. Positive case

Suppose all the states of our Markov chain are positive. Then for all (x, t) in $\{-1,1\} \times \mathbb{R}$, and all i, we have, thanks to a simple change of variable,

$$
\begin{equation*}
\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(x a_{0} Y_{0}>u, a_{0}=e_{i}\right) \mathrm{d} u=\mathrm{e}^{-\left(t-\log e_{i}\right)} e_{i}^{\lambda} \int_{0}^{\mathrm{e}^{t \log e_{i}}} u^{\lambda} \mathbb{P}\left(x Y_{0}>u, a_{0}=e_{i}\right) \mathrm{d} u \tag{3}
\end{equation*}
$$

The Markov property and the stationarity of $\left(Y_{n}\right)$ yield

$$
\begin{aligned}
\mathbb{P}\left(x Y_{0}>u, a_{0}=e_{i}\right) & =\sum_{j=1}^{p} \mathbb{P}\left(x Y_{0}>u, a_{0}=e_{i}, a_{-1}=e_{j}\right) \\
& =\sum_{j=1}^{p} \mathbb{P}\left(x Y_{0}>u \mid a_{-1}=e_{j}\right) v\left(e_{j}\right) p_{j i} \\
& =\sum_{j=1}^{p} \mathbb{P}\left(x Y_{1}>u \mid a_{0}=e_{j}\right) v\left(e_{j}\right) p_{j i} .
\end{aligned}
$$

Thus, we get the following formula for Z_{i} :

$$
\begin{aligned}
Z_{i}(x, t) & =\sum_{j=1}^{p}\left[\mathrm{e}^{-\left(t-\log e_{i}\right)} e_{i}^{\lambda} \int_{0}^{\mathrm{e}^{t-\log e_{i}}} u^{\lambda} \mathbb{P}\left(x Y_{1}>u, a_{0}=e_{j}\right) p_{j i} \mathrm{~d} u\right]+G_{i}(x, t) \\
& =e_{i}^{\lambda} \sum_{j=1}^{p}\left[p_{j i} Z_{j}\left(x, t-\log e_{i}\right)\right]+G_{i}(x, t) .
\end{aligned}
$$

We can rewrite this system of equations as follows:

$$
\forall 1 \leqslant i \leqslant p, \quad Z_{i}(x, t)=\sum_{j=1}^{p} F_{i j} * Z_{j}(x, t)+G_{i}(x, t),
$$

where $F_{i j}(t)=e_{i}^{\lambda} p_{j i} \mathbf{1}_{t \geqslant \log e_{i}}$ are distribution functions. Let $Z=\left(Z_{1}, \ldots, Z_{p}\right)^{\prime}, G=$ $\left(G_{1}, \ldots, G_{p}\right)^{\prime}$ and F be the matrix $F=\left(F_{i j}\right)$. With the notations of Section 2 we have the following system of renewal equations for fixed x :

$$
\begin{equation*}
Z(x, t)=F * Z(x, t)+G(x, t) . \tag{4}
\end{equation*}
$$

3.2. General case

Now we study the general case. In order to determine the sign of a_{0}, we classify our states according to their sign: assume there is a $0 \leqslant \ell \leqslant p-1$ so that $e_{1}, \ldots, e_{\ell}>0$ and $e_{\ell+1}, \ldots, e_{p}<0$. Then Eq. (3) becomes

$$
\begin{aligned}
& \mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(x a_{0} Y_{0}>u, a_{0}=e_{i}\right) \mathrm{d} u \\
& \quad=\mathrm{e}^{-\left(t-\log \left|e_{i}\right|\right)}\left|e_{i}\right|^{\lambda} \int_{0}^{\mathrm{e}^{t-\log \left|e_{i}\right|}} u^{\lambda} \mathbb{P}\left(x \cdot e_{i} Y_{0}>u, a_{0}=e_{i}\right) \mathrm{d} u
\end{aligned}
$$

where $x \cdot e_{i}$ denotes the sign of $x e_{i}$. To get similar equations as in the positive case, we introduce $2 p$ new functions:

$$
\begin{aligned}
& \forall 1 \leqslant i \leqslant p, \quad Z_{i}^{+}(t)=Z_{i}(1, t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(Y_{1}>u, a_{0}=e_{i}\right) \mathrm{d} u, \\
& \forall 1 \leqslant i \leqslant p, \quad Z_{i}^{-}(t)=Z_{i}(-1, t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(-Y_{1}>u, a_{0}=e_{i}\right) \mathrm{d} u .
\end{aligned}
$$

Following the same steps as in the positive case, we get

$$
\begin{aligned}
& \forall 1 \leqslant i \leqslant l, \quad Z_{i}^{+}(t)=\left|e_{i}\right|^{\lambda} \sum_{j=1}^{p} p_{j i} Z_{j}^{+}\left(t-\log \left|e_{i}\right|\right)+G_{i}(1, t), \\
& \forall l+1 \leqslant i \leqslant p, \quad Z_{i}^{+}(t)=\left|e_{i}\right|^{\lambda} \sum_{j=1}^{p} p_{j i} Z_{j}^{-}\left(t-\log \left|e_{i}\right|\right)+G_{i}(1, t),
\end{aligned}
$$

$$
\begin{align*}
& \forall 1 \leqslant i \leqslant l, \quad Z_{i}^{-}(t)=\left|e_{i}\right|^{\lambda} \sum_{j=1}^{p} p_{j i} Z_{j}^{-}\left(t-\log \left|e_{i}\right|\right)+G_{i}(-1, t), \\
& \forall l+1 \leqslant i \leqslant p, \quad Z_{i}^{-}(t)=\left|e_{i}\right|^{\lambda} \sum_{j=1}^{p} p_{j i} Z_{j}^{+}\left(t-\log \left|e_{i}\right|\right)+G_{i}(-1, t), \tag{5}
\end{align*}
$$

that we can also rewrite as a system of renewal equations: set

$$
\widetilde{Z}=\left(Z_{1}^{+}, \ldots, Z_{p}^{+}, Z_{1}^{-}, \ldots, Z_{p}^{-}\right)^{\prime} \quad \text { and } \quad \widetilde{G}=\left(G_{1}^{+}, \ldots, G_{p}^{+}, G_{1}^{-}, \ldots, G_{p}^{-}\right)^{\prime},
$$

where $G_{i}^{+}(t)=G_{i}(1, t)$ and $G_{i}^{-}(t)=G_{i}(-1, t)$. Define the $2 p \times 2 p$ matrix $\widetilde{F}=\left(\widetilde{F}_{i j}\right)$ by:

$$
\begin{array}{ll}
\widetilde{F}_{i j}(t)=\left|e_{\bar{i}}\right|^{\lambda} p_{\overline{j i}} \mathbf{1}_{t \geqslant \log \left|e_{i}\right|} & \text { if } 1 \leqslant i \leqslant l \text { and } 1 \leqslant j \leqslant p, \\
& \text { or } p+l+1 \leqslant i \leqslant 2 p \text { and } 1 \leqslant j \leqslant p, \\
\widetilde{F}_{i j}(t)=0 & \text { or } l+1 \leqslant i \leqslant p+l \text { and } p+1 \leqslant j \leqslant 2 p, \\
& \text { otherwise, }
\end{array}
$$

where $\bar{i}=i \bmod p$ (see Eq. (19) for an explicit matrix form of \widetilde{F}). Now Eq. (5) becomes

$$
\widetilde{Z}(t)=\widetilde{F} * \widetilde{Z}(t)+\widetilde{G}(t)
$$

4. Part I of the proof of Theorem 1

Throughout this section, we assume that the hypotheses of Theorem 1 are satisfied. In order to apply Renewal Theorem A, we have to check that F and G satisfy its hypotheses. Note first that $F_{i j}(\infty)=e_{i}^{\lambda} p_{j i}<\infty$ and that B the expectation of F is well defined. Indeed, $b_{i j}=e_{i}^{\lambda} p_{j i} \log e_{i}<\infty$. The assumption that the $\log e_{i}$ are not integral multiples of the same number implies that F is non-lattice. The other points are proved in the following sections.

4.1. Finiteness of U

Remember that $U=\sum_{k=0}^{\infty} F^{(k)}$. We have to check that $U(t)<\infty$ for all real t. First, we study the spectral radius of the matrices $P_{\alpha}=\operatorname{diag}\left(e_{i}^{\alpha}\right) P^{\prime}$, i.e. $\left(P_{\alpha}\right)_{i j}=e_{i}^{\alpha} p_{j i}$, for $\alpha>0$.

