Tail of the stationary solution of the stochastic equation $Y_{n+1} = a_n Y_n + b_n$ with Markovian coefficients

Queue de la solution stationnaire de l'équation $Y_{n+1} = a_n Y_n + b_n$ à coefficients markoviens

Benoîte de Saporta^a

^aIRMAR, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

In this paper, we deal with the real stochastic difference equation $Y_{n+1} = a_n Y_n + b_n$, $n \in \mathbb{Z}$, where the sequence (a_n) is a finite state space Markov chain. By means of the renewal theory, we give a precise description of the situation where the tail of its stationary solution exhibits power law behavior. To cite this article: B. de Saporta, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

On étudie la queue de la solution stationnaire de léquation $Y_{n+1} = a_n Y_n + b_n$, $n \in \mathbb{Z}$, où (a_n) est une chaîne de Markov à espace d'états fini. Par des méthodes de renouvellement, on donne une caractérisation détaillée du cas où la queue est polynômiale. Pour citer cet article : B. de Saporta, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

1. Introduction

We study the following stochastic difference equation:

$$Y_{n+1} = a_n Y_n + b_n, \qquad n \in \mathbb{Z},\tag{1}$$

where (a_n) is a real, finite state space Markov chain, and (b_n) is a sequence of real i.i.d. random variables. Random Equations of this type have many applications in stochastic modeling and statistics. Most of previously studied cases deal with i.i.d. coefficients (a_n) : see [6], [7], [9] and [3]. For more recent work, see also [8]. Here we study the Markovian case. In statistical literature, it is called a Markov-switching

7th December 2004

Email address: benoite.de-saporta@univ-rennes1.fr (Benoîte de Saporta).

Preprint submitted to Elsevier Science

auto-regression, see [5] for interesting applications in econometrics. Such stochastic recursions are also a basic tool in queuing theory, see [1].

2. Main theorems

Assume that (a_n, b_n) is stationary and ergodic, and that we have:

$$\mathbb{E}\log|a_0| < 0, \quad \mathbb{E}\log^+|b_0| < \infty.$$
⁽²⁾

Then it is proved in [2] that Eq. (1) has a unique stationary solution (Y_n) , where

$$Y_n = \sum_{k=0}^{\infty} a_{n-1}a_{n-2}\cdots a_{n-k}b_{n-1-k}, \quad n \in \mathbb{Z}.$$

To deal with the tail of Y_1 , we investigate the asymptotic behavior of $\mathbb{P}(xY_1 > t)$, when t tends to infinity, and where $x \in \{-1, 1\}$. We give two theorems, depending on the a_n being positive or not.

Theorem 2.1 Let (a_n) be an irreducible, aperiodic, stationary Markov chain, with state space $E = \{e_1, \ldots, e_p\} \subset \mathbb{R}^*_+$, transition matrix $P = (p_{ij})$ and stationary law ν . Let (b_n) be a sequence of non-zero real i.i.d. random variables, and independent of the sequence (a_n) . If the following conditions are satisfied: • there is a $\lambda > 0$ so that the matrix $P_{\lambda} = diag(e_i^{\lambda})P'$ has spectral radius 1 (where P' denotes the transpose of P),

- the $\log e_i$ are not integral multiples of a same number,
- there is a $\delta > 0$ such that $\mathbb{E}|b_0|^{\lambda+\delta} < \infty$, then we have for $x \in \{-1, 1\}$

$$t^{\lambda} \mathbb{P}(xY_1 > t) \xrightarrow[t \to \infty]{} L(x)$$

where L(1) + L(-1) is positive. If $b_0 \ge 0$, then L(-1) = 0, and L(1) > 0. If $b_0 \le 0$, then L(1) = 0, and L(-1) > 0.

Theorem 2.2 Let (a_n) be an irreducible, aperiodic, stationary Markov chain, with state space $E = \{e_1, \ldots, e_p\} \subset \mathbb{R}^*$ such that $\{e_1, \ldots, e_l\} \subset \mathbb{R}_+$ and $\{e_{l+1}, \ldots, e_p\} \subset \mathbb{R}_-$ for a $0 \leq l \leq p-1$, transition matrix $P = (p_{ij})$ and stationary law ν . Let (b_n) be a sequence of non-zero real i.i.d. random variables, and independent of the sequence (a_n) . If the following conditions are satisfied:

- there is a $\lambda > 0$ so that the matrix $P_{\lambda} = diag(|e_i|^{\lambda})P'$ has spectral radius 1,
- the $\log |e_i|$ are not integral multiples of a same number,
- there is a $\delta > 0$ such that $\mathbb{E}|b_0|^{\lambda+\delta} < \infty$,
- then we have, for $x \in \{-1, 1\}$,

$$t^{\lambda} \mathbb{P}(xY_1 > t) \xrightarrow[t \to \infty]{} L(x),$$

where L(1)+L(-1) is positive. If in addition P' is l-irreducible (see definition below) then L(1) = L(-1) > 0.

The last two hypotheses of these theorems are the same as in the i.i.d. case. In particular, the second one ascertains that the distribution of Y_1 is non-lattice, and it is equivalent to requiring that the subgroup generated by the log e_i be dense in \mathbb{R} . On the contrary, the first assumption comes from the Markovian dependence considered here. Indeed, we can prove that the spectral radius $\rho(P_{\lambda})$ can be computed from the formula $\rho(P_{\lambda}) = \lim(\mathbb{E}|a_0 \cdots a_{1-n}|^{\lambda})^{1/n}$. Therefore this assumption is a suitable substitute for the classical relation $\mathbb{E}|a_0|^{\lambda} = 1$ assumed in the i.i.d. case.

