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1 Introduction

The goal of these three lectures will be to introduce you to critical exponents of
Kleinian groups, with a special focus on their relation with a good invariant measure
under the geodesic flow, the so-called Bowen-Margulis measure.

I will begin with a long introduction about discrete groups, critical exponents
and geodesic flows. In a second part, I will define precisely the measures that will
interest us, and the relations with critical exponents. In a third part, I will present
(without proof) many classical or at least known results about critical exponents
and the Bowen-Margulis measure. At last, I will provide proofs for a few important
results, stating at which condition the Bowen-Margulis measure is ergodic, all clas-
sical notions of entropy coincide, and the Bowen-Margulis measure is the measure
of maximal entropy of the geodesic flow.

1.1 Discrete groups

We denote by ∂Hn = Sn−1 the visual boundary of Hn. Recall that the isometries
of Hn (except the identity) are of one of the three following types.

An isometry γ is loxodromic if it has two distinct fixed points γ± in ∂Hn. In
this case, one can find two disjoint half-balls D± centered respectively in γ+ and
γ−, such that γ+(Hn \ D−) ⊂ D+ and γ−(Hn \ D+) ⊂ D−. Moreover, γ acts by
translation along its axis (γ−, γ+).

An isometry p is parabolic if it fixes exactly one point p+ in ∂Hn. In this case,
it stabilizes all horospheres, i.e. all spheres tangent to the boundary at the point
p+.

An isometry is elliptic in the other cases, where it fixes at least one point inside
Hn.

We consider a discrete subgroup Γ of the direct isometries of Hn. Contrarily to
the most known cases, we focus on the cases where Γ\Hn is noncompact, or even Γ
is infinitely generated. We also allow elliptic elements, so that Γ\Hn is an orbifold
rather than a manifold, but we will skip these technical details in the arguments
that we will sketch.
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1.1.1 Examples of discrete groups

Let us recall the most classical examples to have in mind.
When Γ is the fundamental group of a compact hyperbolic manifold, one says

that Γ is cocompact. When n = 2, it is easy to construct hyperbolic surfaces, by
considering a 4g-gone with right angles, whose sides are pairwise identified thanks
to a hyperbolic isometry, to get a compact surface of genus g. PICTURE.

When Γ\Hn has finite volume, one says that Γ is a lattice. Typical examples
include cocompact groups and groups constructed by arithmetic ways, as the sim-
plest PSL(2,Z) or SO(n, 1,Z). PICTURE fundamental domain PSL(2,Z).

Schottky groups are a very interesting class from a dynamical point of view,
because they are free. Consider a finite (even) number of disjoint half-balls D±

i in
Hn centeed in ∂Hn, and isometries γi whose fixed points are the centers of D±

i ,
sending Hn \D−

i inside D+
i and Hn \D+

i inside D−
i .

Picture puntured torus and pair of pants
A classical argument, the Ping Pong argument, consisting to follow the orbit of a
point o ∈ Hn \ ∪D±

i , allows to show that the group generated by the γi is discrete
and free.

The examples of Fuchsian and quasi-fuchsian groups will be discussed in detail
in the lectures of Ursula Hamenstadt. Let us recall briefly how it works. Recall that
the group of direct isometries of H2 (resp. H3) can be identified with PSL(2,R)
(resp. PSL(2,C)). Choosing a totally geodesic hyperplane H2 inside H3 allows
to embed PSL(2,R) inside PSL(2,C) as the group of isometries of H3 preserv-
ing this hyperplane. If Γ ⊂ PSL(2,R) is a discrete subgroup, such an embedding
Φ : PSL(2,R) → PSL(2,C) allows to see Γ, or more precisely Φ(Γ), as a discrete
subgroup of PSL(2,C). The resulting discrete group is called a Fuchsian group. (A
variant of the definition requires Γ to be a lattice in PSL(2,R).
PICTURE
It is possible to deform Γ inside PSL(2,C) through a Γ-equivariant quasi-conformal
homeomorphism. Such a deformation of a fuchsian group is called a quasi-fuchsian
group. PICTURE

Regular covers of compact manifolds are the easiest examples of manifolds with
infinitely generated fundamental group.
PICTURE Z-cover
Consider a compact hyperbolic surface S0 = Γ0\H2, and a normal subgroup Γ ◁Γ0.
The surface S = Γ\H has a fundamental group Γ which is in general infinitely gen-
erated.
PICTURE tree-surface

1.1.2 Limit set

As Γ is a discrete group of isometries of Hn, it acts properly discontinuously on Hn

(i.e. for all compact sets K ⊂ Hn, we have #{γ ∈ Γ, γK ∩K ̸= ∅} < ∞), so that it
has to accumulate somewhere in ∂Hn. The limit set is the set Λ(Γ) = Γ.x \ Γ.x in
∂Hn. It does not depend on x, and is also the smallest non-empty Γ-invariant set,
as soon as it is infinite.

