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Equidistribution of periodic orbits and
counting
If p ∈ P is a periodic orbit, let µp be the Lebesgue measure on p.
Last week, we proved the following result :
Theorem : Let M be a compact neg. curved manifold. Then

hT

ehT

∑
p∈P(T )

µp
`(p)

→ mBMS .

Integrating the constant function equal to 1 led us to

Corollary : Let M be a compact negatively curved manifold. Then

#P(T ) ∼ ehT

hT
.



Ideas of the proof

The main ingredients in the proof were:
• Product structure and mixing
• Existence of a finite measure with product structure and mixing
property, the Bowen-Margulis-Sullivan measure.
• The constant function 1 has compact support, so that it can be
approximated by indicator functions of small boxes.

Our programm today :
→ State the analogous result in the noncompact case.
→ Explain the construction of the Bowen-Margulis-Sullivan
measure, and give a finiteness criterion.
→ Explain how to go from a convergence for continuous maps with
compact support to continuous bounded maps. (The constant
function equal to 1 is continuous and bounded!)



Noncompact manifolds

Important observation :

Z-cover

On a typical noncompact manifold, for T large enough,
#P(T ) = +∞ !!

Counting is done ...



A natural normalization

Choose an arbitrary compact set K of the surface, whose interior
intersects some closed geodesic. Let PK (T ) be the set of closed
geodesics of length T that intersect K .

Theorem (Sch.-Tapie 2019) : Let M be a neg. curved manifold,
s.t. the Bowen-Margulis-Sullivan measure is finite. Then

hT

ehT

∑
p∈PK (T )

µp
`(p)

→ mBMS ,

in the dual of bounded continuous functions.

Corollary : Under the same assumptions, #PK (T ) ∼ ehT

hT
.

Remark : Also true in the CAT (−1)-setting or with potentials and
Gibbs measures in the Riemannian setting.



Sullivan’s construction of the BMS-measure

A hyperbolic surface S is the quotient of D by a discrete group Γ.
The Bowen-Margulis-Sullivan measure is constructed as a
Γ-invariant measure on T 1D instead of a measure on T 1S .
Recall the product structure T 1D ' S1 × S1 \ {Diag} × R. In
these coordinates, mBMS ∼ ν × ν × dt, where ν is obtained as a
limit of orbital measures

ν = lim
s>δΓ,s→δΓ

1
P(s)

∑
γ∈Γ

e−sd(o,γo)Diracγo .

D

o

γo

where δΓ is the exponential growth rate of the orbit Γo.



Construction of the BMS-measure (bis)

Theorem(Sullivan) The critical exponent δΓ coincides with the
topological entropy of the geodesic flow.

o

B(y, r)

Oo (B(y, r))

Shadow lemma (Sullivan)

ν(Oo(B(γo, 1)) � e−δΓd(o,γo) = e−hd(o,γo)

Equivalent to the local formulation seen last week :
µssv (A) = ehtµssg tv (g tA) and µsuv (A) = e−htµsug tv (g tA)



Finiteness of the BMS-measure
For a general dynamical system (X ,B,m,T ), when the measure is
invariant, ergodic and conservative, Kac lemma asserts that for a
Borel set s.t. 0 < m(A) <∞

m(X ) =
∑
n≥1

n ×m(An) ,

where An denotes the subset of A of points whose first return to A
is after exactly n iterations of T .

X

An

n
copies of
An

A3
A2A1



Finiteness of the BMS-measure (bis)
Replace the Borel set A by a compact set with nonempty interior
K . Define a subset ΓK of Γ encoding the excursions outside K .

ΓK = {γ ∈ Γ, [o, γo] ∩ ΓK ⊂ K ∪ γK}

K

γo

o
go

Pit-Sch. (2016) mBMS is finite iff it is ergodic and conservative and∑
γ∈ΓK

d(o, γo)e−δΓd(o,γo) <∞ .



Finiteness of the BMS-measure (ter)
Sch. Tapie (2018) If the exp. growth rate of ΓK satisfies
δ(ΓK ) < δΓ, then mBMS is finite.
It leads to several nontrivial examples where the BMS measure is
finite : geometrically finite manifolds, Ancona surfaces, Schottky
products...



Equidistribution of periodic orbits

Last week’s proof still works, but gives the following statement.

Theorem : Let M be a neg. curved manifold, s.t. the
Bowen-Margulis-Sullivan measure is finite. Then

mT :=
hT

ehT

∑
p∈P(T )

µp
`(p)

→ mBMS ,

in the dual of continuous functions with compact support.

The proof of the main Theorem has two steps.

Step 1 : Show that mT ,K :=
hT

ehT

∑
p∈PK (T )

µp
`(p)

→ mBMS in the

dual of continuous functions with compact support.
Step 2 : Show that the convergence holds in the dual of bounded
continuous functions.



