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Abstract

In this paper, we deal with the real stochastic difference equation Yn+1 = anYn + bn, n ∈ Z, where the sequence
(an) is a finite state space Markov chain. By means of the renewal theory, we give a precise description of the
situation where the tail of its stationary solution exhibits power law behavior. To cite this article: B. de Saporta,
C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

On étudie la queue de la solution stationnaire de léquation Yn+1 = anYn + bn, n ∈ Z, où (an) est une châıne de
Markov à espace d’états fini. Par des méthodes de renouvellement, on donne une caractérisation détaillée du cas
où la queue est polynômiale. Pour citer cet article : B. de Saporta, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

1. Introduction

We study the following stochastic difference equation:

Yn+1 = anYn + bn, n ∈ Z, (1)

where (an) is a real, finite state space Markov chain, and (bn) is a sequence of real i.i.d. random variables.
Random Equations of this type have many applications in stochastic modeling and statistics. Most of
previously studied cases deal with i.i.d. coefficients (an) : see [6], [7], [9] and [3]. For more recent work,
see also [8]. Here we study the Markovian case. In statistical literature, it is called a Markov-switching
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auto-regression, see [5] for interesting applications in econometrics. Such stochastic recursions are also a
basic tool in queuing theory, see [1].

2. Main theorems

Assume that (an, bn) is stationary and ergodic, and that we have:

E log |a0| < 0, E log+ |b0| < ∞. (2)

Then it is proved in [2] that Eq. (1) has a unique stationary solution (Yn), where

Yn =
∞∑

k=0

an−1an−2 · · · an−kbn−1−k, n ∈ Z.

To deal with the tail of Y1, we investigate the asymptotic behavior of P(xY1 > t), when t tends to infinity,
and where x ∈ {−1, 1}. We give two theorems, depending on the an being positive or not.

Theorem 2.1 Let (an) be an irreducible, aperiodic, stationary Markov chain, with state space E =
{e1, . . . , ep} ⊂ R∗+, transition matrix P = (pij) and stationary law ν. Let (bn) be a sequence of non-zero
real i.i.d. random variables, and independent of the sequence (an). If the following conditions are satisfied:
• there is a λ > 0 so that the matrix Pλ = diag(eλ

i )P ′ has spectral radius 1 (where P ′ denotes the transpose
of P ),
• the log ei are not integral multiples of a same number,
• there is a δ > 0 such that E|b0|λ+δ < ∞,

then we have for x ∈ {−1, 1}
tλP(xY1 > t) −−−→

t→∞
L(x),

where L(1) + L(−1) is positive. If b0 ≥ 0, then L(−1) = 0, and L(1) > 0. If b0 ≤ 0, then L(1) = 0, and
L(−1) > 0.

Theorem 2.2 Let (an) be an irreducible, aperiodic, stationary Markov chain, with state space E =
{e1, . . . , ep} ⊂ R∗ such that {e1, . . . , el} ⊂ R+ and {el+1, . . . , ep} ⊂ R− for a 0 ≤ l ≤ p − 1, transition
matrix P = (pij) and stationary law ν. Let (bn) be a sequence of non-zero real i.i.d. random variables,
and independent of the sequence (an). If the following conditions are satisfied:
• there is a λ > 0 so that the matrix Pλ = diag(|ei|λ)P ′ has spectral radius 1,
• the log |ei| are not integral multiples of a same number,
• there is a δ > 0 such that E|b0|λ+δ < ∞,

then we have, for x ∈ {−1, 1},
tλP(xY1 > t) −−−→

t→∞
L(x),

where L(1)+L(−1) is positive. If in addition P ′ is l-irreducible (see definition below) then L(1) = L(−1) >
0.