Proposition 1. For all $\alpha>0$, we have

$$
\rho\left(P_{\alpha}\right)=\lim _{k}\left(\mathbb{E}\left|a_{0}, \ldots, a_{-k}\right|^{\alpha}\right)^{1 / k} .
$$

Proof. We have

$$
\mathbb{E}\left|a_{0} a_{-1}, \ldots, a_{-k}\right|^{\alpha}=\sum_{i_{1}, \ldots, i_{k+1}} \mathbb{P}\left(a_{0}=e_{i_{1}}, \ldots, a_{-k}=e_{i_{k+1}}\right)\left|e_{i_{1}}, \ldots, e_{i_{k+1}}\right|^{\alpha}
$$

$$
\begin{aligned}
& =\sum_{i_{1}, \ldots, i_{k+1}} p_{i_{2} i_{1}}, \ldots, p_{i_{k+1} i_{k}} v\left(e_{i_{k+1}}\right)\left|e_{i_{1}}, \ldots, e_{i_{k+1}}\right|^{\alpha} \\
& =\sum_{i, j}\left(P_{\alpha}^{k}\right)_{i j} j\left(e_{j}\right) e_{j}^{\alpha}
\end{aligned}
$$

where P_{α}^{k} is the k th power of the matrix P_{α}. Rewrite this equation as

$$
\begin{equation*}
\mathbb{E}\left|a_{0}, a_{-1}, \ldots, a_{-k}\right|^{\alpha}=\mathbf{1} P_{\alpha}^{k} D_{\alpha} \tag{6}
\end{equation*}
$$

where 1 denotes the constant row vector with all coordinates equal to 1 , and D_{α} is the column vector with coordinates $v\left(e_{j}\right) e_{j}^{\alpha}$. As P, and thus P_{α}, is aperiodic, Theorem 8.5.1 of [12] yields

$$
\begin{equation*}
\frac{P_{\alpha}^{k}}{\rho^{k}\left(P_{\alpha}\right)} \underset{k \rightarrow \infty}{\longrightarrow} A_{\alpha} \tag{7}
\end{equation*}
$$

where A_{α} is a constant positive matrix. Thus $\left(1 P_{\alpha}^{k} D_{\alpha}\right)^{1 / k} \underset{k \rightarrow \infty}{\longrightarrow} \rho\left(P_{\alpha}\right)$.
The following corollary is obvious.
Corollary 1. The mapping $\alpha \longmapsto \log \left(\rho\left(P_{\alpha}\right)\right)$ is convex on \mathbb{R}_{+}.
Proposition 2. The right-hand derivative of $\alpha \longmapsto \log \left(\rho\left(P_{\alpha}\right)\right)$ at zero is negative.
To prove this proposition, we need another expression for $\rho\left(P_{\alpha}\right)$. We set $\mathbb{E}_{e}[\cdot]=$ $\mathbb{E}\left[\cdot \mid a_{0}=e\right]$ for all $e \in E$.

Lemma 1. Set $h_{n}(\alpha)=\max _{e \in E} \mathbb{E}_{e}\left[\left(a_{-1}, \ldots, a_{-n}\right)^{\alpha}\right]$. Then we have $\rho\left(P_{\alpha}\right)=\inf _{n}\left(h_{n}(\alpha)\right)^{1 / n}$.
Proof. We first prove that the sequence $\left(h_{n}\right)$ is sub-multiplicative. Indeed, set $e \in E$. We have

$$
\begin{aligned}
\mathbb{E}_{e}\left[\left(a_{-1}, \ldots, a_{-n} a_{-n-1}, \ldots, a_{-n-m}\right)^{\alpha}\right] & =\mathbb{E}_{e}\left[\left(a_{-1}, \ldots, a_{-n}\right)^{\alpha} \mathbb{E}_{a_{-n}}\left[\left(a_{-1}, \ldots, a_{-m}\right)^{\alpha}\right]\right] \\
& \leqslant h_{m}(\alpha) \mathbb{E}_{e}\left[\left(a_{-1}, \ldots, a_{-n}\right)^{\alpha}\right] \\
& \leqslant h_{m}(\alpha) h_{n}(\alpha)
\end{aligned}
$$

as $\mathbb{E}_{a_{-n}}\left[\left(a_{-1}, \ldots, a_{-m}\right)^{\alpha}\right] \leqslant h_{m}(\alpha)$. Thus $\lim _{n}\left(h_{n}(\alpha)\right)^{1 / n}=\inf _{n}\left(h_{n}(\alpha)\right)^{1 / n}$. Besides, we have

$$
\begin{aligned}
\mathbb{E}\left|a_{0} a_{-1}, \ldots, a_{-n}\right|^{\alpha} & =\sum_{e \in E} \mathbb{E}_{e}\left|a_{-1}, \ldots, a_{-n}\right|^{\alpha} e^{\alpha} v(e) \\
& \leqslant h_{n}(\alpha) \sum_{e \in E} e^{\alpha} v(e)
\end{aligned}
$$

As $\sum_{e \in E} e^{\alpha} v(e)>0$, Proposition 1 yields

$$
\rho\left(P_{\alpha}\right) \leqslant \lim _{n}\left(h_{n}(\alpha)\right)^{1 / n}
$$

On the other hand, set e_{n} such that $h_{n}(\alpha)=\mathbb{E}_{e_{n}}\left[\left(a_{-1}, \ldots, a_{-n}\right)^{\alpha}\right]$. The equation above then yields

$$
\begin{aligned}
\mathbb{E}\left|a_{0} a_{-1}, \ldots, a_{-n}\right|^{\alpha} & \geqslant h_{n}(\alpha) e_{n}^{\alpha} v\left(e_{n}\right) \\
& \geqslant C h_{n}(\alpha),
\end{aligned}
$$

where $C=\min _{e \in E} e^{\alpha} v(e)>0$. Hence we also have

$$
\rho\left(P_{\alpha}\right) \geqslant \lim _{n}\left(h_{n}(\alpha)\right)^{1 / n} .
$$

As $\lim _{n}\left(h_{n}(\alpha)\right)^{1 / n}=\inf _{n}\left(h_{n}(\alpha)\right)^{1 / n}$, the lemma is proved.
Proof of Proposition 2. For any fixed n, set $e_{n} \in E$ such that $h_{n}(\alpha)=\mathbb{E}_{e_{n}}\left[\left(a_{-1}, \ldots\right.\right.$, $\left.\left.a_{-n}\right)^{\alpha}\right]$. As the product a_{-1}, \ldots, a_{-n} is bounded for a fixed n, we have

$$
\frac{\partial}{\partial \alpha} h_{n}(\alpha)=\mathbb{E}_{e_{n}}\left[\left(a_{-1}, \ldots, a_{-n}\right)^{\alpha} \log \left(a_{-1}, \ldots, a_{-n}\right)\right]
$$

hence

$$
\left.\frac{\partial}{\partial \alpha}\right|_{\alpha=0} \frac{1}{n} \log h_{n}(\alpha)=\frac{1}{n} \mathbb{E}_{e_{n}}\left[\log \left(a_{-1}, \ldots, a_{-n}\right)\right] .
$$

For all $e \in E$, the Ergodic Theorem for stationary Markov chains yields

$$
\begin{equation*}
\frac{1}{n} \mathbb{E}_{e}\left[\log \left(a_{-1}, \ldots, a_{-n}\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E} \log a_{0}=\gamma<0 . \tag{8}
\end{equation*}
$$

As the state space E is finite, this convergence is also uniform on E. Thus, for any sequence (e_{n}) in E we have

$$
\frac{1}{n} \mathbb{E}_{e_{n}}\left[\log \left(a_{-1}, \ldots, a_{-n}\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} \gamma<0 .
$$

Hence, there is an integer N such that

$$
\left.\frac{\partial}{\partial \alpha}\right|_{\alpha=0} \frac{1}{N} \log h_{N}(\alpha) \leqslant \frac{\gamma}{2}<0 .
$$

In particular, the mapping $\alpha \longmapsto \frac{1}{N} \log h_{N}(\alpha)$ is negative on an interval of the form $] 0, \varepsilon[$, with $\varepsilon>0$. The preceding lemma then yields

$$
\begin{aligned}
\log \rho\left(P_{\alpha}\right) & =\inf _{n} \frac{1}{n} \log h_{n}(\alpha) \\
& \leqslant \frac{1}{N} \log h_{N}(\alpha),
\end{aligned}
$$

which is negative for all $\alpha \in] 0, \varepsilon\left[\right.$. But the mapping $\alpha \longmapsto \log \rho\left(P_{\alpha}\right)$ is convex and continuous on \mathbb{R}_{+}, and takes the value 0 at 0 . The result above implies that its righthand derivative at 0 is negative (possibly $-\infty$).

We have $\rho\left(P_{0}\right)=1$, and in addition, in the case we study here, $\rho\left(P_{\lambda}\right)=1$, thus Proposition 2 and Corollary 1 easily yield the following corollary:

Corollary 2. For all $0<\alpha<\lambda$, we have $\rho\left(P_{\alpha}\right)<1$.
Now we can study U. By definition, $F(\infty)=P_{\lambda}$ is irreducible as P is and all e_{i} are non-zero. We have chosen λ so that $\rho\left(P_{\lambda}\right)=\rho(F(\infty))=1$. For all $\left.\alpha \in\right] 0, \lambda[$, we have $P_{\lambda-\alpha}=\left(e_{i}^{\lambda-\alpha} p_{j i}\right)=\left(\int \mathrm{e}^{-\alpha u} F_{i j}(\mathrm{~d} u)\right)$. Corollary 2 yields $\rho\left(P_{\lambda-\alpha}\right)<1$, so that the series $\sum_{n=0}^{\infty}\left(P_{\lambda-\alpha}^{n}\right)_{i j}$ is convergent for all i, j. As for all $n,\left(P_{\lambda-\alpha}^{n}\right)_{i j}=\int \mathrm{e}^{-\alpha u} F_{i j}^{(n)}(\mathrm{d} u)$ holds,
then we have

$$
\left(P_{\lambda-\alpha}^{n}\right)_{i j} \geqslant \int_{-\infty}^{t} \mathrm{e}^{-\alpha u} F_{i j}^{(n)}(\mathrm{d} u) \geqslant \mathrm{e}^{-\alpha . t} \int_{-\infty}^{t} F_{i j}^{(n)}(\mathrm{d} u)=\mathrm{e}^{-\alpha t} F_{i j}^{(n)}(t) .
$$

Thus, for all i, j and t, we have $U_{i j}(t)=\sum F_{i j}^{(n)}(t) \leqslant e^{\alpha t} \sum\left(P_{\lambda-\alpha}^{n}\right)_{i j}<\infty$.

