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Abstract

In this paper, we deal with the real stochastic difference equation Y nþ1 ¼ anY n þ bn; n 2 Z,

where the sequence ðanÞ is a finite state space Markov chain. By means of the renewal theory,

we give a precise description of the situation where the tail of its stationary solution exhibits

power law behavior.
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1. Introduction

We study the following stochastic difference equation:

Y nþ1 ¼ anY n þ bn; n 2 Z, (1)

where ðanÞ is a real, finite state space Markov chain, and ðbnÞ is a sequence of
real i.i.d. random variables. Equations of type (1) have many applications in
stochastic modeling and statistics. Most of previously studied cases deal with i.i.d.
see front matter r 2005 Elsevier B.V. All rights reserved.
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multiplicative coefficients ðanÞ: see [13,14,16,9]. For more recent work, see also [15].
Here, we study the Markovian case. In statistical literature, Eq. (1) defines a
so-called Markov-switching auto-regression. See [11] for interesting applications
in econometrics. Such stochastic recursions are also a basic tool in queuing theory:
see [3].
We assume throughout this paper that the following conditions are satisfied:

E log ja0jo0,

E logþ jb0jo1. (2)

If in addition ðan; bnÞ is stationary and ergodic, Brandt [5] proved that Eq. (1) has a
unique stationary solution ðY nÞ, where

Y n ¼
X1
k¼0

an�1an�2 	 	 	 an�kbn�1�k; n 2 Z.

In the following, ðY nÞ will always denote the stationary solution of Eq. (1). We deal
with the tail of Y 1: we investigate the asymptotic behavior of PðxY 14tÞ, when t

tends to infinity, and where x 2 f�1; 1g. Our approach is based on renewal-theoretic
methods as developed in [16,9].
Our main results are the following two theorems, depending on the an being

positive or not. Let R be the set of real numbers, and R�
þ the set of positive real

numbers.

Theorem 1. Let ðanÞ be an irreducible, aperiodic, stationary Markov chain, with state

space E ¼ fe1; . . . ; epg  R�
þ, transition matrix P ¼ ðpijÞ and stationary law n. Let ðbnÞ

be a sequence of non-zero real i.i.d. random variables, and independent of the sequence

ðanÞ. If the following conditions are satisfied:
(1)
 there is a l40 so that the matrix Pl ¼ diagðeli ÞP
0 has spectral radius 1 (P0 denotes

the transpose of P),

(2)
 the numbers log ei are not integral multiples of the same number,

(3)
 there is a d40 such that Ejb0j

lþdo1,
then we have for x 2 f�1; 1g

tlPðxY 14tÞ �!
t!1

LðxÞ,

where Lð1Þ þ Lð�1Þ is positive. If b0X0 a.s., then Lð�1Þ ¼ 0, and Lð1Þ40. If b0p0
a.s., then Lð1Þ ¼ 0, and Lð�1Þ40.

Theorem 2. Let ðanÞ be an irreducible, aperiodic, stationary Markov chain, with state

space E ¼ fe1; . . . ; epg  R such that e1; . . . ; e‘ are positive and e‘þ1; . . . ; ep are negative

for a 0p‘pp � 1 (‘ ¼ 0 means that all the ei are negative). Let P ¼ ðpijÞ be its

transition matrix and n its stationary law. Let ðbnÞ be a sequence of non-zero real i.i.d.

random variables, and independent of the sequence ðanÞ. If the following conditions



ARTICLE IN PRESS

B. de Saporta / Stochastic Processes and their Applications 115 (2005) 1954–19781956
are satisfied:
(1)
 there is a l40 so that Pl ¼ diagðjeij
lÞP0 has spectral radius 1,
(2)
 the numbers log jeij are not integral multiples of the same number,

(3)
 there is a d40 such that Ejb0j

lþdo1,
then we have, for x 2 f�1; 1g,

tlPðxY 14tÞ �!
t!1

LðxÞ,

where Lð1Þ þ Lð�1Þ is positive. If in addition P0 is ‘-irreducible (see Definition 3) then

Lð1Þ ¼ Lð�1Þ40.

The last two hypotheses in these theorems are the same as in the i.i.d. case. In
particular, Hypothesis (2) ascertains that the distribution of Y 1 is non-lattice, and it is
equivalent to requiring that the subgroup generated by the log ei be dense in R. On the
contrary, Assumption (1) comes from the Markovian dependence considered here.
Indeed, we will prove in Section 4.1 that the spectral radius rðPlÞ of the matrix Pl can be
computed from the formula rðPlÞ ¼ limðEja0; . . . ; a1�nj

lÞ
1=n. Therefore, this assumption

is a suitable substitute for the classical relation Eja0j
l ¼ 1 assumed in the i.i.d. case.

Note that the assumption of independence between the two sequences ðanÞ and ðbnÞ

can be avoided. LetF�n be the s-field generated by a0; . . . ; a�n and b0; . . . ; b�n. Then
ðbnÞ is only required to be a sequence of random variables such that ðan; bnÞ is a
stationary process, and b�ðnþ1Þ is independent of F�n. We also need one more
assumption (also assumed in the i.i.d. case): for all i, Pðb0 þ a0x ¼ x j a0 ¼ eiÞo1.
The proofs run exactly the same, except that of Lemma 3, where min1pipp Pðjb0 þ

ðei � 1Þm0j4eÞ must be replaced by min1pipp Pðjb0 þ ða0 � 1Þm0j4e j a0 ¼ eiÞ. And
thanks to the new assumption, we can again choose a positive e such that the latter
minimum is positive.
As the mapping l 7�!log rðPlÞ is convex (see Section 4.1), that its right-hand

derivative at 0 is negative and rðP0Þ ¼ rðPÞ ¼ 1, only two cases may occur. Either
for all l40; rðPlÞo1, in which case we can prove that EjY 1j

lo1 for all l, provided
Ejb0j

lo1 (see Proposition 3), and therefore PðjY 1j4tÞ ¼ oðt�lÞ for all l; or there is
a unique l40 so that rðPlÞ ¼ 1, this is the case we study here.
Similar results have already been proved in the i.i.d. multidimensional case: an are

matrices and Y n and bn vectors. Renewal theory is used by Kesten [13] when the an

either have a density or are non-negative. These results were extended by Le Page [16] to
all i.i.d. random matrices satisfying similar assumptions as in our theorems. Finally
Goldie [9] proved a new specific implicit renewal theorem and derived the same results as
Kesten in the i.i.d. one-dimensional case. He also studies the tails of the stationary
solutions of several other one-dimensional random equations with i.i.d. coefficients.
The paper is organized as follows. In Section 2, we introduce some notation and

state a new renewal theorem. In Section 3 we derive the renewal equations
corresponding to our problem. In Sections 4 and 5, we prove Theorem 1, Section 5
being dedicated to the proof that the sum of the limits is non-zero. And finally in
Section 6 we prove Theorem 2.
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2. A renewal theorem

Our approach is based on a new renewal theorem for systems of renewal
equations. First, we give some notation and conventions that will apply throughout.
Let F ¼ ðFijÞ1pi;jpp be a matrix of distributions: non-decreasing, right-continuous

functions from R to Rþ with limit 0 at �1.

Definition 1. For all rX1 and all p � r vector or matrix H of Borel measurable, real
valued functions Hij on R that are bounded on compact intervals, we define the
convolution product F � H by

ðF � HÞijðtÞ ¼
Xp

k¼1

Z 1

�1

Hkjðt � uÞFikðduÞ,

where it exists.