In the sequel, we will always assume that Γ is nonelementary, that is that ΛΓ is
infinite.

As an exercise, you can check that as soon as Γ contains two isometries that are
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hyperbolic or parabolic with disjoint sets of fixed points, then Γ is nonelementary.
When Γ is an elementary discrete group and contains no elliptic ellements, then Γ
is either generated by a single loxodromic isometry or a discrete group of parabolic
isometries fixing a common point at infinity.

The radial limit set (or conical limit set) Λrad(Γ) is the set of points ξ ∈ ΛΓ such
that there exist infinitely many points γi.o at bounded distance of the geodesic ray
[oξ). PICTURE
Observe that Λrad(Γ) = ∪N∈RΛ

N
rad(Γ), where ΛN

rad(Γ) is the set of points ξ ∈ ΛΓ

such that there exist infinitely many points γi.o at distance at mostN of the geodesic
ray [oξ).

A point ξ ∈ ΛΓ is said parabolic if there exists p ∈ Γ parabolic such that pξ = ξ.
A point ξ ∈ ΛΓ is said to be a bounded parabolic point if the stabilizer Πξ of ξ in Γ
acts cocompactly on ΛΓ \ {ξ}. A group Γ is said to be geometrically finite when its
limit set ΛΓ consists only of radial limit points and bounded parabolic limit points.
There are several characterizations of geometrical finiteness. We refer to

Bowditch
[Bow] for

details.
A geometrically finite group is finitely generated. In dimension 2, it is even

equivalent. However, there are examples of finitely generated geometrically infinite
groups. The most simple examples in dimension 3 are obtained by taking the
suspension of a compact hyperbolic surface by a pseudo-Anosov diffeomorphism,
see for example

Otal
[O].

When the group Γ is cocompact, i.e. when Γ\Hn is compact, it is easy to check
that ΛΓ = Λrad = ∂Hn. When the group Γ is a lattice, i.e. when Γ\Hn has finite
volume, one can also show that ΛΓ = ∂Hn, but ΛΓ = Λrad ⊔ Λp and the latter is
nonempty.

One says that Γ is convex-cocompact when the convex hull of ΛΓ inside Hn has
a cocompact neighbourhood (modulo Γ).

1.2 Geodesic flow

The geodesic flow (gt)t∈R acts on the unit tangent bundle of Hn as follows. Let v ∈
T 1S be a vector, and denote by (cv(t))t∈R the unique geodesic such that v = c′v(0).
Then gt(v) = c′v(t). This geodesic flow commutes with the action of the isometries
of Hn so that it is well defined on the unit tangent bundle T 1M of any quotient
manifold Γ\Hn.

This flow is one of the most important dynamical systems since the birth of dy-
namical systems (Hadamard 1898, Hopf and Hedlund in the thirties, Anosov, Sinai
to cite the Abel prize, ...) It is a hyperbolic flow. When the manifold is compact,
it is the typical example of an Anosov flow. Its stochastic properties (transitivity,
ergodicity, mixing, ...) come mainly from a property called the local product struc-
ture. PICTURE
If v and w are two vectors close one from another, one can glue the past of v and
the future of w, meaning that there exists a vector u close from v and w, such
that the geodesic (gtu) is asymptotic to (gtw) when t → +∞ and to (gtv) when
t → −∞. In other words, the future of a trajectory does not depend on the past of
this trajectory, which means that the system is very chaotic. This property allows
to prove ergodicity, mixing, ...

The boundary at infinity ∂Hn is defined as the set of equivalence classes of
geodesic rays under the equivalence relation staying at bounded distance. The
boundary at infinity of the hyperbolic space ∂Hn coincides with the visual boundary
Sn−1.
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A Busemann function is a map defined on ∂Hn ×Hn ×Hn by

βξ(x, y) = lim
t→+∞

d(x, ξx(t))− d(y, ξx(t)) = ”d(x, ξ)− d(y, ξ)” ,

where ξx(t) is the geodesic ray from x to ξ.
The so-called Hopf coordinates are given by the following homeomorphism from

T 1Hn to ∂Hn × ∂Hn \ {Diagonal} × R.

v ∈ T 1Hn 7→ (v−, v+, βv+(o, π(v))) .

We shorten the notation by writing ∂2Hn = ∂Hn × ∂Hn \ {Diagonal}. These
coordinates are very convenient in order to use the product structure describe above.
They have good properties. First, the geodesic flow acts by translation on the third
factor, by

gt(v−, v+, s) = (v−, v+, s+ t) .

In addition, the action by isometries of an isometry γ of Hn can be written as :

γ(v−, v+, s) = (γ.v−, γ.v+, s+ βv+(γ−1.o, o)) .

Moreover, they allow to enlight the product structure of the dynamics (see
above), which is at the origine of the chaos. In other words, one sees and uses
easily thanks to these coordinates the fact that the past is independent of the fu-
ture, or that the phase space is (homeomorphic to) a product space.

