Entropie à l'infini en théorie ergodique

Colloquium MIPS

Montpellier, mai 2025

Barbara Schapira, IMAG

Systèmes dynamiques

Un ensemble X (espace des phases) : Cercle, carré, tore, variété, \cdots

Une dynamique, l'évolution du système au fil du temps :

* dynamique discrète, donnée par une fonction $\varphi:X o X$,

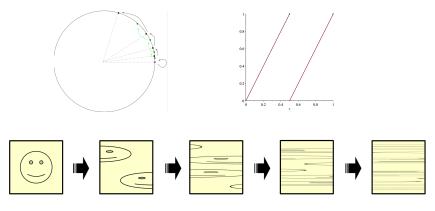


Figure – Doublement de l'angle et transformation du boulanger

Systèmes dynamiques (II)

Un ensemble X (espace des phases) : Cercle, carré, tore, variété, \cdots

Une dynamique, l'évolution du système au fil du temps :

* dynamique continue, donnée par un flot (φ_t) , $\varphi_t:X o X$

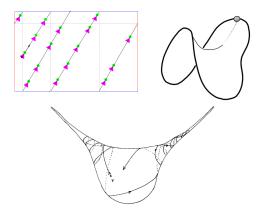


Figure – Quelques flots

Systèmes dynamiques (III)

Trajectoires

$$\{x, \varphi(x), \varphi(\varphi(x)), \cdots, \varphi^n(x), \cdots, n \in \mathbb{N}\}\$$
ou $\{\varphi_t(x), t \in \mathbb{R}\}\$

Questions:

- → Trajectoires périodiques?
- → Trajectoires denses? Equiréparties?
- → Sensibilité aux conditions initiales?
- → Trajectoires récurrentes?

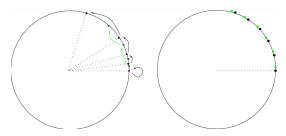


Figure - Rotation versus Doublement de l'angle sur le cercle

Théorie ergodique

Etude statistique des trajectoires

On se donne une probabilité invariante μ sur X:

- $\rightarrow \mu$ mesure la taille des ensembles $A \subset X$ $0 \le \mu(A) \le \mu(X) = 1$.
- $\rightarrow \mu$ permet de calculer des moyennes d'observables $\int_X f(x) d\mu(x)$
- $\rightarrow \mu$ est invariante par la dynamique

$$\int_{X} f \circ \varphi_{t}(x) d\mu(x) = \int_{X} f(x) d\mu(x)$$

Figure – La longueur, l'aire, le volume sont invariantes

Exemples : Longueur sur l'intervalle, aire sur le carré, volume · · ·

Théorie ergodique (II)

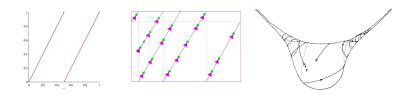


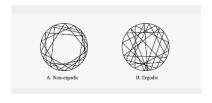
Figure – La longueur, l'aire, le volume sont invariantes

Questions:

- → Taille de l'ensemble des Trajectoires périodiques?
- → Taille de l'ensemble des Trajectoires denses ? Equiréparties ?
- → Taille de l'ensemble des trajectoires récurrentes?
- $ightarrow \cdots$

Théorie ergodique (III)

L'hypothèse ergodique de Boltzmann : La valeur moyenne d'une observable sur un grand intervalle de temps \to valeur moyenne de l'observable sur tout l'espace.

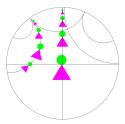


Théorème ergodique de Birkhoff (193?) : Si μ est ergodique, alors pour toute observable $f: X \to \mathbb{R}$, et pour μ -presque tout x,

$$rac{1}{T}\int_0^T f(arphi_t(x))\,dx o \int_X f(y)\,d\mu(y) \quad ext{quand} \quad T o +\infty\,.$$

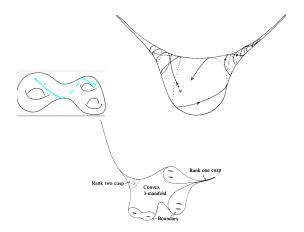
Courbure négative et chaos

Jouons aux billes. Lançons 2 billes proches dans la même direction. Sur une surface plate ou courbe, le comportement ne sera pas le même.