We study the renewal equation Z ¼ F � Z þ G, where G ¼ ðG1; . . . ;GpÞ
0 is a

vector of Borel measurable, real valued functions, bounded on compact intervals,
and Z ¼ ðZ1; . . . ;ZpÞ

0 is a vector of functions. The renewal theorem will give the
limit of Z at þ1.
For all real t, set:
�
 B ¼ ðbijÞ1pi;jpp where bij ¼
R

uFijðduÞ if it exists, the expectation of F,
�
 F ð0ÞðtÞ ¼ ðdijðtÞÞ1pi;jpp where dijðtÞ ¼ 1tX0 if i ¼ j and 0 otherwise, so that

F ð0Þ � H ¼ H for all H as in the definition above,

�
 F ðnÞðtÞ ¼ F � F ðn�1ÞðtÞ, the n-fold convolution of F,P

�
 UðtÞ ¼

1

n¼0 F ðnÞðtÞ, the renewal function associated with F.

Assume that all the measures F ij are finite:

Fijð1Þ ¼ lim
t!1

F ijðtÞo1,

and that F ð1Þ is an irreducible matrix (see e.g. [12] for a definition and Perron–
Frobenius theory). By Perron–Frobenius theorem, the spectral radius rðF ð1ÞÞ of
F ð1Þ is a simple eigenvalue with right and left positive eigenvectors. Assume that
rðF ð1ÞÞ ¼ 1, and let m and u be two positive eigenvectors such that:

F ð1Þm ¼ m; u0F ð1Þ ¼ u0;
Xp

i¼1

mi ¼ 1;
Xp

i¼1

uimi ¼ 1.

Assume also that the sequence ðkF ð1Þ
n
kÞ is bounded (for instance if F ð1Þ is

aperiodic, this is true). We recall the following definition:

Definition 2. The matrix of distributions F is lattice if the following conditions are
satisfied:
�
 For all iaj, Fij is concentrated on a set of the form bij þ lijZ.

�
 For all i, Fii is concentrated on a set of the form liiZ.
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�
 Each lii is an integral multiple of the same number.
We take l to be the largest such number.
�
 For all aij ; ajk; aik points of increase of Fij ; Fjk; Fik, respectively, aij þ ajk � aik is
an integral multiple of l.

Our basic tool is the following renewal theorem from [17]. It extends a previous
result of Crump [7] and Athreya and Rama Murthy [4] which deals with the case
where each distribution Fij has support on Rþ.

Renewal Theorem A. Assume that F is a matrix of distributions satisfying the

assumptions above, that it is non-lattice, and that
(1)
 its expectation B exists,

(2)
 for all t 2 R, UðtÞ is finite.
If in addition G is directly Riemann integrable (see [8]), and Z ¼ U � G exists, then for

all i, we have:

lim
t!1

ZiðtÞ ¼ cmi

Xp

j¼1

uj

Z 1

�1

GjðyÞdy

� �
,

where m and u are the eigenvectors defined above and c ¼ ðu0BmÞ
�1 (under these

assumptions, u0Bma0).

We also recall Theorem 2.3 of [4] that will be used in Section 5.

Renewal Theorem B. Let F be a non-lattice matrix of distributions with support on the

positive half-line, such that
(1)
 rðF ð0ÞÞo1,

(2)
 F ð1Þ is finite, irreducible and aperiodic.
Assume also that there is a a40 such that rðFaÞ ¼ 1, where ðF aÞij ¼
R1
0
e�auF ijðduÞ.

Then for all h40, and all i; j, we have

lim
t!1

Z tþh

t

e�ayUijðdyÞ ¼ cmiujh,

where m and u are right and left eigenvectors of Fa, with the same normalization as

above, c ¼ ðu0BmÞ
�1, and B ¼ ðbijÞ with bij ¼

R1
0

ue�auF ijðduÞ, c being interpreted as

zero if some bij is equal to infinity.

Note that this theorem can now be seen as a corollary of Theorem A. Indeed, the
first assumption ascertains that UðtÞ is finite for all t. In the positive case, the
expectation B and the convolution product U � G are always defined (possibly
infinite). Applying Theorem A with F ¼ Fa and G ¼ 1½t;tþh� (which is obviously
directly Riemann integrable) yields Theorem B.
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3. The renewal equations

Let

zðx; tÞ ¼ e�t

Z et

0

ulPðxY 14uÞdu.

For all ðx; tÞ 2 f�1; 1g � R, we have: zðx; tÞ ¼
Pp

i¼1 Ziðx; tÞ, where

Ziðx; tÞ ¼ e�t

Z et

0

ulPðxY 14u; a0 ¼ eiÞdu.

Besides, Y 1 ¼ a0Y 0 þ b0, thus for all ðx; uÞ 2 f�1; 1g � R, and for all i we have

PðxY 14u; a0 ¼ eiÞ ¼ Pðxa0Y 04u; a0 ¼ eiÞ þ ciðx; uÞ,

where

ciðx; tÞ ¼ Pðt � xb0oxa0Y 0pt; a0 ¼ eiÞ � Pðtoxa0Y 0pt � xb0; a0 ¼ eiÞ.

Let Giðx; tÞ ¼ e�t
R et

0 ulciðx; uÞdu. We get

zðx; tÞ ¼
Xp

i¼1

e�t

Z et

0

ulPðxa0Y 04u; a0 ¼ eiÞdu þ Giðx; tÞ

" #
.

Now we need to distinguish two cases. Indeed, we make a change of variable that
involves the sign of a0. We start with the easier special case when all the states of our
Markov chain are positive, therefore the sign of a0 is non-random.
3.1. Positive case

Suppose all the states of our Markov chain are positive. Then for all ðx; tÞ in
f�1; 1g � R, and all i, we have, thanks to a simple change of variable,

e�t

Z et

0

ulPðxa0Y 04u; a0 ¼ eiÞdu ¼ e�ðt�log eiÞeli

Z et�log ei

0

ulPðxY 04u; a0 ¼ eiÞdu.

(3)

The Markov property and the stationarity of ðY nÞ yield

PðxY 04u; a0 ¼ eiÞ ¼
Xp

j¼1

PðxY 04u; a0 ¼ ei; a�1 ¼ ejÞ

¼
Xp

j¼1

PðxY 04uja�1 ¼ ejÞnðejÞpji

¼
Xp

j¼1

PðxY 14uja0 ¼ ejÞnðejÞpji.
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Thus, we get the following formula for Zi:

Ziðx; tÞ ¼
Xp

j¼1

e�ðt�log eiÞeli

Z et�log ei

0

ulPðxY 14u; a0 ¼ ejÞpji du

" #
þ Giðx; tÞ

¼ eli

Xp

j¼1

½pjiZjðx; t � log eiÞ� þ Giðx; tÞ.