4.2. Proof of $Z=U * G$

Iterating Eq. (4) yields:

$$
Z=\sum_{k=0}^{n-1}\left[F^{(k)} * G\right]+F^{(n)} * Z
$$

It is thus sufficient to prove that $F^{(n)} * Z \rightarrow 0$. As seen in Section 3 we have

$$
\begin{aligned}
(F * Z)_{i}(x, t) & =\sum_{j=1}^{p}\left[\mathrm{e}^{-\left(t-\log e_{i}\right)} \int_{0}^{\mathrm{e}^{t-\log e_{i}}} e_{i}^{\lambda} p_{j i} u^{\lambda} \mathbb{P}\left(x Y_{1}>u, a_{0}=e_{j}\right) \mathrm{d} u\right] \\
& =\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(x a_{0} Y_{0}>u, a_{0}=e_{i}\right) \mathrm{d} u .
\end{aligned}
$$

Similarly, we get for all n

$$
\left(F^{(n)} * Z\right)_{i}(x, t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(x a_{0}, \ldots, a_{1-n} Y_{1-n}>u, a_{0}=e_{i}\right) \mathrm{d} u .
$$

And thus we have

$$
\sum_{i=1}^{p}\left(F^{(n)} * Z\right)_{i}(x, t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(x a_{0}, \ldots, a_{1-n} Y_{1-n}>u\right) \mathrm{d} u .
$$

But $a_{0}, \ldots, a_{1-n}=\exp \left(\sum_{k=1}^{n} \log a_{1-k}\right)$, thus Eq. (8) and Assumption (2) yield $a_{0}, \ldots, a_{1-n} \rightarrow 0$. Hence for all $u>0$, the bounded convergence theorem yields:

$$
\mathbb{P}\left(x a_{1-n}, \ldots, a_{0} Y_{1-n}>u\right) \underset{n \rightarrow \infty}{\longrightarrow} 0,
$$

because $Y<\infty$ a.s. and is stationary. Thus $\sum_{i=1}^{p}\left(F^{(n)} * Z\right)_{i}(x, t) \rightarrow 0$ holds a.s. As all the terms in the sum are non-negative, each one tends to zero and we have $Z=U * G$ as required.

4.3. G is directly Riemann integrable

We first consider the moments of Y_{1}.
Proposition 3. For all $0 \leqslant s<\lambda, \mathbb{E}\left|Y_{1}\right|^{s}<\infty$.

Proof. If $s<\min \{1, \lambda\}$, then convexity and independence yield:

$$
\mathbb{E}\left|Y_{1}\right|^{s} \leqslant \sum_{k=0}^{\infty} \mathbb{E}\left|a_{0}, a_{-1}, \ldots, a_{1-k}\right|^{s} \mathbb{E}\left|b_{-k}\right|^{s},
$$

and if $1 \leqslant s<\lambda$, Hölder inequality yields:

$$
\left(\mathbb{E}\left|Y_{1}\right|^{s}\right)^{1 / s} \leqslant \sum_{k=0}^{\infty}\left(\mathbb{E}\left|a_{0}, a_{-1}, \ldots, a_{1-k}\right|^{s}\right)^{1 / s}\left(\mathbb{E}\left|b_{-k}\right|^{s}\right)^{1 / s} .
$$

But we have $\mathbb{E}\left|b_{-k}\right|^{s} \leqslant\left(\mathbb{E}\left|b_{0}\right|^{\lambda+\delta}\right)^{s /(\lambda+\delta)}<\infty$, with δ given by Theorem 1. Besides, the series $\sum_{k}\left(\mathbb{E}\left|a_{0}, a_{-1}, \ldots, a_{1-k}\right|^{s}\right)^{1 / s}$ converges thanks to Proposition 1 and Corollary 2. Hence $\mathbb{E}\left|Y_{1}\right|^{s}<\infty$.
Proposition 4. For all i and x, the mappings $t \longmapsto G_{i}(x, t)$ are directly Riemann integrable on \mathbb{R}.

Proof. As G_{i} are clearly continuous in t, it is sufficient to prove that

$$
\sum_{l=-\infty}^{\infty} \sup _{l \leqslant t<l+1}\left|G_{i}(x, t)\right|<\infty
$$

(see [8]). For all i, x, t, we have $G_{i}(x, t)=G_{i}^{1}(x, t)-G_{i}^{2}(x, t)$, where

$$
\begin{aligned}
& G_{i}^{1}(x, t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(u-x b_{0}<x Y_{0} a_{0} \leqslant u, a_{0}=e_{i}\right) \mathrm{d} u \geqslant 0, \\
& G_{i}^{2}(x, t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(u<x Y_{0} a_{0} \leqslant u-x b_{0}, a_{0}=e_{i}\right) \mathrm{d} u \geqslant 0 .
\end{aligned}
$$

For all real t, we have $G_{i}(x, t) \leqslant G_{i}^{1}(x, t) \leqslant \mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathrm{d} u=\mathrm{e}^{t \lambda}(\lambda+1)^{-1}$. In particular, G_{i} is directly Riemann integrable on \mathbb{R}_{-}. We still have to study G_{i}^{1} and G_{i}^{2} on \mathbb{R}_{+}. These two functions being of the same kind, we only study G_{i}^{1} here.

The rest of the proof is adapted from [16]. Set $\varepsilon \in] 0,1[$ so that $-1<\lambda-$ $(\lambda+\delta) \varepsilon<0$, with $\delta>0$ given by Theorem 1. We have

$$
\begin{align*}
0 \leqslant \mathrm{e}^{t} G_{i}^{1}(x, t) \leqslant & \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(x b_{0}>u^{\varepsilon}, a_{0}=e_{i}\right) \mathrm{d} u \\
& +\int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(u-u^{\varepsilon}<x Y_{0} a_{0} \leqslant u, a_{0}=e_{i}\right) \mathrm{d} u \tag{9}
\end{align*}
$$

We are going to give an upper bound for each one of these two terms.

- First term:

As $\mathbb{P}\left(x b_{0}>u^{\varepsilon}, a_{0}=e_{i}\right) \leqslant \mathbb{P}\left(x b_{0}>u^{\varepsilon}\right)$ we have, as in [16]

$$
\begin{equation*}
\int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(x b_{0}>u^{\varepsilon}, a_{0}=e_{i}\right) \mathrm{d} u \leqslant \mathbb{E}\left|b_{0}\right|^{\lambda+\delta} \frac{\mathrm{e}^{t(1+\lambda-\varepsilon(\lambda+\delta))}}{1+\lambda-\varepsilon(\lambda+\delta)} . \tag{10}
\end{equation*}
$$

- Second term:

For all $u>0$ we have $\mathbb{P}\left(x Y_{0} a_{0}>u, a_{0}=e_{i}\right) \leqslant \frac{\mathbb{E}\left|Y_{0} e_{i}\right|^{s}}{u^{s}}$ which is finite by Proposition 3 .
With this slight change in [16], we get

$$
\begin{equation*}
\int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(u-u^{\varepsilon}<x a_{0} Y_{0} \leqslant u, a_{0}=e_{i}\right) \mathrm{d} u \leqslant C \mathrm{e}^{t(\lambda+\varepsilon-s)} \tag{11}
\end{equation*}
$$

where C is a positive constant, and $s \in] 0, \lambda[$ is chosen such that $-1<\lambda+\varepsilon-1-s<0$.

Now let $\alpha=\max \{\lambda+\varepsilon-s ; 1+\lambda-(\lambda+\delta) \varepsilon\} \in] 0,1\left[\right.$. Eqs. (9)-(11) yield $\mathrm{e}^{t} G_{i}^{1}(x, t) \leqslant$ $C \mathrm{e}^{t \alpha}$ for all positive t, C being another positive constant. Thus $G_{i}^{1}(x, t) \leqslant C \mathrm{e}^{t(\alpha-1)}$ is directly Riemann integrable on \mathbb{R}_{+}.

4.4. Tail of the stationary distribution

We have proved that F and G satisfy the conditions of Theorem A. Hence for all i, x, t, we have, with the notation of this theorem,

$$
\begin{equation*}
Z_{i}(x, t) \underset{t \rightarrow \infty}{\longrightarrow} c m_{i} \sum_{j=1}^{p}\left[u_{j} \int_{-\infty}^{\infty} G_{j}(x, y) \mathrm{d} y\right] . \tag{12}
\end{equation*}
$$

Summing up these terms, we get

$$
\begin{equation*}
z(x, t) \underset{t \rightarrow \infty}{\longrightarrow} c \sum_{j=1}^{p}\left[u_{j} \int_{-\infty}^{\infty} G_{j}(x, y) \mathrm{d} y\right] \tag{13}
\end{equation*}
$$

as $\sum m_{i}=1$. This limit is also the limit of $t^{\lambda} \mathbb{P}\left(x Y_{1}>t\right)$ by Lemma 9.3 of [9] which is valid under our assumptions (see also Lemma 3.7 of [16] for a similar result). Now it remains to prove that the sum of the two limits for $x \in\{-1,1\}$ is non-zero.

5. Part II of the proof of Theorem 1

5.1. Special case: b_{0} has a constant sign

In Section 3, we have defined the functions

$$
\psi_{i}(x, t)=\mathbb{P}\left(t-x b_{0}<x a_{0} Y_{0} \leqslant t, a_{0}=e_{i}\right)-\mathbb{P}\left(t<x a_{0} Y_{0} \leqslant t-x b_{0}, a_{0}=e_{i}\right)
$$

If $b_{0} \geqslant 0$ a.s. and $x=1$, or $b_{0} \leqslant 0$ a.s. and $x=-1$, we have $x b_{0} \geqslant 0$ a.s. and for all i and t,

$$
\begin{aligned}
G_{i}(x, t) & =\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \psi_{i}(x, u) \mathrm{d} u \\
& =\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(u-x b_{0}<x a_{0} Y_{0} \leqslant u, a_{0}=e_{i}\right) \mathrm{d} u \geqslant 0 .
\end{aligned}
$$

Similarly, if $x b_{0} \leqslant 0$ a.s. we have for all i and t :

$$
G_{i}(x, t)=-\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(u<x a_{0} Y_{0} \leqslant u-x b_{0}, a_{0}=e_{i}\right) \mathrm{d} u \leqslant 0
$$

Thus, if b_{0} has constant sign, for fixed x all $G_{i}(x, \cdot)$ have constant sign, and have the same sign. Now assume that $\lim z(x, t)=0$. Then Eq. (13) yields

$$
c \sum_{j=1}^{p}\left[u_{j} \int_{-\infty}^{\infty} G_{j}(x, y) \mathrm{d} y\right]=0
$$

As c and all u_{j} are positive, this yields $G_{j}(x, t)=0$ for all j and $t \in \mathbb{R}$. Thus, $Z(x, t)=$ $U * G(x, t)=0$ for all t, and $z(x, t)=0$. Hence $\mathbb{P}\left(x Y_{1}>t\right)=0$ a.s.