Courbure négative et chaos (II)

On peut construire des surfaces hyperboliques, qui ressemblent mathématiquement en tout point à une selle de cheval.



Suivant les exemples, on peut partir loin à l'infini ou pas.

Entropie d'un système dynamique $\varphi: X \to X$

Combien peut-on voir de trajectoires?

On se donne une précision $\epsilon>0$ et un temps T>0. Combien de trajectoires distinctes voit-on, à une erreur ϵ près, jusqu'au temps T?

Soit $N(\epsilon, T)$ ce nombre. Il croît avec T. L'entropie est son taux de croissance exponentielle :

$$h(\varphi) = \lim_{T \to \infty} \frac{1}{T} \log N(\epsilon, T).$$

Exemples Entropie d'une rotation : 0

Entropie du doublement de l'angle : log 2

Entropie de la transformation du boulanger : log 2

Entropie du flot géodésique : grandeur géométrique importante

Entropie d'une mesure

Soit μ une mesure invariante pour $\varphi: X \to X$.

Combien μ peut-elle voir de trajectoires?

On se donne une précision $\epsilon > 0$. Combien de trajectoires distinctes voit-on, à une erreur ϵ près, jusqu'au temps T, dans un ensemble de μ -mesure positive? Soit $N(\epsilon, T, \mu)$ ce nombre. Il croît avec T. L'entropie de μ est son taux de croissance exponentielle :

$$h(\mu, \varphi) = \lim_{T \to \infty} \frac{1}{T} \log N(\epsilon, T).$$

Principe variationnel

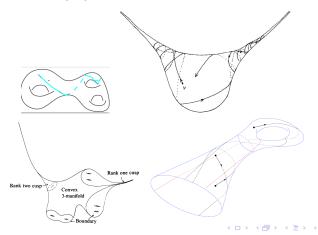
 $h(\varphi) = \sup\{h(\mu, \varphi), \mu \text{ mesure de probabilité invariante}\}.$

Mesure d'entropie maximale : mesure qui vérifie $h(\mu, \varphi) = h(\varphi)$. Ses trajectoires sont les plus chaotiques possibles.

Et l'infini dans tout ça?

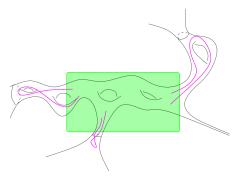
Lorsque la surface est compacte, i.e. on ne peut pas partir à l'infini, il existe toujours une unique mesure d'entropie maximale. Celle qui reflète le mieux le chaos.

Sinon ... c'est compliqué!



Entropie à l'infini

Entropie à l'infini : On se donne une précision $\epsilon > 0$, une grande boite B et un temps T > 0.

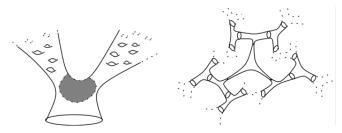


Nb de trajectoires distinctes jusqu'au temps T, hors de B, à ϵ près? L'entropie à l'infini est son taux de croissance exponentielle :

$$h_{\infty}(\varphi) = \lim_{T \to \infty} \frac{1}{T} \log N(\epsilon, B, T).$$

Quand l'infini est tout petit ...

Strong positive recurrence : On suppose que $h_{\infty}(\varphi) < h(\varphi)$.



Résultats (avec V. Pit, S. Tapie, S. Gouezel, A. Florio, A. Vaugon)

- ightarrow Existence et unicité d'une mesure d'entropie maximale
- → Régularité de l'entropie lorsque la géométrie de la surface varie
- ightarrow Comparaison de l'entropie de la surface et de ses revêtements
- \rightarrow Existence de résonances. Première étape vers le mélange rapide du flot géodésique

Possibilité de contrôler d'autres « infinis », des zones pas sympa (J. Buzzi, S. Crovisier, O. Sarig).