We can rewrite this system of equations as follows:

81pipp; Ziðx; tÞ ¼
Xp

j¼1

F ij � Zjðx; tÞ þ Giðx; tÞ,

where FijðtÞ ¼ eli pji1tX log ei
are distribution functions. Let Z ¼ ðZ1; . . . ;ZpÞ

0, G ¼

ðG1; . . . ;GpÞ
0 and F be the matrix F ¼ ðF ijÞ. With the notations of Section 2 we have

the following system of renewal equations for fixed x:

Zðx; tÞ ¼ F � Zðx; tÞ þ Gðx; tÞ. (4)
3.2. General case

Now we study the general case. In order to determine the sign of a0, we classify our
states according to their sign: assume there is a 0p‘pp � 1 so that e1; . . . ; e‘40 and
e‘þ1; . . . ; epo0. Then Eq. (3) becomes

e�t

Z et

0

ulPðxa0Y 04u; a0 ¼ eiÞdu

¼ e�ðt�log jeijÞjeij
l
Z et�log jei j

0

ulPðx 	 eiY 04u; a0 ¼ eiÞdu,

where x 	 ei denotes the sign of xei. To get similar equations as in the positive case,
we introduce 2p new functions:

81pipp; Zþ
i ðtÞ ¼ Zið1; tÞ ¼ e�t

Z et

0

ulPðY 14u; a0 ¼ eiÞdu,

81pipp; Z�
i ðtÞ ¼ Zið�1; tÞ ¼ e�t

Z et

0

ulPð�Y 14u; a0 ¼ eiÞdu.

Following the same steps as in the positive case, we get

81pipl; Zþ
i ðtÞ ¼ jeij

l
Xp

j¼1

pjiZ
þ
j ðt � log jeijÞ þ Gið1; tÞ,

8l þ 1pipp; Zþ
i ðtÞ ¼ jeij

l
Xp

j¼1

pjiZ
�
j ðt � log jeijÞ þ Gið1; tÞ,
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81pipl; Z�
i ðtÞ ¼ jeij

l
Xp

j¼1

pjiZ
�
j ðt � log jeijÞ þ Gið�1; tÞ,

8l þ 1pipp; Z�
i ðtÞ ¼ jeij

l
Xp

j¼1

pjiZ
þ
j ðt � log jeijÞ þ Gið�1; tÞ, ð5Þ

that we can also rewrite as a system of renewal equations: seteZ ¼ ðZþ
1 ; . . . ;Z

þ
p ;Z

�
1 ; . . . ;Z

�
p Þ

0 and eG ¼ ðGþ
1 ; . . . ;G

þ
p ;G

�
1 ; . . . ;G

�
p Þ

0,

where Gþ
i ðtÞ ¼ Gið1; tÞ and G�

i ðtÞ ¼ Gið�1; tÞ. Define the 2p � 2p matrix eF ¼ ðeFijÞ by:eFijðtÞ ¼ jeīj
lpj̄ī1tX log jeīj

if 1pipl and 1pjpp;

or p þ l þ 1pip2p and 1pjpp;

or l þ 1pipp þ l and p þ 1pjp2p;eFijðtÞ ¼ 0 otherwise;

where ī ¼ imod p (see Eq. (19) for an explicit matrix form of eF ). Now Eq. (5)
becomeseZðtÞ ¼ eF � eZðtÞ þ eGðtÞ.
4. Part I of the proof of Theorem 1

Throughout this section, we assume that the hypotheses of Theorem 1 are
satisfied. In order to apply Renewal Theorem A, we have to check that F and G

satisfy its hypotheses. Note first that Fijð1Þ ¼ eli pjio1 and that B the expectation
of F is well defined. Indeed, bij ¼ eli pji log eio1. The assumption that the log ei are
not integral multiples of the same number implies that F is non-lattice. The other
points are proved in the following sections.
4.1. Finiteness of U

Remember that U ¼
P1

k¼0 F ðkÞ. We have to check that UðtÞo1 for all real t.
First, we study the spectral radius of the matrices Pa ¼ diagðeai ÞP

0, i.e. ðPaÞij ¼ eai pji,
for a40.

Proposition 1. For all a40, we have

rðPaÞ ¼ lim
k
ðEja0; . . . ; a�kj

aÞ
1=k.

Proof. We have

Eja0a�1; . . . ; a�kj
a ¼

X
i1;...;ikþ1

Pða0 ¼ ei1 ; . . . ; a�k ¼ eikþ1
Þjei1 ; . . . ; eikþ1

ja
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¼
X

i1;...;ikþ1

pi2i1
; . . . ; pikþ1ik

nðeikþ1
Þjei1 ; . . . ; eikþ1

ja

¼
X

i;j

ðPk
aÞijnðejÞe

a
j ,

where Pk
a is the kth power of the matrix Pa. Rewrite this equation as

Eja0; a�1; . . . ; a�kj
a ¼ 1Pk

aDa, (6)

where 1 denotes the constant row vector with all coordinates equal to 1, and Da

is the column vector with coordinates nðejÞe
a
j . As P, and thus Pa, is aperiodic,

Theorem 8.5.1 of [12] yields

Pk
a

rkðPaÞ
�!
k!1

Aa (7)

where Aa is a constant positive matrix. Thus ð1Pk
aDaÞ

1=k
�!
k!1

rðPaÞ. &

The following corollary is obvious.

Corollary 1. The mapping a 7�!logðrðPaÞÞ is convex on Rþ.

Proposition 2. The right-hand derivative of a 7�!logðrðPaÞÞ at zero is negative.

To prove this proposition, we need another expression for rðPaÞ. We set Ee½	� ¼

E½	 j a0 ¼ e� for all e 2 E.

Lemma 1. Set hnðaÞ ¼ maxe2E Ee½ða�1; . . . ; a�nÞ
a
�. Then we have rðPaÞ ¼ infnðhnðaÞÞ

1=n.

Proof. We first prove that the sequence ðhnÞ is sub-multiplicative. Indeed, set e 2 E.
We have

Ee½ða�1; . . . ; a�na�n�1; . . . ; a�n�mÞ
a
� ¼ Ee½ða�1; . . . ; a�nÞ

aEa�n
½ða�1; . . . ; a�mÞ

a
��

phmðaÞEe½ða�1; . . . ; a�nÞ
a
�

phmðaÞhnðaÞ,

as Ea�n
½ða�1; . . . ; a�mÞ

a
�phmðaÞ. Thus limnðhnðaÞÞ

1=n
¼ infnðhnðaÞÞ

1=n. Besides, we have

Eja0a�1; . . . ; a�nj
a ¼

X
e2E

Eeja�1; . . . ; a�nj
aeanðeÞ

phnðaÞ
X
e2E

eanðeÞ.

As
P

e2E eanðeÞ40, Proposition 1 yields

rðPaÞp lim
n
ðhnðaÞÞ

1=n.

On the other hand, set en such that hnðaÞ ¼ Een
½ða�1; . . . ; a�nÞ

a
�. The equation above

then yields

Eja0a�1; . . . ; a�nj
a
XhnðaÞeannðenÞ

XChnðaÞ,
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where C ¼ mine2E eanðeÞ40. Hence we also have

rðPaÞX lim
n
ðhnðaÞÞ

1=n.

As limnðhnðaÞÞ
1=n

¼ infnðhnðaÞÞ
1=n, the lemma is proved. &

Proof of Proposition 2. For any fixed n, set en 2 E such that hnðaÞ ¼ Een
½ða�1; . . . ;

a�nÞ
a
�. As the product a�1; . . . ; a�n is bounded for a fixed n, we have

q
qa

hnðaÞ ¼ Een
½ða�1; . . . ; a�nÞ

a logða�1; . . . ; a�nÞ�,

hence

q
qa






a¼0

1

n
log hnðaÞ ¼

1

n
Een

½logða�1; . . . ; a�nÞ�.

For all e 2 E, the Ergodic Theorem for stationary Markov chains yields

1

n
Ee½logða�1; . . . ; a�nÞ� �!

n!1
E log a0 ¼ go0. (8)

As the state space E is finite, this convergence is also uniform on E. Thus, for any
sequence ðenÞ in E we have

1

n
Een

½logða�1; . . . ; a�nÞ� �!
n!1

go0.