The dynamics of the geodesic flow is interesting on the unit tangent bundle T 1M
of a quotient manifold M = Γ\Hn. The point is that the Hopf coordinates descend
to T 1M in the sense that T 1M is homeomorphic to the quotient Γ\(∂2Hn × R).

A classical result due to Eberlein
Eberlein
[?] says that the nonwandering set of the

geodesic flow on T 1M coincides in these coordinates with the set of vectors pointing
towards and backwards to the limit set. Recall first that a vector v ∈ T 1M is
nonwandering if all neighbourhoods V of v return infinitely many times near v, in
the sense that

∫∞
0

1V ∩gtV ̸=∅ dt = +∞.
Let us denote by Ω the nonwandering set of the geodesic flow on T 1M . Eberlein
proved that Ω = {v ∈ T 1M , v± ∈ ΛΓ}.

When M is compact, ΛΓ = ∂Hn, and Ω = T 1M is compact. When M is convex-
cocompact but not compact, then Ω is a proper compact invariant subset of T 1M .
In other cases, Ω is noncompact, which makes the dynamical study more difficult.
When M has finite volume, then Ω = T 1M has finite volume. More generally, when
Γ is of the first kind, i.e. ΛΓ = ∂Hn, then Ω = T 1M .

Observe that a Radon measure m on T 1M invariant under the geodesic flow
lifts to a Radon measure m̃ on T 1Hn which is invariant under both actions of the
geodesic flow and the group Γ. Recall that T 1Hn ≃ ∂2Hn×R, and the geodesic flow
acts by translation on R. Therefore, the measure m̃ induces a geodesic current µ on
∂Hn, that is a Γ-invariant Radon measure on ∂2Hn. Moreover, the correspondance
between m and its associated geodesic current is 1− 1 and onto.

This correspondance in mind, it is natural to try to construct Γ-invariant mea-
sures on ∂Hn, consider their product on ∂2Hn, and build in this way geodesic
currents, and therefore invariant measures under the geodesic flow on T 1M . Un-
fortunately, a classical exercise shows that, as soon as Γ is nonelementary, it has no
nontrivial invariant Radon measure on ∂Hn. However, this strategy is not bad, as
we will see later. The Patterson-Sullivan construction of the measure of maximal
entropy of the geodesic flow uses the above idea in a refined way. They construct
a quasi-invariant measure on the limit set, consider its product with itself, which
turns out to be almost a geodesic current, and modify it in such a way that they
obtain a geodesic current.
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1.3 General Picture

The general philosophy is that there is a deep relation between the action of the
group Γ on its limit set and the action of the geodesic flow (gt) on T 1M . The
critical exponent is at the same time the exponential growth rate of the group, the
Hausdorff dimension of the (radial) limit set, and the topological entropy of the
geodesic flow.

The Hausdorff measure of the limit set allows to build the measure of maximal
entropy of the geodesic flow.

Many such properties are true for wider classes of groups than cocompact groups
or lattices.

2 The construction of the Bowen-Margulis mea-
sure

2.1 Critical exponents

2.1.1 Poincaré series

Let Γ be a Kleinian group, i.e. a discrete group of isometries of Hn. Assume that
Γ is infinite.

Choose the point o = (0, . . . , 0, 1) as an origin in Hn. The Poincaré series P (s)
is defined for s ∈ R by

P (s) =
∑
γ∈Γ

e−sd(o,γ.o) .

More generally, define

P (x, s) =
∑
γ∈Γ

e−sd(x,γ.o) .

As the γ’s are isometries, all these series diverge or converge simultaneously. Let
δΓ ∈ R+ ∪ {+∞} be their critical exponent. The series diverge for s < δΓ and
converge for s > δΓ. One does not know a priori what happens when s = δΓ. It
turns out to be of the greatest importance. The group Γ is said to be divergent if
P (δΓ) = +∞ and convergent otherwise.

If an := #{γ ∈ Γ, n ≤ d(o, γ.o) < n + 1}, observe that the series P (s) behaves
exactly as the series

∑
n∈N ane

−sn, so that

δΓ = lim sup
n→+∞

1

n
log#{γ ∈ Γ, n ≤ d(o, γ.o) < n+ 1} .

2.1.2 Computations

First, observe that if Γ′ < Γ is a subgroup of Γ, then δΓ′ ≤ δΓ.
Let us give some examples. If Γ =< h > is generated by a single hyperbolic

isometry, then d(o, hn.o) ∼ |n|d(o, h.o) so that δ<h> = 0.
If Γ =< p > is generated by a single parabolic isometry, then d(o, pn.o) ∼ 2 log n

so that δ<p> = 1
2 .