Step 1 : Vague convergence of mT ,K to mBMS

We know that mT → mBMS and wish to prove that
mT ,K → mBMS . We will prove that

mT ,K −mT → 0 in Cc(T 1M)∗

Consider ϕ ∈ Cc(T 1M), Supp(ϕ) ⊂ KR . Thus,

mT ,K (ϕ)−mT (ϕ)) = mT ,K (ϕ)−mT ,KR
(ϕ) ≤ · · ·

KKR

· · · hTe−hT
∑

p∈PKR
\PK (T−1,T )

`(p ∩ KR)

`(p)
' e−hT

∑
p∈PKR

\PK (T−1,T )

`(p∩KR)



Step 1 : Vague convergence of mT ,K to mBMS (bis)

On the universal cover, lift these closed geodesics that intersect KR

and not K . For each piece of geodesic crossing KR \ K , we get an
element γ ∈ ΓKR

.

o
γo

K̃R γK̃R

Recall that h = δΓ. We get a bound

e−hT
∑

p∈PKR
\PK (T−1,T )

`(p ∩ KR) ≤ · · ·

· · · ≤
∑

γ∈ΓKR
,d(o,γo)'T

d(o, γo)e−δΓd(o,γo) .

As mBMS is finite, it is smaller than the reminder of a convergent
series, so that it goes to 0 when T →∞.



Step 2 : Narrow convergence of mT ,K to mBMS

We know that mT ,K → mBMS in (Cc(T 1M))∗. We will prove that
the convergence holds in (Cb(T 1M))∗.
Enough to show nondivergence (tightness) : for all ε > 0, there
exists a compact set KR such that for all T large enough
mT ,K (KR) ≥ 1− ε.

mT ,K ((KR)c) ≤ e−hT
∑

p∈PK (T−1,T )

`(p ∩ K c
R) .

K
KR



Step 2 : Narrow convergence of mT ,K to mBMS

As before, lift each geodesic in the above sum to the universal
cover.

αK̃R

K̃R

e−hT
∑

p∈PK (T−1,T )

`(p∩K c
R) ≤ · · · ≤

∑
α∈ΓKR

,d(o,αo)≥2R

d(o, αo)e−δΓd(o,αo)
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Counting geodesics on euclidean surfaces
The compact euclidean surface is the torus R2/Z2.

Its geodesics are the straight lines.

Observe that the slope of the geodesics remains constant.
• Rational slope → closed geodesic
• Irrational slope → geodesic dense in the surface.

P(T ) = {closed geodesics of length ≤ T} .
#P(T ) ∼ πT 2 .



Hyperbolic surfaces
Build compact hyperbolic surfaces from the hyperbolic disk D as
tori with many holes. Geodesics of D are circles and diameters.

On a compact surface S = D/Γ, geodesics have many different
behaviours.

• closed geodesics
• geodesics dense in S and even in T 1S
• Any behaviour that you can imagine exists.



Geodesic flow

Each unit tangent vector v ∈ T 1S determines a geodesic.

v g tv v

g tv

It defines the geodesic flow (g t)t∈R on T 1S .
Closed geodesic of length T on S < − > periodic orbit of period T
for (g t) on T 1S .

P(T ) = {closed geodesics of length ≤ T}

What can we say about P(T ) ?



Some history
Hadamard (1898) : Infinitely many periodic orbits #P(T )→∞.
Morse (1920’) : Periodic orbits are dense in T 1S
Further study : Hopf, Hedlund (30’), Anosov, Sinai (50-60’),
Huber (59) S compact hyperbolic surface. Then

#P(T ) ∼ eT

T
when T →∞ .

Margulis (1964) : Anosov flows. Let M be a compact negatively
curved manifold, and (g t) its geodesic flow. Then

#P(T ) ∼ ehT

hT
when T →∞ ,

with h the topological entropy of the geodesic flow.
Bowen, Bowen-Ruelle (70’) : Equidistribution of periodic orbits of
hyperbolic flows.
Parry-Pollicott (1990) : Hyperbolic flows. Different method.
Since 2000 : Dolgopyat ... Tsuji-Zhang (2020). Exponential mixing
of the geodesic flow → error term in the above estimates.



Margulis asymptotic

Our goal today : discuss the proof of

Margulis (1964) : Anosov flows. Let M be a compact negatively
curved manifold, and (g t) its geodesic flow. Then

#P(T ) ∼ ehT

hT
when T →∞ ,

with h the topological entropy of the geodesic flow.

Occasion to discuss the following points,:
→ the product structure of the geodesic flow,
→ the mixing property.

Goal next week : discuss an extension of this result to geodesic flows
of noncompact negatively curved manifolds (Schapira-Tapie 2019).



The product structure of the geodesic flow
(Global) product structure on T 1D :

v v+

v−

T 1D ' S1 × S1 × R (Hopf coordinates) .