Hence, there is an integer N such that

q
qa






a¼0

1

N
log hN ðaÞp

g
2
o0.

In particular, the mapping a 7�!1
N
log hNðaÞ is negative on an interval of the form

�0; e½, with e40. The preceding lemma then yields

log rðPaÞ ¼ inf
n

1

n
log hnðaÞ

p
1

N
log hNðaÞ,

which is negative for all a 2�0; e½. But the mapping a 7�!log rðPaÞ is convex and
continuous on Rþ, and takes the value 0 at 0. The result above implies that its right-
hand derivative at 0 is negative (possibly �1). &

We have rðP0Þ ¼ 1, and in addition, in the case we study here, rðPlÞ ¼ 1, thus
Proposition 2 and Corollary 1 easily yield the following corollary:

Corollary 2. For all 0oaol, we have rðPaÞo1.

Now we can study U. By definition, F ð1Þ ¼ Pl is irreducible as P is and all ei are
non-zero. We have chosen l so that rðPlÞ ¼ rðF ð1ÞÞ ¼ 1. For all a 2 �0; l½ , we have
Pl�a ¼ ðel�a

i pjiÞ ¼ ð
R
e�auF ijðduÞÞ. Corollary 2 yields rðPl�aÞo1, so that the seriesP1

n¼0ðP
n
l�aÞij is convergent for all i; j. As for all n, ðPn

l�aÞij ¼
R
e�auF

ðnÞ
ij ðduÞ holds,



ARTICLE IN PRESS

B. de Saporta / Stochastic Processes and their Applications 115 (2005) 1954–19781964
then we have

ðPn
l�aÞij X

Z t

�1

e�auF
ðnÞ
ij ðduÞ X e�at

Z t

�1

F
ðnÞ
ij ðduÞ ¼ e�atF

ðnÞ
ij ðtÞ.

Thus, for all i; j and t, we have UijðtÞ ¼
P

F
ðnÞ
ij ðtÞp eat

P
ðPn

l�aÞij o1.
4.2. Proof of Z ¼ U � G

Iterating Eq. (4) yields:

Z ¼
Xn�1
k¼0

½F ðkÞ � G� þ F ðnÞ � Z.

It is thus sufficient to prove that F ðnÞ � Z ! 0. As seen in Section 3 we have

ðF � ZÞiðx; tÞ ¼
Xp

j¼1

e�ðt�log eiÞ

Z et�log ei

0

eli pjiu
lPðxY 14u; a0 ¼ ejÞdu

" #

¼ e�t

Z et

0

ulPðxa0Y 04u; a0 ¼ eiÞdu.

Similarly, we get for all n

ðF ðnÞ � ZÞiðx; tÞ ¼ e�t

Z et

0

ulPðxa0; . . . ; a1�nY 1�n4u; a0 ¼ eiÞdu.

And thus we haveXp

i¼1

ðF ðnÞ � ZÞiðx; tÞ ¼ e�t

Z et

0

ulPðxa0; . . . ; a1�nY 1�n4uÞdu.

But a0; . . . ; a1�n ¼ expð
Pn

k¼1 log a1�kÞ, thus Eq. (8) and Assumption (2) yield
a0; . . . ; a1�n ! 0. Hence for all u40, the bounded convergence theorem yields:

Pðxa1�n; . . . ; a0Y 1�n4uÞ �!
n!1

0,

because Yo1 a.s. and is stationary. Thus
Pp

i¼1ðF
ðnÞ � ZÞiðx; tÞ ! 0 holds a.s.

As all the terms in the sum are non-negative, each one tends to zero and we have
Z ¼ U � G as required.
4.3. G is directly Riemann integrable

We first consider the moments of Y 1.

Proposition 3. For all 0psol, EjY 1j
so1.
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Proof. If sominf1; lg, then convexity and independence yield:

EjY 1j
sp
X1
k¼0

Eja0; a�1; . . . ; a1�kj
sEjb�kj

s,

and if 1psol, Hölder inequality yields:

ðEjY 1j
sÞ
1=sp

X1
k¼0

ðEja0; a�1; . . . ; a1�kj
sÞ
1=s

ðEjb�kj
sÞ
1=s.

But we have Ejb�kj
spðEjb0j

lþdÞ
s=ðlþdÞo1, with d given by Theorem 1. Besides, the

series
P

kðEja0; a�1; . . . ; a1�kj
sÞ
1=s converges thanks to Proposition 1 and Corollary 2.

Hence EjY 1j
so1. &

Proposition 4. For all i and x, the mappings t 7�!Giðx; tÞ are directly Riemann

integrable on R.

Proof. As Gi are clearly continuous in t, it is sufficient to prove thatX1
l¼�1

sup
lptolþ1

jGiðx; tÞjo1,

(see [8]). For all i;x; t, we have Giðx; tÞ ¼ G1
i ðx; tÞ � G2

i ðx; tÞ, where

G1
i ðx; tÞ ¼ e�t

Z et

0

ulPðu � xb0oxY 0a0pu; a0 ¼ eiÞduX0,

G2
i ðx; tÞ ¼ e�t

Z et

0

ulPðuoxY 0a0pu � xb0; a0 ¼ eiÞduX0.

For all real t, we have Giðx; tÞpG1
i ðx; tÞpe�t

R et

0
ul du ¼ etlðlþ 1Þ�1. In particular,

Gi is directly Riemann integrable on R�. We still have to study G1
i and G2

i on Rþ.
These two functions being of the same kind, we only study G1

i here.
The rest of the proof is adapted from [16]. Set e 2 �0; 1½ so that �1ol�

ðlþ dÞeo0, with d40 given by Theorem 1. We have

0petG1
i ðx; tÞp

Z et

0

ulPðxb04ue; a0 ¼ eiÞdu

þ

Z et

0

ulPðu � ueoxY 0a0pu; a0 ¼ eiÞdu. ð9Þ

We are going to give an upper bound for each one of these two terms.
�
 First term:
As Pðxb04ue; a0 ¼ eiÞpPðxb04ueÞ we have, as in [16]

Z et

0

ulPðxb04ue; a0 ¼ eiÞdupEjb0j
lþd etð1þl�eðlþdÞÞ

1þ l� eðlþ dÞ
. (10)
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�
 Second term:
For all u40 we have PðxY 0a04u; a0 ¼ eiÞp EjY 0ei j

s

us which is finite by Proposition 3.
With this slight change in [16], we getZ et

0

ulPðu � ueoxa0Y 0pu; a0 ¼ eiÞdupCetðlþe�sÞ, (11)

where C is a positive constant, and s 2 �0; l½ is chosen such that �1olþ e� 1� so0.

Now let a ¼ maxflþ e� s; 1þ l� ðlþ dÞeg 2 �0; 1½. Eqs. (9)–(11) yield etG1
i ðx; tÞp

Ceta for all positive t, C being another positive constant. Thus G1
i ðx; tÞpCetða�1Þ is

directly Riemann integrable on Rþ. &

4.4. Tail of the stationary distribution

We have proved that F and G satisfy the conditions of Theorem A. Hence for all
i; x; t, we have, with the notation of this theorem,

Ziðx; tÞ �!
t!1

cmi

Xp

j¼1

uj

Z 1

�1

Gjðx; yÞdy

� �
. (12)

Summing up these terms, we get

zðx; tÞ �!
t!1

c
Xp

j¼1

uj

Z 1

�1

Gjðx; yÞdy

� �
, (13)

as
P

mi ¼ 1. This limit is also the limit of tlPðxY 14tÞ by Lemma 9.3 of [9] which is
valid under our assumptions (see also Lemma 3.7 of [16] for a similar result). Now it
remains to prove that the sum of the two limits for x 2 f�1; 1g is non-zero.
5. Part II of the proof of Theorem 1

5.1. Special case: b0 has a constant sign

In Section 3, we have defined the functions

ciðx; tÞ ¼ Pðt � xb0oxa0Y 0pt; a0 ¼ eiÞ � Pðtoxa0Y 0pt � xb0; a0 ¼ eiÞ.