More generally, if Π is a parabolic group generated by k independent parabolic
isometries, i.e. Π is isomorphic to Zk, then δΠ = k

2 .
If Γ contains a free subgroup generated by two hyperbolic isometries g and h,

then δΓ ≥ δ<g,h> > 0. Indeed, if an element γ ∈< g, h > has a word length
|n| in g and h, then d(o, γ.o) ≤ |n|max{d(o, g.o), d(o, h.o)} so that δ<g,h> ≥

log 3
max{d(o,g.o),d(o,h.o)} .

Proposition 2.1 When Γ is a lattice in Hn, then δΓ = n−1. In general, δΓ ≤ n−1.
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Proof : Let us prove it only in the case where Γ\Hn is compact. As Γ is discrete,
let r = 1

2 infγ∈Γ d(o, γ.o) > 0. Let D be the diameter of M = Γ\Hn. For all R > 0,
we have

∪γ∈Γ,γ.o∈B(o,R)B(γ.o, r) ⊂ B(o,R+ r) ≤ ∪γ∈γ,γ.o∈B(o,R+r)B(γ.o,D) .

Observe that the left inclusion is true without any assumption on the group Γ (other
than being discrete).

We deduce from these inclusions, and from the geometric fact that vol(B(o,R)) ∼
c.e(n−1).R that n− 1 ≤ δΓ ≤ n− 1, the first inequality being true without any com-
pactness assumption on Γ.

We admit the result when Γ is a noncocompact lattice. COMPLETER REF-
ERENCE? □

2.1.3 Properties of critical exponents

Notice also that when δΓ > 0, then

δΓ = lim sup
n→+∞

1

n
log#{γ ∈ Γ, d(o, γ.o) ≤ n} .

For cultural purposes, let us add some complements on the critical exponents.

Theorem 2.2 (Roblin) When Γ is nonelementary, then

δΓ = lim
n→+∞

1

n
log#{γ ∈ Γ, n ≤ d(o, γ.o) < n+ 1} .

This was proven by Roblin [?] using conformal densities (i.e. measures) on the limit
set, and later by Peigné [?] by subadditivity arguments.

Moreover, the critical exponent is related to the first eigenvalue of the Laplacian,
i.e. the Hodge de Rahm operator;

Theorem 2.3 (Sullivan) When δΓ > n−1
2 , then the first eigenvalue of the Lapla-

cian satisfies λ0 = δΓ(n− 1− δΓ).

2.2 The Patterson-Sullivan construction

This construction, now classical, is due to Patterson [?] in the case of surfaces and
has been extended by Sullivan [?] to higher dimensional hyperbolic spaces. The
construction extends also to variable negative curvature [?].

Let Γ be a nonelementary discrete group of isometries of Hn, and x ∈ Hn a
point. Let s > δΓ. Define

νsx =
1

P (s)

∑
γ∈Γ

e−sd(x,γ.o)δγ.o ,

where δy denotes the Dirac mass at the point y. Notice that νsx is a finite measure,
and νso is a probability measure.

As Hn ∪ ∂Hn is compact, we can choose a subsequence sn → δΓ such that νsno
weakly converges to some probability measure νo on Hn ∪ ∂Hn.
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If Γ is divergent, then one easily checks that the measure νsno (K) of any compact
subset K ⊂ Hn goes to 0, so that the limit measure νo is supported on ∂Hn, and
in fact on ΛΓ by construction.

If Γ is convergent, following Patterson’s trick, one modifies the Poincaré series
by adding a weight:

P̃ (s) =
∑
γ∈Γ

h(d(x, γ.o))e−sd(x,γ.o)δγ.o ,

where h is a slowly growing function allowing the series to diverge at s = δΓ without
changing its critical exponent.

In both cases, one obtains a measure νo supported on ΛΓ, which satisfies for all
γ ∈ Γ CHECK FORMULA

dγ∗νo
dνo

(ξ) = exp(−δΓβξ(o, γ
−1.o)) .

Now, for all x ∈ Hn, one considers a subsequence snk
of sn (depending a priori

of the point x) such that ν
snk
x converges to νx.

Finally, we get a δΓ-conformal density on the boundary, that is a family of finite
measures (νx)x∈Hn on ∂Hn, that satisfyconformal

1. for all x ∈ Hn and γ ∈ Γ, γ∗νx = νγ.x,

2. for all x, y ∈ Hn,
dνx
dνy

(ξ) = exp(−δΓβξ(x, y) .

CHECK FORMULA

The above construction provides a δΓ conformal measure supported on ΛΓ.
But the family of visual (angular) measures (λx) on each unit sphere in T 1

xHn

provides a (n − 1)-conformal measure supported on the full boundary ∂Hn. This
family is interesting when ΛΓ = ∂Hn, and less in other cases.

2.3 Sullivan’s Shadow lemm

A shadow Ox(B(y,R)) is, viewed from the point x, the shadow made by the ball
B(y,R) when looking at the boundary at infinity. In other words,

Ox(B(y,R)) = {ξ ∈ ∂Hn, [x, ξ) ∩B(y,R) ̸= ∅} ,

where [x, ξ) denotes the geodesic ray from x to ξ.