- If $b_{0} \geqslant 0$, we have $Y_{1} \geqslant 0$, which contradicts the statement above if $x=1$. Thus $\lim z(1, t)>0$. And obviously $\lim z(-1, t)=0$.
- If $b_{0} \leqslant 0$, we have $Y_{1} \leqslant 0$, which contradicts the statement above if $x=-1$. Thus $\lim z(-1, t)>0$. And obviously $\lim z(1, t)=0$.

5.2. Lower bound for $\mathbb{P}\left(\left|Y_{1}\right|>t\right)$

Now we study the general case where b_{0} is allowed to change sign. We want to prove that there is a positive constant C such that $t^{\lambda} \mathbb{P}\left(\left|Y_{1}\right|>t\right) \geqslant C>0$ when t tends to infinity. In the author's opinion, this lower bound is far from obvious. Here we adapt a method proposed by Goldie [9].

Proposition 5. There is a positive ε and a corresponding positive constant C such that for all large enough t, we have

$$
\mathbb{P}\left(\left|Y_{1}\right|>t\right) \geqslant C \mathbb{P}\left(\sup _{n}\left|a_{0}, \ldots, a_{1-n}\right|>\frac{2 t}{\varepsilon}\right)
$$

As explained by Goldie [9] for the i.i.d. case, the key for such a lower bound is an inequality established by Grincevičius [10] corresponding to an extension of Lévy's symmetrization inequality: see [6]. We first extend Grincevičius' inequality to the Markovian case.

Recall that $Y_{1}=\sum_{k=0}^{\infty} a_{0}, \ldots, a_{1-k} b_{-k}$ and set for $n \geqslant 1$,

$$
Y_{1}^{n}=\sum_{k=0}^{n-1} a_{0}, \ldots, a_{1-k} b_{-k} \quad \text { and } \quad \Pi_{n}=a_{0}, \ldots, a_{1-n}
$$

Let \mathscr{F}_{j} be the σ-field generated by $\left(a_{-j}, a_{-j-1}, \ldots\right)$, and X a \mathscr{F}_{j}-measurable random variable. Let $\operatorname{med}_{i}(X)$ be a median of X conditionally to $a_{-j}=e_{i}$, so that $\mathbb{P}\left(\operatorname{med}_{i}(X) \leqslant X \mid a_{-j}=e_{i}\right) \geqslant \frac{1}{2}$, and $\mathbb{P}\left(\operatorname{med}_{i}(X) \geqslant X \mid a_{-j}=e_{i}\right) \geqslant \frac{1}{2}$. Set also $\operatorname{med}_{-}(X)=\min _{1 \leqslant i \leqslant p}\left\{\operatorname{med}_{i}(X)\right\}$.

Lemma 2. For all $t>0$ and $n \geqslant 1$, we have

$$
\mathbb{P}\left(\max _{1 \leqslant j \leqslant n}\left\{Y_{1}^{j}+\Pi_{j} \operatorname{med}_{-}\left(\frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right)\right\}>t\right) \leqslant 2 \mathbb{P}\left(Y_{1}^{n}>t\right) .
$$

Proof. Set $T=\inf \left\{j \leqslant n\right.$ s.t. $\left.Y_{1}^{j}+\Pi_{j} \operatorname{med}_{-}\left(\left(Y_{1}^{n}-Y_{1}^{j}\right) \Pi_{j}^{-1}\right)>t\right\}$ if this set is not empty, $n+1$ otherwise, and $B_{j}=\left\{\operatorname{med}_{-}\left(\left(Y_{1}^{n}-Y_{1}^{j}\right) \Pi_{j}^{-1}\right) \leqslant\left(Y_{1}^{n}-Y_{1}^{j}\right) \Pi_{j}^{-1}\right\}$. The event $(T=j)$ is in the σ-field generated by $a_{0}, \ldots, a_{1-j}, b_{0}, \ldots, b_{1-j}$, and B_{j} is in the σ-field generated by $a_{-j}, \ldots, a_{1-n}, b_{-j}, \ldots, b_{1-n}$. Therefore they are independent conditionally to a_{-j}. Moreover, for all i and j we have

$$
\mathbb{P}\left(B_{j} \mid a_{-j}=e_{i}\right) \geqslant \mathbb{P}\left(\operatorname{med}_{i}\left(\frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right) \leqslant \frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right) \geqslant \frac{1}{2} .
$$

Thus, as Π_{j} is positive, we have

$$
\begin{aligned}
\mathbb{P}\left(Y_{1}^{n}>t\right) & \geqslant \mathbb{P}\left(\bigcup_{j=1}^{n}\left[B_{j} \cap(T=j)\right]\right) \\
& =\sum_{j=1}^{n} \sum_{i=1}^{p} \mathbb{P}\left(B_{j} \mid a_{-j}=e_{i}\right) \mathbb{P}\left(T=j \mid a_{-j}=e_{i}\right) v\left(e_{i}\right) \\
& \geqslant \frac{1}{2} \mathbb{P}(T \leqslant n) \\
& =\frac{1}{2} \mathbb{P}\left(\max _{1 \leqslant j \leqslant n}\left\{Y_{1}^{j}+\Pi_{j} \operatorname{med}_{-}\left(\frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right)\right\}>t\right) .
\end{aligned}
$$

Under our assumptions, when n tends to infinity, Y_{1}^{n} tends to Y_{1}, and for fixed j, $\Pi_{j}^{-1}\left(Y_{1}^{n}-Y_{1}^{j}\right)$ tends to a random variable \widehat{Y} that has the same distribution as Y_{1}. Set $m_{0}=\operatorname{med}_{-}\left(Y_{1}\right)=$ med_ (\widehat{Y}), and letting n tend to infinity in Lemma 2, yields, for all $t>0$,

$$
\mathbb{P}\left(\sup _{j}\left\{Y_{1}^{j}+\Pi_{j} m_{0}\right\}>t\right) \leqslant 2 \mathbb{P}\left(Y_{1}>t\right) .
$$

Replacing Y_{1} by $-Y_{1}$ yields a similar formula for all $t<0$, hence for all $t>0$, we have

$$
\begin{equation*}
\mathbb{P}\left(\sup _{j}\left|Y_{1}^{j}+\Pi_{j} m_{0}\right|>t\right) \leqslant 2 \mathbb{P}\left(\left|Y_{1}\right|>t\right) . \tag{14}
\end{equation*}
$$

Furthermore, as proved in Goldie [9, p. 157], we have for all $t>\left|m_{0}\right|$,

$$
\mathbb{P}\left(\sup _{n}\left\{Y_{1}^{n}+\Pi_{n} m_{0}\right\}>t\right) \geqslant \mathbb{P}\left(\exists n \text { s.t. }\left|\left(Y_{1}^{n+1}+\Pi_{n+1} m_{0}\right)-\left(Y_{1}^{n}+\Pi_{n} m_{0}\right)\right|>2 t\right)
$$

where $Y_{1}^{0}=0$ and $\Pi_{0}=1$ by convention. Now notice that:

$$
\begin{aligned}
\left(Y_{1}^{n+1}+\Pi_{n+1} m_{0}\right)-\left(Y_{1}^{n}+\Pi_{n} m_{0}\right) & =a_{0}, \ldots, a_{1-n} b_{-n}+\left(\Pi_{n+1}-\Pi_{n}\right) m_{0} \\
& =\Pi_{n}\left(b_{-n}+\left(a_{-n}-1\right) m_{0}\right)
\end{aligned}
$$

Thus Eq. (14) yields, for all $\varepsilon>0$,

$$
\begin{align*}
\mathbb{P}\left(\left|Y_{1}\right|>t\right) & \geqslant \frac{1}{2} \mathbb{P}\left(\exists n \text { s.t. }\left|\Pi_{n}\left(b_{-n}+\left(a_{-n}-1\right) m_{0}\right)\right|>2 t\right) \\
& \geqslant \frac{1}{2} \mathbb{P}\left(\exists n \text { s.t. }\left|\Pi_{n}\right|>\frac{2 t}{\varepsilon} \text { and }\left|b_{-n}+\left(a_{-n}-1\right) m_{0}\right|>\varepsilon\right) . \tag{15}
\end{align*}
$$

Now we extend Feller-Chung inequality (see [6]).
Lemma 3. We have, for all $t>\left|m_{0}\right|$ and $\varepsilon>0$

$$
\begin{aligned}
& \mathbb{P}\left(\exists n \text { s.t. }\left|\Pi_{n}\right|>\frac{2 t}{\varepsilon} \text { and }\left|b_{-n}+\left(a_{-n}-1\right) m_{0}\right|>\varepsilon\right) \\
& \quad \geqslant \min _{1 \leqslant i \leqslant p} \mathbb{P}\left(\left|b_{0}+\left(e_{i}-1\right) m_{0}\right|>\varepsilon\right) \mathbb{P}\left(\exists n \text { s.t. }\left|\Pi_{n}\right|>\frac{2 t}{\varepsilon}\right) .
\end{aligned}
$$