Note that the assumption of independence between the two sequences (a_n) and (b_n) can be avoided. Let \mathcal{F}_n be the σ -field generated by a_0, \ldots, a_{-n} and b_0, \ldots, b_{-n} . Then (b_n) is only required to be a sequence of random variables such that (a_n, b_n) be a stationary process, and b_{-n} be independent of \mathcal{F}_{n-1} . We also need one more assumption, also assumed in the i.i.d. case: for all $1 \leq i \leq p$, $\mathbb{P}(b_0 + a_0 x = x \mid a_0 = e_i) < 1$.

The mapping $\lambda \mapsto \log \rho(P_{\lambda})$ being convex, its right-hand derivative in 0 being negative and as we have $\rho(P_0) = \rho(P) = 1$, only two cases may occur.

- Either for all $\lambda > 0$, $\rho(P_{\lambda}) < 1$, in which case we can prove that $\mathbb{E}|Y_1|^{\lambda} < \infty$ for all λ , provided $\mathbb{E}|b_0|^{\lambda} < \infty$, and therefore $\mathbb{P}(|Y_1| > t) = o(t^{-\lambda})$ for all λ .

- Or there is a unique $\lambda > 0$ so that $\rho(P_{\lambda}) = 1$, this is the case we study here.

3. Sketch of the proof of Theorem 2.1

Similar theorems have already been proved in the i.i.d. multidimensional case: a_n are matrices and Y_n and b_n vectors. Renewal theory is used in [6] to prove a similar theorem when the a_n either have a density or are non-negative. Kesten's results were extended in [9] to all i.i.d. random matrices satisfying similar assumptions as in our theorems. Finally in [3] a new specific implicit renewal theorem is proved and the same results as Kesten in the i.i.d. one-dimensional case are derived.

Here we follow the same steps as [9] and [3]. Our problem leads to a system of renewal equations of size p, instead of a single renewal equation. We use a new renewal theorem given in [10] to get an asymptotic equivalent of $\mathbb{P}(xY_1 > t)$, of the form $L(x)t^{-\lambda}$. However the constants L(x) thus obtained are only non-negative.

The next step is to prove that L(1) + L(-1) > 0. To do so, we extend the method given in [3] and [4]. First we prove the following lower bound:

$$\mathbb{P}(|Y_1| > t) \ge C \ \mathbb{P}(\sup_n |a_0 \cdots a_{1-n}| > \frac{2t}{\varepsilon}),$$

for a positive ε and a corresponding positive constant C. And then we use a ladder height method, and again renewal theory to derive an accurate estimate of the right-hand side probability.

4. Sketch of the proof of Theorem 2.2

Now the sign of the products $a_0 \cdots a_{-n}$ is random. To be able to use the results of the positive case, we include this sign as a new dimension, and we derive a system of renewal equations of size 2p. Unfortunately, it is not necessarily irreducible, this is why we introduce a new definition.

Definition 4.1 Let $A = (a_{ij})_{i \le i,j \le p}$ be a positive matrix, and $1 \le l \le p-1$ an integer. A is l-reducible if there is (I, J) a non trivial partition of $\{1, \ldots, p\}$ such that:

- For all $1 \leq i \leq l$, if $i \in I$ then $a_{ij} = 0 \ \forall j \in J$, if $i \in J$ then $a_{ij} = 0 \ \forall j \in I$.
- For all $l+1 \leq i \leq p$, if $i \in I$ then $a_{ij} = 0 \ \forall j \in I$, if $i \in J$ then $a_{ij} = 0 \ \forall j \in J$.

If A is not l-reducible, we say that A is l-irreducible.

If the matrix of our system is *l*-irreducible, then the proof runs the same as in the positive case, and in addition we know that both limits L(1) and L(-1) are equal, therefore they are both positive. If the matrix is *l*-reducible, the system splits into two independent systems of size p, and for each of them the proof is the same as in the positive case. This time L(1) and L(-1) may be different.

References

- [1] S. Asmussen, Applied Probability and Queues, John Wiley and Sons Ltd, Chichester, 1987.
- [2] A. Brandt, The stochastic equation $Y_{n+1} = A_n Y_n + B_n$ with stationary coefficients, Adv. Appl. Prob. 18(1986) 211–220.
- [3] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1(1991) 26–166.
- [4] A.K. Grincevičius, Products of random affine transformations, Lithuanian math. J. 20(1980) 279–282.
- [5] J.D. Hamilton, Estimation, inference and forecasting of time series subject to change in regime, in: G. Maddala, C.R. Rao and D.H. Vinod (Eds), Handbook of Statistics 11(1993) 230–260.
- [6] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math 131(1973) 207–248.
- [7] H. Kesten, Renewal theory for functionals of a Markov chain with general state space, Ann. Probability 2(1974) 355–386.
- [8] C. Klüppelberg, S. Pergamenchtchikov, The tail of the stationary distribution of a random coefficient AR(q) model, preprint (2002).
- [9] E. Le Page, Théorèmes de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires, Séminaires de probabilités de Rennes, 1983.
- [10] B. de Saporta, Renewal theorem for a system of renewal equations, Ann. Inst. H. Poincare Probab. Statist. 39(2003) 823–838.