Theorem 2.4 (Sullivan’s Shadow lemma) Let (νx)x∈Hn be a δ-conformal mea-
sure, i.e. a measure satisfying (

conformal
2.2). Assume that it has support ΛΓ. For all x ∈ Hn

there exists r0 > 0 such that for all r > r0 there exists a constant Cr,x > 0 such
that for all γ ∈ Γ,

1

Cr,x
e−δd(x,γx) ≤ νx(Ox(B(γ.x, r)) ≤ Cr,xe

−δd(x,γx) .

Proof : Using both properties of a δ-conformal measure and the triangular in-
equality in a triangle with vertices γ−1.x, x, and some ξ ∈ Oγ−1x(B(x, r)), we
have

νx(Ox(B(γ.x, r)) = νγ−1x(Oγ−1x(B(x, r)) ≍ e−δd(x,γ−1x)νx(Oγ−1x(B(x, r))
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The right term is bounded from above by the mass of νx. To get the lower bound,
the point is to observe that infy∈Hn∪∂Hn νx(Oy(B(x, r)) is positive as soon as r is
not too small, so that for all y ∈ Hn ∪ ∂Hn, the shadow viewed from y of B(x, r)
intersects the limit set. □

This Shadow lemm has been generalized by several people, in the case of geomet-
rically finite groupes with cusps, replacing γ.x by a point in a cusp (see Stratmann-
Velani [?], Schapira [?], Hersonsky-Paulin [?]).

Let us mention an easy corollary of the Shadow Lemma.

Corollary 2.5 A δ-conformal measure has no atoms in the radial limit set.

Proof : Indeed, a point ξ ∈ Λrad(Γ) belongs to infinitely many shadowsOo(B(γn.o, R)),
for some R > 0, with γn.o converging to ξ. The conclusion follows from the Shadow
Lemma. □

2.4 The Patterson-Sullivan construction of the Bowen-Margulis
measure

Thanks to the Hopf coordinates v = (v−, v+, t), we define on ∂Hn × ∂Hn a Radon
measure invariant under both actions of the geodesic flow and the group Γ by the
formula

dm̃BM (v) = eδΓβv+ (o,π(v))+δΓβv− (o,π(v)) dνo(v
−) dνo(v

+) dt .

The reader can easily check the invariance properties. Moreover, the above formula
does not depend on the choice of the point o, by the conformality properties of
(νx)x∈Hn .

When the measure νo has no atoms, the measure m̃BM gives zero mass to the
diagonal of ∂Hn × ∂Hn so that this measure induces on the quotient on T 1M a
Radon measure, which is invariant under the geodesic flow, and which will be called
the Bowen-Margulis measure. In fact, before this Patterson-Sullivan construction,
Bowen and Margulis provided, in the compact case, two alternative constructions
of this measure by using averages over periodic orbits for the first, and averages on
leaves of the strong stable foliation for the second.

By abuse of notation, we will call this measure the Bowen-Margulis measure,
before any justification (which will come later) of the fact that the construction
produces a unique measure!

3 More about critical exponents

The main objects have been introduced, so that we can state some results that we
wish to emphasize, without proofs.

3.1 Critical exponents and dimension

Notice that, by definition, a vector v ∈ T 1M admits a lift ṽ ∈ T 1Hn such that
v+ belongs to the radial limit set if and only if the geodesic ray (gtv)t≥0 returns
infinitely often in a compact set. The famous result of Bishop-Jones below states
that, in some sense, the critical exponent is the size of the set of vectors whose
geodesic returns infinitely often in a compact set.

Theorem 3.1 (Bishop-Jones [?]) Let Γ be a nonelementary Kleinian group. Then
δΓ is the Hausdorff dimension of the radial limit set.
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3.2 Critical exponents and subgroups

We already noticed that if Γ is a subgroup of Γ0, δΓ ≤ δΓ0 . But at which condition
this inequality becomes an equality ?

For example, if Γ ◁ Γ0, then ΛΓ = ΛΓ0
but there is no reason that Λrad(Γ)

coincides with Λrad(Γ0). Think for example to the case where Hn/Γ0 is compact,
and Hn/Γ is an infinite regular cover. They do not have the same recurrent vectors
of course.

Using a tricky variant of the shadow lemm, applied to all y = γx for γ ∈ N(Γ),
Roblin answers partially the question.

Theorem 3.2 (Roblin) If Γ ◁ Γ0 then

δΓ0

2
≤ δΓ ≤ δΓ0

When the quotient Γ0/Γ is amenable, then the answer can be precised. The
reader who does not know the definition of amenability can skip this result.

Theorem 3.3 (Roblin, Brooks) Let Γ ◁ Γ0 be a normal subgroup.