The last two hypotheses of these theorems are the same as in the i.i.d. case. In particular, the second
one ascertains that the distribution of Y1 is non-lattice, and it is equivalent to requiring that the subgroup
generated by the log ei be dense in R. On the contrary, the first assumption comes from the Markovian
dependence considered here. Indeed, we can prove that the spectral radius ρ(Pλ) can be computed from
the formula ρ(Pλ) = lim(E|a0 · · · a1−n|λ)1/n. Therefore this assumption is a suitable substitute for the
classical relation E|a0|λ = 1 assumed in the i.i.d. case.
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Note that the assumption of independence between the two sequences (an) and (bn) can be avoided.
Let Fn be the σ-field generated by a0, . . . a−n and b0, . . . , b−n. Then (bn) is only required to be a sequence
of random variables such that (an, bn) be a stationary process, and b−n be independent of Fn−1. We also
need one more assumption, also assumed in the i.i.d. case: for all 1 ≤ i ≤ p, P(b0 +a0x = x | a0 = ei) < 1.

The mapping λ 7−→ log ρ(Pλ) being convex, its right-hand derivative in 0 being negative and as we
have ρ(P0) = ρ(P ) = 1, only two cases may occur.
– Either for all λ > 0, ρ(Pλ) < 1, in which case we can prove that E|Y1|λ < ∞ for all λ, provided

E|b0|λ < ∞, and therefore P(|Y1| > t) = o(t−λ) for all λ.
– Or there is a unique λ > 0 so that ρ(Pλ) = 1, this is the case we study here.

3. Sketch of the proof of Theorem 2.1

Similar theorems have already been proved in the i.i.d. multidimensional case: an are matrices and Yn

and bn vectors. Renewal theory is used in [6] to prove a similar theorem when the an either have a density
or are non-negative. Kesten’s results were extended in [9] to all i.i.d. random matrices satisfying similar
assumptions as in our theorems. Finally in [3] a new specific implicit renewal theorem is proved and the
same results as Kesten in the i.i.d. one-dimensional case are derived.

Here we follow the same steps as [9] and [3]. Our problem leads to a system of renewal equations
of size p, instead of a single renewal equation. We use a new renewal theorem given in [10] to get an
asymptotic equivalent of P(xY1 > t), of the form L(x)t−λ. However the constants L(x) thus obtained are
only non-negative.

The next step is to prove that L(1) + L(−1) > 0. To do so, we extend the method given in [3] and [4].
First we prove the following lower bound:

P(|Y1| > t) ≥ C P(sup
n

|a0 · · · a1−n| >
2t

ε
),

for a positive ε and a corresponding positive constant C. And then we use a ladder height method, and
again renewal theory to derive an accurate estimate of the right-hand side probability.

4. Sketch of the proof of Theorem 2.2

Now the sign of the products a0 · · · a−n is random. To be able to use the results of the positive case,
we include this sign as a new dimension, and we derive a system of renewal equations of size 2p. Unfor-
tunately, it is not necessarily irreducible, this is why we introduce a new definition.

Definition 4.1 Let A = (aij)i≤i,j≤p be a positive matrix, and 1 ≤ l ≤ p− 1 an integer. A is l-reducible
if there is (I, J) a non trivial partition of {1, . . . , p} such that:
• For all 1 ≤ i ≤ l, if i ∈ I then aij = 0 ∀j ∈ J , if i ∈ J then aij = 0 ∀j ∈ I.
• For all l + 1 ≤ i ≤ p, if i ∈ I then aij = 0 ∀j ∈ I, if i ∈ J then aij = 0 ∀j ∈ J .

If A is not l-reducible, we say that A is l-irreducible.
If the matrix of our system is l-irreducible, then the proof runs the same as in the positive case, and

in addition we know that both limits L(1) and L(−1) are equal, therefore they are both positive. If the
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matrix is l-reducible, the system splits into two independent systems of size p, and for each of them the
proof is the same as in the positive case. This time L(1) and L(−1) may be different.

References

[1] S. Asmussen, Applied Probability and Queues, John Wiley and Sons Ltd, Chichester, 1987.

[2] A. Brandt, The stochastic equation Yn+1 = AnYn+Bn with stationary coefficients, Adv. Appl. Prob. 18(1986) 211–220.

[3] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1(1991) 26–166.
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