Proof. Set $A_{0}=\emptyset, A_{n}=\left\{\left|\Pi_{n}\right|>\frac{2 t}{\varepsilon}\right\}$ and $B_{n}=\left\{\left|b_{-n}+\left(a_{-n}-1\right) m_{0}\right|>\varepsilon\right\}$. Conditionally to a_{-n}, B_{n} is independent from A_{0}, \ldots, A_{n}. Therefore, we have

$$
\begin{aligned}
\mathbb{P}\left(\bigcup_{n=1}^{\infty}\left[A_{n} \cap B_{n}\right]\right) & =\sum_{n=1}^{\infty} \mathbb{P}\left(B_{n} \cap A_{n} \bigcap_{j=0}^{n-1}\left[B_{j} \cap A_{j}\right]^{\mathrm{c}}\right) \\
& \geqslant \sum_{n=1}^{\infty} \mathbb{P}\left(B_{n} \cap A_{n} \bigcap_{j=0}^{n-1} A_{j}^{\mathrm{c}}\right) \\
& =\sum_{n=1}^{\infty} \sum_{i=1}^{p} \mathbb{P}\left(B_{n} \mid a_{-n}=e_{i}\right) \mathbb{P}\left(A_{n} \bigcap_{j=0}^{n-1} A_{j}^{\mathrm{c}} \mid a_{-n}=e_{i}\right) v\left(e_{i}\right) .
\end{aligned}
$$

where $A^{\mathfrak{c}}$ denotes the complementary set of A. But the stationarity of $\left(a_{n}, b_{n}\right)$, and the independence of these two sequences yield $\mathbb{P}\left(B_{n} \mid a_{-n}=e_{i}\right)=\mathbb{P}\left(\left|b_{0}+\left(e_{i}-1\right) m_{0}\right|>\varepsilon\right)$. Thus, we have

$$
\mathbb{P}\left(\bigcup_{n=1}^{\infty}\left[A_{n} \cap B_{n}\right]\right) \geqslant \min _{1 \leqslant i \leqslant p} \mathbb{P}\left(\left|b_{0}+\left(e_{i}-1\right) m_{0}\right|>\varepsilon\right) \mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right) .
$$

Proof of Proposition 5. Eq. (15) and Lemma 3 yield, for all $t>\left|m_{0}\right|$ and for all $\varepsilon>0$,

$$
\mathbb{P}\left(\left|Y_{1}\right|>t\right) \geqslant \frac{1}{2} \min _{1 \leqslant i \leqslant p} \mathbb{P}\left(\left|b_{0}+\left(e_{i}-1\right) m_{0}\right|>\varepsilon\right) \mathbb{P}\left(\exists n \text { s.t. }\left|\Pi_{n-1}\right|>\frac{2 t}{\varepsilon}\right) .
$$

If b_{0} is not constant (otherwise we get a special case studied in Section 5.1), we can find a $\varepsilon>0$ such that $\min _{1 \leqslant i \leqslant p}\left\{\mathbb{P}\left(\left|b_{0}+\left(e_{i}-1\right) m_{0}\right|>\varepsilon\right)\right\}>0$. Thus, as expected,
there is a positive constant C such that for all $t>\left|m_{0}\right|$, we have

$$
\mathbb{P}\left(\left|Y_{1}\right|>t\right) \geqslant C \mathbb{P}\left(\sup _{n}\left|\Pi_{n}\right|>\frac{2 t}{\varepsilon}\right) .
$$

5.3. Study of the product a_{0}, \ldots, a_{1-n}

To estimate the probability $\mathbb{P}\left(\sup _{n}\left|\Pi_{n}\right|>t\right)$, we use the method of Arjas and Speed [1], and Renewal Theorem B. First, we introduce some notation. Let $S_{0}=0$ and for all positive n,

$$
S_{n}=\sum_{k=1}^{n} \log \left(a_{1-k}\right)=\log \left(a_{0}, \ldots, a_{1-n}\right)=\log \Pi_{n}
$$

The process $\left(a_{1-n}, S_{n}\right)$ is called a Markov-modulated random walk: see [3,2], or a Markov renewal process: see [1], with semi-Markov matrix $Q=\left(q_{i j}\right)$, where:

$$
q_{i j}(t)=\mathbb{P}\left(a_{-n}=e_{j}, \log a_{-n} \leqslant t \mid a_{1-n}=e_{i}\right)=\mathbf{1}_{t \geqslant \log e_{j}} \frac{v\left(e_{j}\right)}{v\left(e_{i}\right)} p_{j i} .
$$

The first ladder epoch of the random walk $\left(S_{n}\right)$ is $\tau=\tau_{1}=\inf \left\{n \geqslant 1\right.$ s.t. $\left.S_{n}>0\right\}$, and the first ladder height is S_{τ}. Let $H(t)$ be the semi-Markov matrix of this ladder process:

$$
H_{i j}(t)=\mathbb{P}\left(\tau<\infty, S_{\tau} \leqslant t, a_{1-\tau}=e_{j} \mid a_{1}=e_{i}\right)
$$

As $S_{\tau}>0, H$ is distributed on the positive half-line.
We have $S_{\tau-1} \leqslant 0$ and $S_{\tau}>0$, which implies that $\log \left(a_{1-\tau}\right)>0$, i.e. $a_{1-\tau}>1$. Let us rearrange the e_{i} such that $e_{1}, \ldots, e_{q}>1$ and $e_{q+1}, \ldots, e_{p} \leqslant 1$ (they cannot be all smaller than or equal to one, for otherwise P_{α}^{\prime} would be a sub-stochastic matrix for all α which is impossible as $\rho\left(P_{\alpha}^{\prime}\right)>1$ for all $\alpha>\lambda$ thanks to the convexity property). Thus, for all $j>q$, we have $H_{i j}(t)=0$ for all t. Let \bar{H} be the sub-matrix $\left(H_{i j}\right)_{1 \leqslant i, j \leqslant q}$. Besides, S_{τ} cannot be greater than $\max _{i} \log \left(e_{i}\right)$, thus H (and \bar{H}) have finite support.

We define also the nth ladder epoch by $\tau_{n}=\inf \left\{k>\tau_{n-1}\right.$ s.t. $\left.S_{k}>S_{\tau_{n-1}}\right\}$, and $S_{\tau_{n}}$ is the corresponding ladder height. We check that

$$
H_{i j}^{(n)}(t)=\mathbb{P}\left(\tau_{n}<\infty, S_{\tau_{n}} \leqslant t, a_{1-\tau_{n}}=e_{j} \mid a_{1}=e_{i}\right),
$$

where $H^{(n)}$ is the n-fold convolution of H. We also have $\overline{H^{(n)}}=\bar{H}^{(n)}$, with obvious notation. Let $\Psi=\sum_{n=0}^{\infty} H^{(n)}$ be the renewal function associated with H and $\bar{\Psi}$ the one associated with \bar{H}. Finally, let $M=\sup _{n} S_{n}=\sup _{n} S_{\tau_{n}}$ be the maximum of our random walk. We have, for all $1 \leqslant i \leqslant p$:

$$
\mathbb{P}\left(M \leqslant t \mid a_{1}=e_{i}\right)=\sum_{j=1}^{p}\left[\Psi_{i j}(t)\left(1-\sum_{k=1}^{p} H_{j k}(\infty)\right)\right]
$$

and if $i \leqslant q$ it reduces to

$$
\begin{equation*}
\mathbb{P}\left(M \leqslant t \mid a_{1}=e_{i}\right)=\sum_{j=1}^{q}\left[\bar{\Psi}_{i j}(t)\left(1-\sum_{k=1}^{q} \bar{H}_{j k}(\infty)\right)\right] . \tag{16}
\end{equation*}
$$

Now, we are going to apply renewal Theorem B, with $F=\bar{H}$ and $\alpha=\lambda$ (here it is easier to apply Theorem B than to check the four assumptions of Arjas and Speed [1]). As $H(0)=(0)$, we have $\rho(\bar{H}(0))<1$, and as all $H_{i j}$ are probabilities, $\bar{H}(\infty)$ is finite. In addition, \bar{B}, the expectation of $\bar{H}_{\lambda}(\infty)=\int_{0}^{\infty} \mathrm{e}^{-\lambda u} \bar{H}(\mathrm{~d} u)$ is finite as \bar{H} has finite support. The assumption that the $\log e_{i}$ are not integral multiples of the same number also implies that \bar{H} is non-lattice.

We have

$$
\begin{aligned}
\bar{H}_{i j}(\infty) & =\mathbb{P}\left(\tau<\infty, a_{1-\tau}=e_{j} \mid a_{1}=e_{i}\right) \\
& \geqslant \mathbb{P}\left(\tau=1, a_{1-\tau}=e_{j} \mid a_{1}=e_{i}\right) \\
& =\mathbb{P}\left(a_{0}=e_{j} \mid a_{1}=e_{i}\right)=p_{j i} \frac{v\left(e_{j}\right)}{v\left(e_{i}\right)} .
\end{aligned}
$$

As all $v\left(e_{i}\right)$ are positive, and P is irreducible and aperiodic, this implies that $\bar{H}(\infty)$ also is irreducible and aperiodic.

Note that $H(\infty)$ and $\bar{H}(\infty)$ have the same spectral radius. Indeed, $H(\infty)$ is a block-triangular matrix with first diagonal block $\bar{H}(\infty)$ and second diagonal block (0). Therefore $\rho(H(\infty))=\rho(\bar{H}(\infty))$.