1. If Γ0/Γ is amenable then δΓ = δΓ0
,

2. If δΓ = δΓ0
and Γ0 is a lattice or a convex-cocompact group with δΓ0

> n/2
then Γ0/Γ is amenable.

The first part is due to Roblin. The second part was proven by Brooks through
harmonic analysis, which leads unfortunately to assumptions that are likely not to
be optimal.

Let us conclude this paragraph with a result guaranteeing the strict inequality.

Theorem 3.4 (Dal’bo-Otal-Peigné) If Γ0 contains a divergent subgroup Γ such
that ΛΓ is strictly included in ΛΓ0

then Γ0 is divergent and δΓ0
> δΓ.

We will not provide any proof of all these results.

3.3 A little bit more about critical exponents

We already mentioned that if Γ is a lattice, then δΓ = n − 1. In the case of finite
volume lattices, it follows from Bishop-Jones theorem for example.

If Γ is convex-cocompact but not cocompact, then 0 < δΓ < n − 1. Add
REFERENCE When Γ is geometrically finite with cusps, and not a lattice, then
k
2 ≤ δΓ < n− 1, where k is the maximal rank of its parabolic subgroups.

Theorem 3.5 (Reference??) When Γ is a finitely generated geometrically infi-
nite group, then δΓ = 2. Moreover, either ΛΓ = S2 or ΛΓ is of Lebesgue measure
zero.

Theorem 3.6 (Doyle, Philipps-Sarnak) Let n ≥ 3. Then the supremum of the
critical exponents of the Schottky subgroups of Isom(Hn) is bounded from above by
a constant cn < n− 1.

This theorem was first proven by Philipps-Sarnak [?] for n ≥ 4, and later by Doyle
Doyle
[?] for n = 3, using harmonic analysis.

Theorem 3.7 (Otal-Peigné) The critical exponent δΓ is the topological entropy
of the geodesic flow.
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4 The Hopf-Tsuji-Sullivan dichotomy, the varia-
tional principle, and counting estimates

We will see that when the Bowen-Margulis measure is finite, it is ergodic and con-
servative, and has wonderful ergodic properties.

We begin with some good criteria to check ergodicity or finiteness

4.1 Ergodicity, finiteness

There is an important dichotomy between the case where Γ is divergent, i.e. the
series

∑
γ∈Γ e

−sd(x,γx) diverges at the critical exponent, and the case where Γ is
convergent, when the series converges at s = δΓ.

For the reader with probabilistic background, the theorem below is a version of
Borel-Cantelli lemm adapted to a dynamical system-the geodesic flow - instead of a
sequence of independent random variables, the independence being replaced by the
product structure of the geodesic flow.

Theorem 4.1 (The Hopf Dichotomy - divergent case) The following asser-
tions are equivalent.

1. The group Γ is divergent

2. The Patterson-Sullivan measure νo gives full measure to the radial limit set:
νo(Λrad) = 1

3. The geodesic flow is ergodic and conservative w.r.t the Bowen-Margulis mea-
sure mBM , i.e. for mBM -almopst all v ∈ T 1M , there exists a neighbourhood
K of v such that

∫∞
0

1K(gtv) dt = +∞.

4. the action of Γ on ΛΓ × ΛΓ \ {Diagonal} is ergodic and conservative.

Theorem 4.2 (The Hopf Dichotomy - convergent case) The following asser-
tions are equivalent.

1. The group Γ is convergent

2. The Patterson-Sullivan measure νo gives zero measure to the radial limit set:
νo(Λrad) = 0.

3. The geodesic flow is totally dissipative w.r.t the Bowen-Margulis measure
mBM , i.e. for mBM -almopst all v ∈ T 1M , and all neighbourhoods K of
v,

∫∞
0

1K(gtv) dt < +∞.

4. the action of Γ on ΛΓ × ΛΓ \ {Diagonal} is totally dissipative

We could add more precisions, but we prefer to concentrate the presentation on
the key points.

Remark 4.3 By Poincaré recurrence theorem, a finite invariant measure is conser-
vative. By the above theorems, we deduce that when the Bowen-Margulis measure
is finite, it is ergodic and conservative.

A variant of some arguments in the proof of the Hopf dichotomy allows to show
the following

Theorem 4.4 When the Bowen-Margulis measure is ergodic and conservative, it
is the unique measure given by the Patterson-Sullivan construction. In other words,
when Γ is divergent, there is a unique δΓ-conformal family of measures (νx)x∈Hn on
the boundary.

10



This theorem gives a justification to the terminology ”the Bowen-Margulis mea-
sure” used in this text.

We will sketch the proof of the Hopf dichotomy later. Let us add some comple-
ments about finiteness, and major statements true under this assumption.

4.1.1 Finiteness criteria

Theorem 4.5 (Sullivan) When M = Γ\Hn is geometrically finite, the Bowen-
Margulis measure is finite.

Note that the above result is false in variable negative curvature.