Also true for general negatively curved manifolds.

Any asymptotic past ξ ∈ S1 can be connected with any asymptotic
future η ∈ S1. Past and future are independent.

Consequence : Topological mixing on T 1M. For any open sets
A,B , there exists T > 0 s.t. for all t ≥ T ,

g tA ∩ B 6= ∅ .



Product structure of the geodesic flow (II)
For hyperbolic flows, there exists a local product structure.
Strong stable manifold
W ss(v) = {w ∈ T 1M, d(g tv , g tw)→ 0 when t →∞}
Strong unstable manifold
W su(v) = {w ∈ T 1M, d(g tv , g tw)→ 0 when t → −∞}



The Bowen-Margulis-Sullivan measure
An invariant measure is a (probability) measure on T 1M s.t.
µ(g tA) = µ(A) for all Borel sets A and t ∈ R.
Bowen-Margulis-Sullivan measure : dynamically the most relevant
invariant measure on T 1M.
Three different constructions :
→ (Bowen) limit of periodic measures
→ (Margulis) limit of averages on stable/ unstable manifolds
→ (Sullivan) geometric construction through the boundary

In the Hopf coordinates on T 1D, mBMS ∼ ν × ν × dt

In the local product structure on T 1M, mBMS ∼ µssv × µsuv × dt,
and v → µssv , v → µsuv vary continuously.

Moreover, µssv (A) = ehtµssg tv (g tA) and µsuv (A) = e−htµsug tv (g tA)



Mixing of the Bowen-Margulis-Sullivan
measure

The BMS measure is mixing : For any Borel sets A,B ⊂ T 1M,

mBMS(g−tB ∩ A)→ mBMS(A)mBMS(B) .

Past and future become asymptotically independent.

Equivalent statement

mBMS(g−tB ∩ A)

mBMS(B)
→ mBMS(A) .



Equidistribution of periodic orbits
If p ∈ P is a periodic orbit, let µp be the Lebesgue measure on p.
We will prove the following result.
Theorem : Let M be a compact neg. curved manifold. Then

hT

ehT

∑
p∈P(T )

µp
`(p)

→ mBMS .

Integrating the constant function equal to 1 leads to

Corollary : Let M be a compact negatively curved manifold. Then

#P(T ) ∼ ehT

hT
.



Proof of the equidistribution theorem
We will use small boxes B = ∪w∈Bss(v0,ε) ∪|τ |≤ε g τBsu(w , ε).

Enough to prove that for any such small box B ,

hT

ehT

∑
p∈P(T )

`(p ∩ B)

`(p)
→ mBMS(B) .

Replacing P(T ) by P(T − ε,T ) = P(T ) \ P(T − ε), it is
equivalent to show that

e−hT
∑

p∈P(T−ε,T )

`(p ∩ B)→ εmBMS(B) .



Proof of the equidistribution theorem
e−hT

∑
p∈P(T−ε,T ) `(p ∩ B) equals εe−hT× nber of crossings of B

by a periodic orbit.

Each piece (of size ε) of a periodic orbit of length ' T which
crosses B leads to a vector vi ∈ Bss(v0, ε), and a periodic vector
wi ∈ Bsu(vi , ε), so that g−T vi ' g−Twi = wi , thus to a piece of
g−TBss(v0, ε) which comes back inside B .



Proof of the equidistribution theorem
Conversely (fixed point argument), each connected component of
g−TBss(v0, ε) ∩ B leads to a periodic orbit of length T crossing B .
Therefore, the quantity to estimate is roughly
εe−hT× nber of connected components of g−TBss [v0, ε) ∩ B .

It is also roughly εe−hT
µss(g−TBss(v0, ε)) ∩ B

µss(Bss(v0, ε))



Proof of the equidistribution theorem

Recall that mBMS is mixing :

mBMS(g−tA ∩ B)→ mBMS(A)×mBMS(B) .

The product structure of mBMS ∼ µss × µsu × dt leads easily to
another equivalent formulation of mixing of mBMS :

µss(g−TBss(v0, ε) ∩ B) ∼ ehTµss(Bss(v0, ε))×mBMS(B) .

Thus,

e−hT
µss(g−TBss(v0, ε) ∩ B)

µss(Bss(v0, ε))
→ mBMS(B) .

It concludes the proof.



Conclusion

Two main ingredients in the proof:
• Product structure and mixing
• Existence of a finite measure with product structure and mixing
property

lead to

→ Equidistribution of periodic measures towards mBMS

→ Counting of periodic orbits

Remark : The argument of equidistribution of periodic measures is
proven on indicator functions of boxes. An approximation argument
allows to get convergence for integrals of continuous compactly
supported functions. And the constant function equal to 1 is
compactly supported only when M is compact.