To compute the spectral radius of $\bar{H}_{\lambda}(\infty)$, we introduce $\widehat{Q}(s)=\left(\hat{q}_{i j}(s)\right)$, the moment generating function of Q, as in [1]:

$$
\hat{q}_{i j}(s)=\int \mathrm{e}^{s t} q_{i j}(\mathrm{~d} t)=\mathrm{e}_{j}^{s} \frac{v\left(e_{j}\right)}{v\left(e_{i}\right)} p_{j i}=\Delta^{-1} P_{\mathrm{s}} \Delta
$$

where $\Delta=\operatorname{diag}\left(e_{i}^{s} v\left(e_{i}\right)\right)$. Thus P_{s} and $\widehat{Q}(s)$ have the same spectral radius, and in particular $\rho(\widehat{Q}(\lambda))=1$. In addition, $\widehat{Q}(\lambda)$ is a non-negative irreducible matrix, as P_{λ} is, therefore, by Perron-Frobenius Theorem it possesses a right eigenvector $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{p}\right)^{\prime}$ with positive coordinates. Set $E=\operatorname{diag}\left(\varepsilon_{i}\right)$. Then

$$
Q_{\lambda}(t)=E^{-1}\left(\int_{-\infty}^{t} \mathrm{e}^{\lambda u} Q(\mathrm{~d} u)\right) E
$$

is a semi-Markov matrix, and let $\left({ }^{\lambda} a_{1-n},{ }^{\lambda} S_{n}\right)$ be its associated Markov renewal process. As proved in [1], $E H_{\lambda}(\infty) E^{-1}$ is the semi-Markov matrix of the ascending ladder process of $\left({ }^{\lambda} S_{n}\right)$, and the mean of $\log { }^{\lambda} a_{1-n}$ is the derivative of $s \longmapsto \log \rho\left(P_{s}\right)$ at λ. But we have $\log \rho\left(P_{0}\right)=\log \rho\left(P_{\lambda}\right)=0$, its right-hand derivative at zero is negative (Proposition 2) and this function is convex (Corollary 1). Thus its derivative at λ is positive, and ${ }^{\lambda} S_{n}$ drifts to $+\infty$. Proposition 4.2 of [2] then implies that $\rho\left(E H_{\lambda}(\infty) E^{-1}\right)=1=\rho\left(\bar{H}_{\lambda}(\infty)\right)$.

We have proved that all assumptions of Theorem B are valid. Thus Eq. (16) yields, when t tends to infinity

$$
\begin{align*}
1-\mathbb{P}(M \leqslant t) & =\sum_{j=1}^{q}\left(1-\sum_{k=1}^{q} \bar{H}_{j k}(\infty)\right) \int_{t}^{\infty} \mathrm{e}^{-\lambda u}\left(\mathrm{e}^{\lambda u} \bar{\Psi}_{i j}\right)(\mathrm{d} u) \\
& \sim \sum_{j=1}^{q}\left(1-\sum_{k=1}^{q} \bar{H}_{j k}(\infty)\right) \int_{t}^{\infty} \mathrm{e}^{-\lambda u} \overline{c m}_{i} \bar{u}_{j} \mathrm{~d} u \\
& =\sum_{j=1}^{q}\left(1-\sum_{k=1}^{q} \bar{H}_{j k}(\infty)\right) \frac{\overline{c m}_{i} \bar{u}_{j}}{\lambda} \mathrm{e}^{-\lambda t}, \tag{17}
\end{align*}
$$

where \bar{m} and \bar{u} are right and left positive eigenvectors of $\bar{H}_{\lambda}(\infty)$, with the same normalization as in Section 2, and $\bar{c}=\left(\bar{u}^{\prime} \bar{B} \bar{m}\right)^{-1}>0$. Proposition 4.2 of [2] implies that $\rho(\bar{H}(\infty))=\rho(H(\infty))<1$ as $\mathbb{E} \log \left|a_{0}\right|<0$ (Assumption (2)). Therefore $\bar{H}(\infty)$ is strictly sub-stochastic and there is a $j \leqslant q$ such that $1-\sum_{k=1}^{q} \bar{H}_{j k}(\infty)>0$. Hence the right-hand side term of Eq. (17) is positive, thus we have, when t tends to infinity,

$$
\begin{equation*}
\mathrm{e}^{\lambda t} \mathbb{P}(M>t) \geqslant \sum_{i=1}^{q} \mathrm{e}^{\lambda t} \mathbb{P}\left(M>t \mid a_{1}=e_{i}\right) v\left(e_{i}\right) \geqslant C>0 \tag{18}
\end{equation*}
$$

Now Eq. (18) and Proposition 5 yield, for large enough t :

$$
t^{\lambda} \mathbb{P}\left(\left|Y_{1}\right|>t\right) \geqslant C>0
$$

and thus with the notation of Theorem 1 we have $L(-1)+L(1)>0$.

6. Proof of Theorem 2

Assume that the hypotheses of Theorem 2 are satisfied. Our aim is to apply Theorem A to the distribution matrix \widetilde{F} and the vector \widetilde{G} defined in Section 3.2. As in the positive case, notice that $\widetilde{F}_{i j}(\infty)<\infty$ and that the expectation \widetilde{B} of \widetilde{F} is well defined. The assumption that the $\log \left|e_{i}\right|$ are not integral multiples of the same number implies again that \widetilde{F} is non-lattice.

For the other points, we use the previous results obtained in the positive case. For all real t, set $F(t)=\left(\left|e_{i}\right|^{\lambda} p_{j i} \mathbf{1}_{t \geqslant \log \left|e_{i}\right|}\right)_{1 \leqslant i, j \leqslant p}$. It is non-negative, and

$$
\widetilde{F}=\left(\begin{array}{cc}
(F)_{1 \leqslant i \leqslant \ell, 1 \leqslant j \leqslant p} & (0) \tag{19}\\
(0) & (F)_{\ell+1 \leqslant i \leqslant p, 1 \leqslant j \leqslant p} \\
(0) & (F)_{1 \leqslant i \leqslant \ell, 1 \leqslant j \leqslant p} \\
(F)_{\ell+1 \leqslant i \leqslant p, 1 \leqslant j \leqslant p} & (0)
\end{array}\right)
$$

6.1. Irreducibility

We have seen in the positive case that $F(\infty)$ is irreducible. Unfortunately, this does not always imply that $\widetilde{F}(\infty)$ is also irreducible.

Definition 3. Let $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant p}$ be a positive matrix, and $0 \leqslant \ell \leqslant p-1$ an integer. A is ℓ-reducible if there is (I, J) a (possibly trivial) partition of $\{1, \ldots, p\}$ such that

For all $1 \leqslant i \leqslant \ell$

$$
\begin{aligned}
& \text { if } i \in I \text {, then } a_{i j}=0 \forall j \in J, \\
& \text { if } i \in J \text {, then } a_{i j}=0 \forall j \in I
\end{aligned}
$$

For all $\ell+1 \leqslant i \leqslant p$
if $i \in I$, then $a_{i j}=0 \forall j \in I$,
if $i \in J$, then $a_{i j}=0 \forall j \in J$.
If A is not ℓ-reducible, we say that A is ℓ-irreducible.
We gave this definition in order to have the following proposition.
Proposition 6. Let $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant p}$ be a positive irreducible matrix, and $0 \leqslant \ell \leqslant p-1$ an integer. Then, the matrix B defined as follows:

$$
B=\left(\begin{array}{cc}
\left(a_{i j}\right)_{1 \leqslant i \leqslant \ell, 1 \leqslant j \leqslant p} & (0) \\
(0) & \left(a_{i j}\right)_{\ell+1 \leqslant i \leqslant p, 1 \leqslant j \leqslant p} \\
(0) & \left(a_{i j}\right)_{1 \leqslant i \leqslant \ell, 1 \leqslant j \leqslant p} \\
\left(a_{i j}\right)_{\ell+1 \leqslant i \leqslant p, 1 \leqslant j \leqslant p} & (0)
\end{array}\right)
$$

is irreducible if and only if A is ℓ-irreducible.
Proof. Suppose A is ℓ-reducible for a partition (I, J). Set $\bar{I}=I \cup(J+p)$ and $\bar{J}=J \cup(I+p)$, so that (\bar{I}, \bar{J}) is a non-trivial partition of $\{1, \ldots, 2 p\}$. Then for all $(i, j) \in \bar{I} \times \bar{J}$ we can prove that $b_{i j}=0$ and $b_{j i}=0$. Thus B is reducible.

Suppose that B is reducible for the non trivial partition (I, J). Set:

$$
\begin{array}{ll}
I_{1}=I \cap\{1, \ldots, p\}, & I_{2}=I \cap\{p+1, \ldots, 2 p\} \\
J_{1}=J \cap\{1, \ldots, p\}, & J_{2}=J \cap\{p+1, \ldots, 2 p\} .
\end{array}
$$

We can prove that $I_{1}=J_{2}-p$ and $I_{2}=J_{1}+p$, and we check that A is ℓ-reducible for the partition $\left(I_{1}, J_{1}\right)$.

Now we distinguish two cases according to whether P^{\prime} is ℓ-reducible or not.

6.2. First case: P^{\prime} is ℓ-irreducible

In this case $F(\infty)$ is also ℓ-irreducible for λ given by Theorem 2 and $\widetilde{F}(\infty)$ is irreducible. In addition, we have $\left\|\widetilde{F}(\infty)^{n}\right\| \leqslant\left\|F(\infty)^{n}\right\|$ for all n. As $F(\infty)$ is aperiodic, this sequence is bounded. We know that $F(\infty)$ has spectral radius 1 . The same also holds for $\widetilde{F}(\infty)$ thanks to the following lemma:

Lemma 4. If the matrix $A=\left(a_{i j}\right)_{i \leqslant i, j \leqslant p}$ is non-negative, then the matrix B of Proposition 6 has the same spectral radius as A.