Theorem 4.6 (Peigné) There exist geometrically infinite hyperbolic manifolds whose
Bowen-Margulis measure is finite.

4.2 Extraordinary properties of the Bowen-Margulis mea-
sure

We present here two major statements that we will try to prove later. We refer the
reader to the proofs to get rigorous definitions of the notions involved here.

4.2.1 About entropy

Theorem 4.7 (Otal-Peigné) Let Γ be a nonelementary Kleinian group. If the
Bowen-Margulis measure is finite, then it is the unique measure of maximal entropy
of the geodesic flow, also called the Bowen-Margulis measure.

Otherwise, the geodesic flow admits no finite invariant measure maximizing en-
tropy.

In any case, the critical exponent δΓ is the topological entropy of the geodesic
flow.

4.2.2 Counting

Theorem 4.8 (Roblin) Let Γ be a nonelementary Kleinian group. If the Bowen-
Margulis measure is finite, then the critical exponent δΓ is the exponential growth
rate of the orbits of Γ in Hn, and also the exponential growth rate of the periodic
orbits of T 1M .

In fact, Roblin gave also a (less precise) counting result in the case where the
measure is infinite.

4.3 Proof of the Hopf dichotomy

As said before, we will just give the main ideas, and skip some subtle technical
difficulties.

Before the proof, let us recall the following probabilistic statement.

Lemma 4.9 (Borel-Cantelli) Let (An) be a sequence of events on the probability
space (Ω,A, P ).

1. If
∑

n P (An) < ∞, then P (lim supAn) = 0

2. If the (An) are independent and
∑

n P (An) = +∞, then P (lim supAn) = 1.

11



Recall that by definition, a vector v ∈ T 1M has a lift (and therefore all lifts)
pointing towards the radial limit set, i.e. v+ ∈ Λrad(Γ) if and only if the geodesic ray
(gtv)t≥0 returns infinitely often in some compact set. Therefore, using this simple
idea and the construction of the Bowen-Margulis measure through the Patterson-
Sullivan measure νo on the boundary, the following equivalences are easy to show
(and we will not do it).

• νo(Λrad(Γ)) = 0 iff the action of Γ on ΛΓ×ΛΓ\{diagonal} is totally dissipative
wrt the measure νo ⊗ νo, iff the action of the geodesic flow (gt) on Ω is totally
dissipative wrt mBM .

• νo(Λrad) = 1 iff (gt) is conservative w.r.t. the measure mBM .
• The measure mBM is ergodic and conservative iff the action of Γ on ∂2Hn is

ergodic and conservative w.r.t νo ⊗ νo.
Therefore, the key steps of the proof are stated in the following lemms.

Convergent-case Lemma 4.10 If
∑

γ∈Γ e
−δΓd(x,γx) < ∞, then νo(Λrad) = 0.

Divergent-case Lemma 4.11 If
∑

γ∈Γ e
−δΓd(x,γx) = +∞, then νo(Λrad(Γ)) > 0.

Lemma 4.12 If νo(Λrad(Γ) > 0, then νo(Λrad(Γ)) = 1.

This last statement will not be proven, because the arguments of the proof are not
used elsewhere.

Let us prove Lemma
Convergent-case
4.10. The analogy with the Borel Cantelli lemma let think

that it is the easy part.

Proof : Observe that Λrad(Γ) = ∪N∈NΛ
N
rad(Γ), where ΛN

rad(Γ) is the set of points
ξ ∈ Λrad(Γ) such that there exists a sequence γn.o converging to ξ while staying
at distance at most N from the geodesic [o, ξ). It is therefore enough to show that
ΛN
rad(Γ) has measure zero. But ΛN

rad(Γ) ⊂ ∪γ∈Γ,d(o,γ.o)≥T ′o(B(γ.o,N)) so that, by
the Shadow Lemma,

νo(Λ
N
rad(Γ)) ≤ Co,N

∑
γ∈Γ,d(o,γ.o)≥T

e−δΓd(o,γ.o) .

The right sum is the rest of a convergent series, so that it goes to zero when T →
+∞. It concludes the proof of the lemma. □

Let us give some hints about the proof of Lemma
Divergent-case
4.11.

Proof : We want to prove that νo(Λrad) > 0, or equivalently, that there is a set of
positivemBM -measure of vectors v that return infinitely often in a compact set. It is
enough to prove that forK = T 1B(o,R) ⊂ T 1M , the set {v ∈ K,

∫ +

0
∞1K(gtv) dt =

+∞} has positive measure. In particular, if this is true, then it implies∫
K

∫ +∞

0

1K(v)1K(gtv) dt dmBM (v) = +∞ .

We will not prove the lemma, but only (the heuristic of) this weaker statement,
because the proof is shorter but contains the key ideas.

LiftK to K̃ which is the unit tangent bundle of a ball, still denoted by T 1B(o,R).
We have ∫ ∞

0

1K(v)1K(gtv) dt =
∑
γ∈Γ

∫ +∞

0

1K̃(v)1γK̃(gtv) dt .