If b0X0 a.s. and x ¼ 1, or b0p0 a.s. and x ¼ �1, we have xb0X0 a.s. and for all i

and t,

Giðx; tÞ ¼ e�t

Z et

0

ulciðx; uÞdu

¼ e�t

Z et

0

ulPðu � xb0oxa0Y 0pu; a0 ¼ eiÞduX0.
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Similarly, if xb0p0 a.s. we have for all i and t:

Giðx; tÞ ¼ �e�t

Z et

0

ulPðuoxa0Y 0pu � xb0; a0 ¼ eiÞdup0.

Thus, if b0 has constant sign, for fixed x all Giðx; 	Þ have constant sign, and have the
same sign. Now assume that lim zðx; tÞ ¼ 0. Then Eq. (13) yields

c
Xp

j¼1

uj

Z 1

�1

Gjðx; yÞdy

� �
¼ 0.

As c and all uj are positive, this yields Gjðx; tÞ ¼ 0 for all j and t 2 R. Thus, Zðx; tÞ ¼
U � Gðx; tÞ ¼ 0 for all t, and zðx; tÞ ¼ 0. Hence PðxY 14tÞ ¼ 0 a.s.
�
 If b0X0, we have Y 1X0, which contradicts the statement above if x ¼ 1. Thus
lim zð1; tÞ40. And obviously lim zð�1; tÞ ¼ 0:
�
 If b0p0, we have Y 1p0, which contradicts the statement above if x ¼ �1. Thus
lim zð�1; tÞ40. And obviously lim zð1; tÞ ¼ 0:

5.2. Lower bound for PðjY 1j4tÞ

Now we study the general case where b0 is allowed to change sign. We want to
prove that there is a positive constant C such that tlPðjY 1j4tÞXC40 when t tends
to infinity. In the author’s opinion, this lower bound is far from obvious. Here we
adapt a method proposed by Goldie [9].

Proposition 5. There is a positive e and a corresponding positive constant C such that

for all large enough t, we have

PðjY 1j4tÞXCP sup
n

ja0; . . . ; a1�nj4
2t

e

� �
.

As explained by Goldie [9] for the i.i.d. case, the key for such a lower bound is an
inequality established by Grincevičius [10] corresponding to an extension of Lévy’s
symmetrization inequality: see [6]. We first extend Grincevičius’ inequality to the
Markovian case.
Recall that Y 1 ¼

P1

k¼0 a0; . . . ; a1�kb�k and set for nX1,

Y n
1 ¼

Xn�1
k¼0

a0; . . . ; a1�kb�k and Pn ¼ a0; . . . ; a1�n.

Let Fj be the s-field generated by ða�j ; a�j�1; . . .Þ, and X a Fj-measurable
random variable. Let mediðX Þ be a median of X conditionally to a�j ¼ ei,
so that PðmediðX ÞpX j a�j ¼ eiÞX

1
2, and PðmediðX ÞXX j a�j ¼ eiÞX

1
2. Set also

med�ðX Þ ¼ min1pippfmediðX Þg.
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Lemma 2. For all t40 and nX1, we have

P max
1pjpn

Y
j
1 þPj med�

Y n
1 � Y

j
1

Pj

 !( )
4t

 !
p2PðY n

14tÞ.

Proof. Set T ¼ inffjpn s:t: Y
j
1 þPj med�ððY

n
1 � Y

j
1ÞP

�1
j Þ4tg if this set is not

empty, n þ 1 otherwise, and Bj ¼ fmed�ððY
n
1 � Y

j
1ÞP

�1
j ÞpðY n

1 � Y
j
1ÞP

�1
j g. The

event ðT ¼ jÞ is in the s-field generated by a0; . . . ; a1�j ; b0; . . . ; b1�j, and Bj is in the
s-field generated by a�j ; . . . ; a1�n; b�j ; . . . ; b1�n. Therefore they are independent
conditionally to a�j. Moreover, for all i and j we have

PðBj j a�j ¼ eiÞXP medi

Y n
1 � Y

j
1

Pj

 !
p

Y n
1 � Y

j
1

Pj

 !
X

1

2
.

Thus, as Pj is positive, we have

PðY n
14tÞXP

[n
j¼1

½Bj \ ðT ¼ jÞ�

 !

¼
Xn

j¼1

Xp

i¼1

PðBj j a�j ¼ eiÞPðT ¼ j j a�j ¼ eiÞnðeiÞ

X
1

2
PðTpnÞ

¼
1

2
P max

1pjpn
Y

j
1 þPj med�

Y n
1 � Y

j
1

Pj

 !( )
4t

 !
: &

Under our assumptions, when n tends to infinity, Y n
1 tends to Y 1, and for fixed j,

P�1
j ðY n

1 � Y
j
1Þ tends to a random variable bY that has the same distribution as Y 1.

Set m0 ¼ med�ðY 1Þ ¼ med�ð bY Þ, and letting n tend to infinity in Lemma 2, yields, for
all t40,

Pðsup
j
fY

j
1 þPjm0g4tÞp2PðY 14tÞ.

Replacing Y 1 by �Y 1 yields a similar formula for all to0, hence for all t40, we have

Pðsup
j

jY
j
1 þPjm0j4tÞp2PðjY 1j4tÞ. (14)

Furthermore, as proved in Goldie [9, p. 157], we have for all t4jm0j,

Pðsup
n
fY n

1 þPnm0g4tÞXPð9n s:t: jðY nþ1
1 þPnþ1m0Þ � ðY n

1 þPnm0Þj42tÞ,

where Y 0
1 ¼ 0 and P0 ¼ 1 by convention. Now notice that:

ðY nþ1
1 þPnþ1m0Þ � ðY n

1 þPnm0Þ ¼ a0; . . . ; a1�nb�n þ ðPnþ1 �PnÞm0

¼ Pnðb�n þ ða�n � 1Þm0Þ.
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Thus Eq. (14) yields, for all e40,

PðjY 1j4tÞX
1

2
Pð9n s:t: jPnðb�n þ ða�n � 1Þm0Þj42tÞ

X
1

2
P 9n s:t: jPnj4

2t

e
and jb�n þ ða�n � 1Þm0j4e

� �
. ð15Þ

Now we extend Feller–Chung inequality (see [6]).

Lemma 3. We have, for all t4jm0j and e40

P 9n s:t: jPnj4
2t

e
and jb�n þ ða�n � 1Þm0j4e

� �
X min

1pipp
Pðjb0 þ ðei � 1Þm0j4eÞP 9n s:t: jPnj4

2t

e

� �
.

Proof. Set A0 ¼ ;, An ¼ fjPnj4 2t
e g and Bn ¼ fjb�n þ ða�n � 1Þm0j4eg. Condition-

ally to a�n, Bn is independent from A0; . . . ;An. Therefore, we have

P
[1
n¼1

½An \ Bn�

 !
¼
X1
n¼1

P Bn \ An

\n�1
j¼0

½Bj \ Aj�
c

 !