Proof. Let us compute $\mathscr{P}(X)=\operatorname{det}\left(B-X I_{2 p}\right)$ the characteristic polynomial of B. Adding the last p columns of $B-X I_{2 p}$ to the first p columns, then subtracting the first p rows to the last p rows, we get $\operatorname{det}\left(B-X I_{2 p}\right)=\operatorname{det}\left(A-X I_{p}\right) \operatorname{det}\left(A_{1}-X I_{p}\right)$, where A_{1} is the following matrix:

$$
A_{1}=\binom{\left(a_{i j}\right)_{1 \leqslant i \leqslant l,} 1 \leqslant j \leqslant p}{\left(-a_{i j}\right)_{l+1 \leqslant i \leqslant p,} 1 \leqslant j \leqslant p} .
$$

Thus the spectral radius of B is the maximum of that of A and that of A_{1}. But A is non-negative, and component-wise $\left|A_{1}\right|=A$, so Theorem 8.1.18 of [12] yields $\rho\left(A_{1}\right) \leqslant \rho(A)$. Thus $\rho(B)=\rho(A)$.

Note that if λ is an eigenvalue of A with eigenvector X, then we have $B\left(X^{\prime}, X^{\prime}\right)^{\prime}=\left((A X)^{\prime},(A X)^{\prime}\right)^{\prime}=\lambda\left(X^{\prime}, X^{\prime}\right)^{\prime}$, thus $\left(X^{\prime}, X^{\prime}\right)^{\prime}$ is an eigenvector of B for the same eigenvalue. Let m and u be positive right and left eigenvectors of F for the eigenvalue 1 , so that $\sum m_{i}=\sum m_{i} u_{i}=1$. Then $\widetilde{m}=2^{-1}\left(m^{\prime}, m^{\prime}\right)^{\prime}$ is a right eigenvector of \widetilde{F} for the eigenvalue 1 , and satisfies $\sum \widetilde{m_{i}}=1$. And $\widetilde{u}=\left(u^{\prime}, u^{\prime}\right)^{\prime}$ is a left eigenvector so that $\sum_{i=1}^{2 p} \widetilde{u}_{i} \widetilde{m}_{i}=\sum_{i=1}^{p} u_{i} m_{i}=1$.

6.2.1. Properties of \widetilde{F} and \widetilde{G}

Let $\widetilde{U}=\sum_{k=0}^{\infty} \widetilde{F}^{(k)}$. As $\widetilde{F}_{i j} \leqslant F_{i j}$, the same holds for their k-fold convolution. Set $U=\sum_{k=0}^{\infty} F^{(k)}$, then $U(t)<\infty$ as in the positive case, and thus $\widetilde{U}(t)<\infty$.

To prove that $\widetilde{Z}=\widetilde{U} * \widetilde{G}$, it is sufficient to prove that $\widetilde{F}^{(n)} * \widetilde{Z} \underset{n \rightarrow \infty}{\longrightarrow} 0$. But we have seen in Section 3 that

$$
\begin{aligned}
(\widetilde{F} * \widetilde{Z})_{i}(t) & =\sum_{j=1}^{p} \mathrm{e}^{-\left(t-\log \left|e_{i}\right|\right)} \int_{0}^{\mathrm{e}^{t-\log \left|e_{i}\right|}}\left|e_{i}\right|^{\lambda} p_{j i} u^{\lambda} \mathbb{P}\left(\pm Y_{1}>u, a_{0}=e_{j}\right) \mathrm{d} u \\
& =\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(\pm a_{0} Y_{0}>u, a_{0}=e_{i}\right) \mathrm{d} u
\end{aligned}
$$

Similarly, we get

$$
\left(\widetilde{F}^{(n)} * \widetilde{Z}\right)_{i}(t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(\pm a_{1-n}, \ldots, a_{0} Y_{1-n}>u, a_{0}=e_{i}\right) \mathrm{d} u
$$

And thus, as in the positive case, we have

$$
\sum_{i=1}^{p}\left(\widetilde{F}^{(n)} * \widetilde{Z}\right)_{i}(t)=\mathrm{e}^{-t} \int_{0}^{\mathrm{e}^{t}} u^{\lambda} \mathbb{P}\left(\pm a_{1-n}, \ldots, a_{0} Y_{1-n}>u\right) \mathrm{d} u
$$

But Eq. (8) implies $a_{1-n}, \ldots, a_{0} \rightarrow 0$. Thus for all $u>0$, the bounded convergence theorem yields $\mathbb{P}\left(\pm a_{1-n}, \ldots, a_{0} Y_{1-n}>u\right) \rightarrow 0$, because $Y<\infty$ a.s. and is stationary.

Thus $\sum_{i=1}^{p}\left(\widetilde{F}^{(n)} * \widetilde{Z}\right)_{i}(t) \rightarrow 0$, and as all the terms in the sum are non-negative, each one tends to 0 and we have, as expected $\widetilde{Z}=\widetilde{U} * \widetilde{G}$.

We have $\widetilde{G}_{i}(t)=G_{i}(\pm 1, t)$ which is directly Riemann integrable under the assumptions of Theorem 2 as seen for the positive case.

6.2.2. Tail of the distribution

We have proved that \widetilde{F} and \widetilde{G} satisfy the assumptions of Theorem A. Hence for all i, t, we have, with obvious notations,

$$
\begin{equation*}
\widetilde{Z}_{i}(t) \underset{t \rightarrow \infty}{\longrightarrow} \widetilde{c} \widetilde{m}_{i} \sum_{j=1}^{2 p}\left[\widetilde{u}_{j} \int_{-\infty}^{\infty} \widetilde{G}_{j}(y) \mathrm{d} y\right] \tag{20}
\end{equation*}
$$

Notice that $\tilde{c}=c$. Indeed, we have

$$
\widetilde{u} \widetilde{B} \widetilde{m}=\frac{1}{2}\left(u^{\prime}, u^{\prime}\right)\left(\begin{array}{cc}
\left(b_{i j}\right)_{1 \leqslant i \leqslant \ell, 1 \leqslant j \leqslant p} & 0 \\
0 & \left(b_{i j}\right)_{\ell+1 \leqslant i \leqslant p, 1 \leqslant j \leqslant p} \\
0 & \left(b_{i j}\right)_{1 \leqslant i \leqslant \ell, 1 \leqslant j \leqslant p} \\
\left(b_{i j}\right)_{\ell+1 \leqslant i \leqslant p, 1 \leqslant j \leqslant p} & 0
\end{array}\right)\binom{m}{m} .
$$

Hence $\tilde{c}^{-1}=\frac{1}{2}\left(u^{\prime} B m+u^{\prime} B m\right)=c^{-1}$, where B is the expectation of F. Thus summing up the term in Eq. (20), we get

$$
z(x, t) \underset{t \rightarrow \infty}{\longrightarrow} c \sum_{j=1}^{p}\left[u_{j} \int_{-\infty}^{\infty}\left(G_{j}(-1, y)+G_{j}(1, y)\right) \mathrm{d} y\right]
$$

And we use again Lemma 9.3 of [9] to conclude that $t^{\lambda} \mathbb{P}\left(x Y_{1}>t\right)$ has the same limit. Note that here this limit does not depend on x, therefore both $t^{2} \mathbb{P}\left(Y_{1}>t\right)$ and $t^{\lambda} \mathbb{P}\left(Y_{1}<-t\right)$ have the same limit.

6.3. Second case: P^{\prime} is l-reducible

As seen in the proof of Proposition 6, there is (I, J) a non-trivial partition of $\{1, \ldots, 2 p\}$ such that for all (i, j) in $I \times J$ we have $\widetilde{F}_{i j}(\infty)=\widetilde{F}_{j i}(\infty)=0$. Suppose that 1 belongs to I. Then System (5) splits into two independent systems of size p, one with the components $\left(\widetilde{Z}_{i}\right)_{i \in I}$ and the other with $\left(\widetilde{Z}_{i}\right)_{i \in J}$. Each of these systems has associated matrix F that satisfies the hypothesis of Renewal Theorem A, as seen in the positive case. For all i, \widetilde{G}_{i} is also directly Riemann integrable as seen in the preceding section. Thus Theorem A yields

$$
\begin{aligned}
& \forall i \in I, \quad \widetilde{Z}_{i}(t) \underset{t \rightarrow \infty}{\longrightarrow} c m_{\bar{i}} \sum_{\substack{1 \leqslant j \leqslant 2 p \\
j \in I}} u_{\bar{j}} \int_{-\infty}^{\infty} \widetilde{G}_{j}(y) \mathrm{d} y, \\
& \forall i \in J, \quad \widetilde{Z}_{i}(t) \underset{t \rightarrow \infty}{\longrightarrow} c m_{\bar{i}} \sum_{\substack{1 \leqslant j \leqslant 2 p \\
j \in J}} u_{\bar{j}} \int_{-\infty}^{\infty} \widetilde{G}_{j}(y) \mathrm{d} y,
\end{aligned}
$$

where \bar{i} denotes i if $i \leqslant p$ and $i-p$ if $i<p$. Summing up these equalities, we get

$$
z(1, t) \underset{t \rightarrow \infty}{\longrightarrow} c \sum_{j=1}^{p} u_{j} \int_{-\infty}^{\infty}\left(\mathbf{1}_{I}(j) G_{j}(1, y)+\mathbf{1}_{J}(j) G_{j}(-1, y)\right) \mathrm{d} y
$$

and

$$
z(-1, t) \underset{t \rightarrow \infty}{\longrightarrow} c \sum_{j=1}^{p} u_{j} \int_{-\infty}^{\infty}\left(\mathbf{1}_{J}(j) G_{j}(1, y)+\mathbf{1}_{I}(j) G_{j}(-1, y)\right) \mathrm{d} y .
$$

Again, $t^{\lambda} \mathbb{P}\left(x Y_{1}>t\right)$ has the same limit as $z(x, t)$ for $x \in\{-1,1\}$. Note that here these two limits are possibly different.