Moreover, by construction of the Bowen-Margulis measure, observe that, up to
some constants, when d(o, γo) ≃ t, K ∩ g−tγK almost coincides with the set of
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vectors {v ∈ T 1M,π(v) ∈ K, v+ ∈ Oo(B(γo,R))} so that, using in a crucial way
the product structure of the Bowen-Margulis measure mBM ∼ νo×νo×dt, we have

m̃BM (K̃ ∩ g−tγK̃) ≍ νo(Oo(B(γo,R))) ≍ e−δΓd(o,γo)

Therefore, we can estimate our integral, as follows∫ ∞

0

1K(v)1K(gtv) dt =
∑
γ∈Γ

∫ +∞

0

1K̃(v)1γK̃(gtv) dt

≍
∑
n∈N

∑
γ∈Γ, n≤d(o,γo)<n+1

e−δΓd(o,γo)

This last term is infinite because the group Γ is assumed to be divergent. This
proves the above assertion. The proof of the lemma uses refinements of this idea.

□

4.4 The Hopf argument

In this section, we want to present this famous argument, which allows to prove
that when mBM is finite or infinite and conservative, it is ergodic. A variant allows
to show that when the measure mBM is ergodic, it is uniquely defined.

The proof seems simple but hides some very subtle difficulties.

Proof : Assume that mBM is finite. We will explain rapidly at the end what are
the differences in the case where it is infinite conservative. And recall that it is
-up to a density that we will neglect in the proof - equal to the product measure
νo × νo × dt.

Ergodicity of the Bowen-Margulis measure means that an integrable invariant
map should be constant mBM -almost surely. Let us prove it.

Let f : T 1M → R be an integrable map. It is enough to prove that its conditional
expectation E(f |I) given the σ-algebra of invariant sets is constant. As uniformly
continuous maps are dense in L1(T 1M,mBM ), it is enough to restrict to the case
where f is uniformly continuous.

Consider the following maps

f+(v) = lim
t→+∞

1

t

∫ t

0

f(gsv) ds and f−(v) = lim
t→+∞

1

t

∫ t

0

f(gsv) ds .

By Birkhoff theorem these maps f+ and f− are well defined mBM -almost surely
and coincide mBM -almost surely.

As f is uniformly continuous, it is easy to check that f+ is invariant along
geodesic orbits and stable manifolds, and therefore depends only on v+ in the Hopf
coordinates v = (v−, v+, t). Similarly, f− depends only on v−. Now, it seems easy
to conclude that f is constant mBM -almost surely, as it coincides mBM -almost
surely with a function depending only on v+, and also mBM -almost surely with
another function depending only on v−. The rigorous proof of this intuitive fact
crucially uses the fact that mBM is a product measure through the use of Fubini
theorem.

To convince yourself that it is crucial, consider a measure µ which is the sum of
the measures on two disjoint periodic orbits. It is nonergodic. Consider a map f
which takes two different values on the two disjoint periodic orbits. It is invariant,
but nonconstant. Moreover, w.r.t the measure µ, it depends almost surely only on
v+, and almost surely only on v−.

We do not add details, but we hope that the reader is now convinced that it is
less obvious than it seems. □
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5 About entropy

5.1 Several definitions of entropy

Entropy is an invariant measuring the exponential growth rate of the complexity of
the dynamics. But there are several ways to understand this sentence, and therefore
several definitions, which coincide in good cases.

All good definitions satisfy the relation h(gt) = |t|h(g1), so that we consider the
time-one map of the geodesic flow.

Historically, the first notion of entropy is the Kolmogorov-Sinai entropy, but it
is not the simplest to define, so that we begin with the topological entropy.

The following definition is due to Bowen. Let d be a distance on X = T 1M . Let
K ⊂ X be a compact set. A set E ⊂ K is said (ε,N,K) separated if E ⊂ K, and
for all x ̸= y in E, and all 0 ≤ k ≤ n, one has d(gkx, gky) ≥ ε.

The topological entropy of g : (X, d) → (X, d) is defined as

hd(g) = sup
K

sup
ε>0

lim sup
N→+∞

1

N
logmax#E ,

the maximum being over all (ε,N,K) separated sets of K. Let us emphasize the
fact that when X is non compact, this definition strongly defines on the distance d.
Given a topology on X, one has supd h

d(g) = +∞, the supremum being considered
over all distances defining the topology.

Therefore, the good notion of topological entropy is

htop(g) = inf
d
hd(g) .

Definition Kolmogorov Sinai entropy
Handel-Kitchens
Critical exponent

Theorem 5.1 (Otal-Peigné [?])

Gurevic entropy : growth rate of periodic orbits

Theorem 5.2 (Roblin)

6 Proof of the variational principle

In this section, we give details on theorem ??.

7 Proofs of the Counting results
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