X

X1
n¼1

P Bn \ An

\n�1
j¼0

Ac
j

 !

¼
X1
n¼1

Xp

i¼1

PðBn j a�n ¼ eiÞP An

\n�1
j¼0

Ac
j j a�n ¼ ei

 !
nðeiÞ.

where Ac denotes the complementary set of A. But the stationarity of ðan; bnÞ, and the
independence of these two sequences yield PðBn j a�n ¼ eiÞ ¼ Pðjb0 þ ðei � 1Þm0j4eÞ.
Thus, we have

P
[1
n¼1

½An \ Bn�

 !
X min

1pipp
Pðjb0 þ ðei � 1Þm0j4eÞP

[1
n¼1

An

 !
: &

Proof of Proposition 5. Eq. (15) and Lemma 3 yield, for all t4jm0j and for all e40,

PðjY 1j4tÞX
1

2
min
1pipp

Pðjb0 þ ðei � 1Þm0j4eÞP 9n s:t: jPn�1j4
2t

e

� �
.

If b0 is not constant (otherwise we get a special case studied in Section 5.1), we can
find a e40 such that min1pippfPðjb0 þ ðei � 1Þm0j4eÞg40. Thus, as expected,
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there is a positive constant C such that for all t4jm0j, we have

PðjY 1j4tÞXCP sup
n

jPnj4
2t

e

� �
: &

5.3. Study of the product a0; . . . ; a1�n

To estimate the probability Pðsupn jPnj4tÞ, we use the method of Arjas and
Speed [1], and Renewal Theorem B. First, we introduce some notation. Let S0 ¼ 0
and for all positive n,

Sn ¼
Xn

k¼1

logða1�kÞ ¼ logða0; . . . ; a1�nÞ ¼ logPn.

The process ða1�n;SnÞ is called a Markov-modulated random walk: see [3,2], or a
Markov renewal process: see [1], with semi-Markov matrix Q ¼ ðqijÞ, where:

qijðtÞ ¼ Pða�n ¼ ej ; log a�npt j a1�n ¼ eiÞ ¼ 1tX log ej

nðejÞ

nðeiÞ
pji.

The first ladder epoch of the random walk ðSnÞ is t ¼ t1 ¼ inffnX1 s:t: Sn40g; and
the first ladder height is St. Let HðtÞ be the semi-Markov matrix of this ladder
process:

HijðtÞ ¼ Pðto1;Stpt; a1�t ¼ ej j a1 ¼ eiÞ.

As St40, H is distributed on the positive half-line.
We have St�1p0 and St40, which implies that logða1�tÞ40, i.e. a1�t41. Let us

rearrange the ei such that e1; . . . ; eq41 and eqþ1; . . . ; epp1 (they cannot be all smaller

than or equal to one, for otherwise P0
a would be a sub-stochastic matrix for all a

which is impossible as rðP0
aÞ41 for all a4l thanks to the convexity property). Thus,

for all j4q, we have HijðtÞ ¼ 0 for all t. Let H be the sub-matrix ðHijÞ1pi;jpq. Besides,

St cannot be greater than maxi logðeiÞ, thus H (and H) have finite support.
We define also the nth ladder epoch by tn ¼ inffk4tn�1 s:t: Sk4Stn�1

g, and Stn
is

the corresponding ladder height. We check that

H
ðnÞ
ij ðtÞ ¼ Pðtno1;Stn

pt; a1�tn
¼ ej j a1 ¼ eiÞ,

where H ðnÞ is the n-fold convolution of H. We also have H ðnÞ ¼ H
ðnÞ
, with obvious

notation. Let C ¼
P1

n¼0 H ðnÞ be the renewal function associated with H and C the

one associated with H. Finally, let M ¼ supn Sn ¼ supn Stn
be the maximum of our

random walk. We have, for all 1pipp:

PðMpt j a1 ¼ eiÞ ¼
Xp

j¼1

CijðtÞ 1�
Xp

k¼1

Hjkð1Þ

 !" #
,
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and if ipq it reduces to

PðMpt j a1 ¼ eiÞ ¼
Xq

j¼1

CijðtÞ 1�
Xq

k¼1

Hjkð1Þ

 !" #
. (16)

Now, we are going to apply renewal Theorem B, with F ¼ H and a ¼ l (here it is
easier to apply Theorem B than to check the four assumptions of Arjas and Speed

[1]). As Hð0Þ ¼ ð0Þ, we have rðHð0ÞÞo1, and as all Hij are probabilities, Hð1Þ is

finite. In addition, B, the expectation of Hlð1Þ ¼
R1
0 e�luHðduÞ is finite as H has

finite support. The assumption that the log ei are not integral multiples of the same

number also implies that H is non-lattice.
We have

Hijð1Þ ¼ Pðto1; a1�t ¼ ej j a1 ¼ eiÞ

XPðt ¼ 1; a1�t ¼ ej j a1 ¼ eiÞ

¼ Pða0 ¼ ej j a1 ¼ eiÞ ¼ pji

nðejÞ

nðeiÞ
.

As all nðeiÞ are positive, and P is irreducible and aperiodic, this implies that Hð1Þ

also is irreducible and aperiodic.
Note that Hð1Þ and Hð1Þ have the same spectral radius. Indeed, Hð1Þ is a

block-triangular matrix with first diagonal block Hð1Þ and second diagonal block
ð0Þ. Therefore rðHð1ÞÞ ¼ rðHð1ÞÞ.
To compute the spectral radius of Hlð1Þ, we introduce bQðsÞ ¼ ðq̂ijðsÞÞ, the

moment generating function of Q, as in [1]:

q̂ijðsÞ ¼

Z
estqijðdtÞ ¼ es

j

nðejÞ

nðeiÞ
pji ¼ D�1PsD,

where D ¼ diagðes
i nðeiÞÞ. Thus Ps and bQðsÞ have the same spectral radius, and in

particular rð bQðlÞÞ ¼ 1. In addition, bQðlÞ is a non-negative irreducible matrix, as
Pl is, therefore, by Perron–Frobenius Theorem it possesses a right eigenvector
e ¼ ðe1; . . . ; epÞ

0 with positive coordinates. Set E ¼ diagðeiÞ. Then

QlðtÞ ¼ E�1

Z t

�1

eluQðduÞ

� �
E

is a semi-Markov matrix, and let ðla1�n;
lSnÞ be its associated Markov renewal

process. As proved in [1], EHlð1ÞE�1 is the semi-Markov matrix of the ascending

ladder process of ðlSnÞ, and the mean of log
la1�n is the derivative of s 7�!log rðPsÞ at

l. But we have log rðP0Þ ¼ log rðPlÞ ¼ 0, its right-hand derivative at zero is negative
(Proposition 2) and this function is convex (Corollary 1). Thus its derivative

at l is positive, and lSn drifts to þ1. Proposition 4.2 of [2] then implies that

rðEHlð1ÞE�1Þ ¼ 1 ¼ rðHlð1ÞÞ.
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We have proved that all assumptions of Theorem B are valid. Thus Eq. (16) yields,
when t tends to infinity

1� PðMptÞ ¼
Xq

j¼1

1�
Xq

k¼1

Hjkð1Þ

 !Z 1

t

e�luðeluCijÞðduÞ

�
Xq

j¼1

1�
Xq

k¼1

Hjkð1Þ

 !Z 1

t

e�lucmiuj du

¼
Xq

j¼1

1�
Xq

k¼1

Hjkð1Þ

 !
cmiuj

l
e�lt, ð17Þ

where m and u are right and left positive eigenvectors of Hlð1Þ, with the same
normalization as in Section 2, and c ¼ ðu0BmÞ

�140. Proposition 4.2 of [2]
implies that rðHð1ÞÞ ¼ rðHð1ÞÞo1 as E log ja0jo0 (Assumption (2)). Therefore
Hð1Þ is strictly sub-stochastic and there is a jpq such that 1�

Pq
k¼1 Hjkð1Þ40.