6.4. The sum of the limits is non-zero

The proof is the same for both cases. The results of Section 5 can be extended to the present case. The result of Section 5.1 about the special case when b_{0} has constant sign is valid here. Thus if both limits are zero then $Y_{0}=0$ almost surely which is impossible as 0 is not a solution of Eq. (1).

If X is a random variable, set $\operatorname{med}_{+}(X)=\max _{1 \leqslant i \leqslant p}\left\{\operatorname{med}_{i}(X)\right\}$. The analogous of Lemma 2 is as follows:

Lemma 5. For all $t>0$ and $n \geqslant 1$, we have

$$
\begin{aligned}
2 \mathbb{P}\left(Y_{1}>t\right) \geqslant & \mathbb{P}\left(\max _{1 \leqslant j \leqslant n}\left\{\mathbf{1}_{\Pi_{j}>0}\left[Y_{1}^{j}+\Pi_{j} \operatorname{med}_{-}\left(\frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right)\right]\right\}>t\right) \\
& +\mathbb{P}\left(\max _{1 \leqslant j \leqslant n}\left\{\mathbf{1}_{\Pi_{j}<0}\left[Y_{1}^{j}+\Pi_{j} \operatorname{med}_{+}\left(\frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right)\right]\right\}>t\right)
\end{aligned}
$$

Proof. As Π_{j} is not always positive, we introduce new events, depending on the sign of Π_{j} : set $T_{+}=\inf \left\{j \leqslant n\right.$ s.t. $\Pi_{j}>0$ and $Y_{1}^{j}+\Pi_{j}$ med $\left._{-}\left(\left(Y_{1}^{n}-Y_{1}^{j}\right) \Pi_{j}^{-1}\right)>t\right\}$ if this set is not empty, $n+1$ otherwise, $T_{-}=\inf \left\{j \leqslant n\right.$ s.t. $\Pi_{j}<0$ and $Y_{1}^{j}+\Pi_{j} \operatorname{med}_{+}\left(\left(Y_{1}^{n}-Y_{1}^{j}\right)\right.$ $\left.\left.\Pi_{j}^{-1}\right)>t\right\}$ if it is not empty, $n+1$ otherwise, $B_{j}^{+}=\left\{\operatorname{med}_{-}\left(\left(Y_{1}^{n}-Y_{1}^{j}\right) \Pi_{j}^{-1}\right) \leqslant\left(Y_{1}^{n}-Y_{1}^{j}\right)\right.$ $\left.\Pi_{j}^{-1}\right\}$, and $B_{j}^{-}=\left\{\operatorname{med}_{+}\left(\left(Y_{1}^{n}-Y_{1}^{j}\right) \Pi_{j}^{-1}\right) \geqslant\left(Y_{1}^{n}-Y_{1}^{j}\right) \Pi_{j}^{-1}\right\}$. The events $\left(T_{+}=j\right)$ and $\left(T_{-}=j\right)$ on the one hand and B_{j}^{+}and B_{j}^{-}on the other hand are independent conditionally to a_{-j}. Moreover, for all i, j we have,

$$
\mathbb{P}\left(B_{j}^{+} \mid a_{-j}=e_{i}\right) \geqslant \mathbb{P}\left(\operatorname{med}_{i}\left(\frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right) \leqslant \frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right) \geqslant \frac{1}{2}
$$

and

$$
\mathbb{P}\left(B_{j}^{-} \mid a_{-j}=e_{i}\right) \geqslant \mathbb{P}\left(\operatorname{med}_{i}\left(\frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right) \geqslant \frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right) \geqslant \frac{1}{2} .
$$

Thus we get, as in the proof of Lemma 2:

$$
\begin{aligned}
\mathbb{P}\left(Y_{1}^{n}>t\right) \geqslant & \mathbb{P}\left(\bigcup_{j=1}^{n}\left[\left[\left(T_{+}=j\right) \cap B_{j}^{+}\right] \cup\left[\left(T_{-}=j\right) \cap B_{j}^{-}\right]\right]\right) \\
\geqslant & \frac{1}{2}\left(\mathbb{P}\left(T_{+} \leqslant n\right)+\mathbb{P}\left(T_{-} \leqslant n\right)\right) \\
= & \frac{1}{2}\left[\mathbb{P}\left(\max _{1 \leqslant j \leqslant n}\left\{\mathbf{1}_{\Pi_{j}>0}\left[Y_{1}^{j}+\Pi_{j} \operatorname{med}_{-}\left(\frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right)\right]\right\}>t\right)\right] \\
& +\mathbb{P}\left(\max _{1 \leqslant j \leqslant n}\left\{\mathbf{1}_{\Pi_{j}<0}\left[\left[Y_{1}^{j}+\Pi_{j} \operatorname{med}_{+}\left(\frac{Y_{1}^{n}-Y_{1}^{j}}{\Pi_{j}}\right)\right]\right\}>t\right)\right] .
\end{aligned}
$$

The rest of the proof runs the same as in the positive case for each of these two terms. Set $m_{-}=\operatorname{med}_{-}\left(Y_{1}\right)$ and $m_{+}=\operatorname{med}_{+}\left(Y_{1}\right)$. For all $\varepsilon>0$ and $t>\max \left\{\left|m_{+}\right|,\left|m_{-}\right|\right\}$, we get

$$
\begin{aligned}
& \mathbb{P}\left(\exists n \text { s.t. } \Pi_{n}>\frac{2 t}{\varepsilon} \text { and }\left|b_{-n}+\left(a_{-n}-1\right) m_{-}\right|>\varepsilon\right) \\
& \quad \geqslant \min _{1 \leqslant i \leqslant p} \mathbb{P}\left(\left|b_{0}+\left(e_{i}-1\right) m_{-}\right|>\varepsilon\right) \mathbb{P}\left(\exists n \text { s.t. } \Pi_{n}>\frac{2 t}{\varepsilon}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{P}\left(\exists n \text { s.t. } \Pi_{n}<-\frac{2 t}{\varepsilon} \text { and }\left|b_{-n}+\left(a_{-n}-1\right) m_{+}\right|>\varepsilon\right) \\
& \quad \geqslant \min _{1 \leqslant i \leqslant p} \mathbb{P}\left(\left|b_{0}+\left(e_{i}-1\right) m_{+}\right|>\varepsilon\right) \mathbb{P}\left(\exists n \text { s.t. } \Pi_{n}<-\frac{2 t}{\varepsilon}\right) .
\end{aligned}
$$

If b_{0} is not constant, we can again find $\varepsilon>0$ such that $\min _{1 \leqslant i \leqslant p}\left\{\mathbb{P}\left(\left|b_{0}+\left(e_{i}-1\right) m_{-}\right|\right.\right.$ $>\varepsilon)\}>0$ and $\min _{1 \leqslant i \leqslant p}\left\{\mathbb{P}\left(\left|b_{0}+\left(e_{i}-1\right) m_{+}\right|>\varepsilon\right)\right\}>0$. Thus, we get the analogous of Proposition 5: there is a constant $C>0$ and $\varepsilon>0$ such that for all large enough t :

$$
\mathbb{P}\left(\left|Y_{1}\right|>t\right) \geqslant C \mathbb{P}\left(\sup _{n}\left|\Pi_{n}\right|>\frac{2 t}{\varepsilon}\right)
$$

Define the new random walk $S_{n}=\log \left|a_{0}, \ldots, a_{1-n}\right|$. With this slight change in Section 5.3 , the proof is the same.

References

[1] E. Arjas, T.P. Speed, An extension of Cramér's estimate for the absorption probability of a random walk, Proc. Camb. Phil. Soc. 73 (1973) 355-359.
[2] S. Asmussen, Aspects of matrix Wiener-Hopf factorisation in applied probability, Math. Scientist 14 (1989) 101-116.
[3] S. Asmussen, Applied Probability and Queues, second ed., Springer, New York, 2003.
[4] K.B. Athreya, K. Rama Murthy, Feller's renewal theorem for systems of renewal equations, J. Indian Inst. Sci. 58 (1976) 437-459.
[5] A. Brandt, The stochastic equation $Y_{n+1}=A_{n} Y_{n}+B_{n}$ with stationary coefficients, Adv. Appl. Probab. 18 (1986) 211-220.
[6] S.C. Chow, H. Teicher, Probability Theory. Independence, Interchangeability, Martingales, Springer, New York, Heildelberg, Berlin, 1978.
[7] K.S. Crump, On systems of renewal equations, J. Math. Anal. Appl. 30 (1970) 425-434.
[8] W. Feller, Introduction to Probability Theory and its Applications, Wiley, New York, London, Sydney, 1971.
[9] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1 (1991) 26-166.
[10] A.K. Grincevičius, Products of random affine transformations, Lithuanian Math. J. 20 (1980) 279-282.
[11] J.D. Hamilton, Estimation, inference and forecasting of time series subject to change in regime, in: G. Maddala, C.R. Rao, D.H. Vinod (Eds.), Handbook of Statistics, vol. 11, 1993, pp. 230-260.
[12] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[13] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973) 207-248.
[14] H. Kesten, Renewal theory for functionals of a Markov chain with general state space, Ann. Probab. 2 (1974) 355-386.
[15] C. Klüppelberg, S. Pergamenchtchikov, The tail of the stationary distribution of a random coefficient AR(q) model, Ann. Appl. Probab. 14 (2004) 971-1005.
[16] E. Le Page, Théorèmes de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires, Séminaires de probabilités de Rennes, 1983.
[17] B. de Saporta, Renewal theorem for a system of renewal equations, Ann. Inst. H. Poincare Probab. Statist. 39 (2003) 823-838.

[^0]: *Tel.: + 33223235877 ; fax: + 33223236790 .
 E-mail address: benoite.de-saporta@math.univ-rennes1.fr.