Hence the right-hand side term of Eq. (17) is positive, thus we have, when t tends to
infinity,

eltPðM4tÞX
Xq

i¼1

eltPðM4t j a1 ¼ eiÞnðeiÞXC40. (18)

Now Eq. (18) and Proposition 5 yield, for large enough t:

tlPðjY 1j4tÞ XC 4 0

and thus with the notation of Theorem 1 we have Lð�1Þ þ Lð1Þ40.
6. Proof of Theorem 2

Assume that the hypotheses of Theorem 2 are satisfied. Our aim is to apply
Theorem A to the distribution matrix eF and the vector eG defined in Section 3.2. As
in the positive case, notice that eFijð1Þo1 and that the expectation eB of eF is well
defined. The assumption that the log jeij are not integral multiples of the same
number implies again that eF is non-lattice.
For the other points, we use the previous results obtained in the positive case. For

all real t, set F ðtÞ ¼ ðjeij
lpji1tX log jei jÞ1pi;jpp. It is non-negative, and

eF ¼

ðF Þ1pip‘; 1pjpp ð0Þ

ð0Þ ðF Þ‘þ1pipp; 1pjpp

ð0Þ ðF Þ1pip‘; 1pjpp

ðF Þ‘þ1pipp; 1pjpp ð0Þ

0BBBB@
1CCCCA. (19)
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6.1. Irreducibility

We have seen in the positive case that F ð1Þ is irreducible. Unfortunately, this does
not always imply that eF ð1Þ is also irreducible.

Definition 3. Let A ¼ ðaijÞ1pi;jpp be a positive matrix, and 0p‘pp � 1 an integer.
A is ‘-reducible if there is ðI ; JÞ a (possibly trivial) partition of f1; . . . ; pg such that
For all 1pip‘

if i 2 I ; then aij ¼ 0 8j 2 J,

if i 2 J; then aij ¼ 0 8j 2 I .

For all ‘ þ 1pipp

if i 2 I ; then aij ¼ 0 8j 2 I ,

if i 2 J; then aij ¼ 0 8j 2 J.

If A is not ‘-reducible, we say that A is ‘-irreducible.

We gave this definition in order to have the following proposition.

Proposition 6. Let A ¼ ðaijÞ1pi;jpp be a positive irreducible matrix, and 0p‘pp � 1
an integer. Then, the matrix B defined as follows:

B ¼

ðaijÞ1pip‘; 1pjpp ð0Þ

ð0Þ ðaijÞ‘þ1pipp; 1pjpp

ð0Þ ðaijÞ1pip‘; 1pjpp

ðaijÞ‘þ1pipp; 1pjpp ð0Þ

0BBBB@
1CCCCA

is irreducible if and only if A is ‘-irreducible.

Proof. Suppose A is ‘-reducible for a partition ðI ; JÞ. Set Ī ¼ I [ ðJ þ pÞ and
J̄ ¼ J [ ðI þ pÞ, so that ðĪ ; J̄Þ is a non-trivial partition of f1; . . . ; 2pg. Then for all
ði; jÞ 2 Ī � J̄ we can prove that bij ¼ 0 and bji ¼ 0. Thus B is reducible.
Suppose that B is reducible for the non trivial partition ðI ; JÞ. Set:

I1 ¼ I \ f1; . . . ; pg; I2 ¼ I \ fp þ 1; . . . ; 2pg,

J1 ¼ J \ f1; . . . ; pg; J2 ¼ J \ fp þ 1; . . . ; 2pg.

We can prove that I1 ¼ J2 � p and I2 ¼ J1 þ p, and we check that A is ‘-reducible
for the partition ðI1; J1Þ. &

Now we distinguish two cases according to whether P0 is ‘-reducible or not.

6.2. First case: P0 is ‘-irreducible

In this case F ð1Þ is also ‘-irreducible for l given by Theorem 2 and eF ð1Þ is
irreducible. In addition, we have keF ð1Þ

n
kpkF ð1Þ

n
k for all n. As F ð1Þ is aperiodic,

this sequence is bounded. We know that F ð1Þ has spectral radius 1. The same also
holds for eF ð1Þ thanks to the following lemma:
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Lemma 4. If the matrix A ¼ ðaijÞipi;jpp is non-negative, then the matrix B of

Proposition 6 has the same spectral radius as A.

Proof. Let us compute PðX Þ ¼ detðB � XI2pÞ the characteristic polynomial of B.
Adding the last p columns of B � XI2p to the first p columns, then subtracting the
first p rows to the last p rows, we get detðB � XI2pÞ ¼ detðA � XIpÞdetðA1 � XIpÞ,
where A1 is the following matrix:

A1 ¼
ðaijÞ1pipl; 1pjpp

ð�aijÞlþ1pipp; 1pjpp

 !
.

Thus the spectral radius of B is the maximum of that of A and that of A1. But A is
non-negative, and component-wise jA1j ¼ A, so Theorem 8.1.18 of [12] yields
rðA1ÞprðAÞ. Thus rðBÞ ¼ rðAÞ. &

Note that if l is an eigenvalue of A with eigenvector X, then we have

BðX 0;X 0Þ
0
¼ ððAX Þ

0; ðAX Þ
0
Þ
0
¼ lðX 0;X 0Þ

0, thus ðX 0;X 0Þ
0 is an eigenvector of B for

the same eigenvalue. Let m and u be positive right and left eigenvectors of F for the

eigenvalue 1, so that
P

mi ¼
P

miui ¼ 1. Then em ¼ 2�1ðm0;m0Þ
0 is a right

eigenvector of eF for the eigenvalue 1, and satisfies
Pfmi ¼ 1. And eu ¼ ðu0; u0Þ

0 is a

left eigenvector so that
P2p

i¼1eui emi ¼
Pp

i¼1uimi ¼ 1.

6.2.1. Properties of eF and eG
Let eU ¼

P1

k¼0
eF ðkÞ

. As eFijpFīj̄, the same holds for their k-fold convolution. Set

U ¼
P1

k¼0 F ðkÞ, then UðtÞo1 as in the positive case, and thus eUðtÞo1.

To prove that eZ ¼ eU � eG, it is sufficient to prove that eF ðnÞ
� eZ �!

n!1
0. But we have

seen in Section 3 that

ðeF � eZÞiðtÞ ¼
Xp

j¼1

e�ðt�log jei jÞ

Z et�log jei j

0

jeij
lpjiu

lPð�Y 14u; a0 ¼ ejÞdu

¼ e�t

Z et

0

ulPð�a0Y 04u; a0 ¼ eiÞdu.

Similarly, we get

ðeF ðnÞ
� eZÞiðtÞ ¼ e�t

Z et

0

ulPð�a1�n; . . . ; a0Y 1�n4u; a0 ¼ eiÞdu.

And thus, as in the positive case, we haveXp

i¼1

ð eF ðnÞ
� eZÞiðtÞ ¼ e�t

Z et

0

ulPð�a1�n; . . . ; a0Y 1�n4uÞdu.

But Eq. (8) implies a1�n; . . . ; a0 ! 0. Thus for all u40, the bounded convergence
theorem yields Pð�a1�n; . . . ; a0Y 1�n4uÞ ! 0, because Yo1 a.s. and is stationary.
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Thus
Pp

i¼1 ð
eF ðnÞ

� eZÞiðtÞ ! 0, and as all the terms in the sum are non-negative, each

one tends to 0 and we have, as expected eZ ¼ eU � eG.
We have eGiðtÞ ¼ Gīð�1; tÞ which is directly Riemann integrable under the

assumptions of Theorem 2 as seen for the positive case.

6.2.2. Tail of the distribution

We have proved that eF and eG satisfy the assumptions of Theorem A. Hence for all
i; t, we have, with obvious notations,

eZiðtÞ �!
t!1

ecemi

X2p

j¼1

euj

Z 1

�1

eGjðyÞdy

� �
. (20)

Notice that ec ¼ c. Indeed, we have

eu0 eBem ¼
1

2
ðu0; u0Þ

ðbijÞ1pip‘; 1pjpp 0

0 ðbijÞ‘þ1pipp; 1pjpp

0 ðbijÞ1pip‘; 1pjpp

ðbijÞ‘þ1pipp; 1pjpp 0

0BBBB@
1CCCCA m

m

� �
.

Hence ec�1 ¼ 1
2
ðu0Bm þ u0BmÞ ¼ c�1, where B is the expectation of F. Thus summing

up the term in Eq. (20), we get

zðx; tÞ �!
t!1

c
Xp

j¼1

uj

Z 1

�1

ðGjð�1; yÞ þ Gjð1; yÞÞdy

� �
.

And we use again Lemma 9.3 of [9] to conclude that tlPðxY 14tÞ has the same limit.
Note that here this limit does not depend on x, therefore both tlPðY 14tÞ and
tlPðY 1o� tÞ have the same limit.

6.3. Second case: P0 is l-reducible

As seen in the proof of Proposition 6, there is ðI ; JÞ a non-trivial partition of
f1; . . . ; 2pg such that for all ði; jÞ in I � J we have eFijð1Þ ¼ eFjið1Þ ¼ 0. Suppose that
1 belongs to I. Then System (5) splits into two independent systems of size p, one
with the components ð eZiÞi2I and the other with ð eZiÞi2J . Each of these systems has
associated matrix F that satisfies the hypothesis of Renewal Theorem A, as seen in
the positive case. For all i, eGi is also directly Riemann integrable as seen in the
preceding section. Thus Theorem A yields

8i 2 I ; eZiðtÞ �!
t!1

cmī

X
1pjp2p

j2I

uj̄

Z 1

�1

eGjðyÞdy,

8i 2 J; eZiðtÞ �!
t!1

cmī

X
1pjp2p

j2J

uj̄

Z 1

�1

eGjðyÞdy,
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where ī denotes i if ipp and i � p if iop. Summing up these equalities, we get

zð1; tÞ �!
t!1

c
Xp

j¼1

uj

Z 1

�1

ð1I ðjÞGjð1; yÞ þ 1JðjÞGjð�1; yÞÞdy

and

zð�1; tÞ �!
t!1

c
Xp

j¼1

uj

Z 1

�1

ð1JðjÞGjð1; yÞ þ 1I ðjÞGjð�1; yÞÞdy.

Again, tlPðxY 14tÞ has the same limit as zðx; tÞ for x 2 f�1; 1g. Note that here these
two limits are possibly different.
6.4. The sum of the limits is non-zero

The proof is the same for both cases. The results of Section 5 can be extended to
the present case. The result of Section 5.1 about the special case when b0 has constant
sign is valid here. Thus if both limits are zero then Y 0 ¼ 0 almost surely which is
impossible as 0 is not a solution of Eq. (1).
If X is a random variable, set medþðX Þ ¼ max1pippfmediðX Þg. The analogous of

Lemma 2 is as follows:

Lemma 5. For all t40 and nX1, we have

2PðY 14tÞXP max
1pjpn

1Pj40 Y
j
1 þPj med�

Y n
1 � Y

j
1

Pj

 !" #( )
4t

 !

þ P max
1pjpn

1Pjo0 Y
j
1 þPj medþ

Y n
1 � Y

j
1

Pj

 !" #( )
4t

 !
Proof. As Pj is not always positive, we introduce new events, depending on the sign of

Pj: set Tþ ¼ inffjpn s:t: Pj40 and Y
j
1 þPj med�ððY

n
1 � Y

j
1ÞP

�1
j Þ4tg if this set is

not empty, n þ 1 otherwise, T� ¼ inffjpn s:t: Pjo0 and Y
j
1 þPj medþððY

n
1 � Y

j
1Þ

P�1
j Þ4tg if it is not empty, n þ 1 otherwise, Bþ

j ¼ fmed�ððY
n
1 � Y

j
1ÞP

�1
j ÞpðY n

1 � Y
j
1Þ

P�1
j g, and B�

j ¼ fmedþððY
n
1 � Y

j
1ÞP

�1
j ÞXðY n

1 � Y
j
1ÞP

�1
j g. The events ðTþ ¼ jÞ and

ðT� ¼ jÞ on the one hand andBþ
j and B�

j on the other hand are independent

conditionally to a�j. Moreover, for all i; j we have,

PðBþ
j j a�j ¼ eiÞXP medi

Y n
1 � Y

j
1

Pj

 !
p

Y n
1 � Y

j
1

Pj

 !
X

1

2

and

PðB�
j j a�j ¼ eiÞXP medi

Y n
1 � Y

j
1

Pj

 !
X

Y n
1 � Y

j
1

Pj

 !
X

1

2
.
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Thus we get, as in the proof of Lemma 2:

PðY n
14tÞXP

[n
j¼1

½½ðTþ ¼ jÞ \ Bþ
j � [ ½ðT� ¼ jÞ \ B�

j ��

 !

X
1

2
PðTþpnÞ þ PðT�pnÞð Þ

¼
1

2
P max

1pjpn
1Pj40 Y

j
1 þPj med�

Y n
1 � Y

j
1

Pj

 !" #( )
4t

 !" #

þ P max
1pjpn

1Pjo0 Y
j
1 þPj medþ

Y n
1 � Y

j
1

Pj

 !" #" )
4t

( ! #
: &

The rest of the proof runs the same as in the positive case for each of these two terms.
Set m� ¼ med�ðY 1Þ and mþ ¼ medþðY 1Þ. For all e40 and t4maxfjmþj; jm�jg,
we get

P 9n s:t: Pn4
2t

e
and jb�n þ ða�n � 1Þm�j4e

� �
X min

1pipp
Pðjb0 þ ðei � 1Þm�j4eÞP 9n s:t: Pn4

2t

e

� �
,

and

P 9n s:t: Pno�
2t

e
and jb�n þ ða�n � 1Þmþj4e

� �
X min

1pipp
Pðjb0 þ ðei � 1Þmþj4eÞP 9n s:t: Pno�

2t

e

� �
.

If b0 is not constant, we can again find e40 such that min1pipp fPðjb0 þ ðei � 1Þm�j

4eÞg40 and min1pippfPðjb0 þ ðei � 1Þmþj4eÞg40. Thus, we get the analogous of

Proposition 5: there is a constant C40 and e40 such that for all large enough t:

PðjY 1j4tÞXCP sup
n

jPnj4
2t

e

� �
.

Define the new random walk Sn ¼ log ja0; . . . ; a1�nj. With this slight change in Section
5.3, the proof is the same.
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