Exercises- Ergodic theory of the geodesic flow

Barbara Schapira

April 14, 2025

1

Exercise 0.1 Consider $\Omega = [0,1]^2$ endowed with the Dirac probability measure $\delta_{(1/4,2/3)}$ at the point (1/4,2/3). Show that for any intervals I, J of [0,1], if $A = I \times [0,1]$ and $B = [0,1] \times J$, the events A and B are not independent.

Same question with the (one dimensional) Lebesgue measure on the diagonal $\Delta = \{(x, x), x \in [0, 1]\}.$

Exercise 0.2 Consider the angle doubling map $T : x \in [0,1] \mapsto 2x \mod 1$. Choose distinct x and y in [0,1] such that $|x-y| \leq 2^{-12}$ but the orbit $(T^n x)$ is periodic and the orbit $(T^n y)$ is dense in [0,1].

Hint: Use binary development. Understand the effect of T on the binary development of a number $x \in [0, 1[$. Find a number x whose orbit is periodic. Find another one whose orbit is dense. At the end answer the initial question.

Exercise 0.3 The hyperbolic plane is defined as $\mathbb{H} = \mathbb{R} \times \mathbb{R}^*_+$ and endowed with the hyperbolic metric $ds^2 = \frac{dx^2 + dy^2}{y^2}$. Show that the hyperbolic geodesics (i.e. the curves minimizing distances) are the vertical half-lines and the half-circles orthogonal to the boundary $\mathbb{R} \times \{0\}$. The isometries preserving orientation are the homographies $z \to \frac{az+b}{cz+d}$ where $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a matrix with determinant 1.

Exercise 0.4 Consider the flow ϕ_t on \mathbb{T}^2 defined by $\phi_t(x) = x + v \mod \mathbb{Z}^2$. Show that the Lebesgue measure on the torus is invariant under the flow. hint : come back to \mathbb{R}^2 .

Exercise 0.5 Show that the two versions of Birkhoff ergodic theorem in terms of integral maps or Borel set with boundary of measure zero are equivalent.

Exercise 0.6 Assume that X is compact. Let \mathcal{M}^1 be the set of invariant probability measures on X. Let (f_n) be a countable dense family of maps in $C(X, \mathbb{R})$. Show that a basis of neighbourhoods of $\mu \in \mathcal{M}^1$ for the weak * topology is given by

$$\left\{\nu \in \mathcal{M}^1, \ \forall 1 \le i \le N \ \left| \int f_i \, d\nu - \int f_i \, d\mu \right| \le \epsilon \right\}$$

Exercise 0.7 If c_1, c_2 are two geodesic rays such that $d(c_1(t), c_2(t)) \to 0$ when $t \to +\infty$, then show that for every $t \ge 0$,

$$d(c_1(t), c_2(t)) \le e^{-t} d(c_1(0), c_2(0))$$

Hint Use the upper half plane model and come back to two vertical rays.

¹The notes are available here

https://imag.umontpellier.fr/ schapira/recherche/CIRM2025-Barbara.pdf.

Exercise 0.8 Show that in the Hopf coordinates, the geodesic flow acts as

$$g_t(v) \simeq (v^-, v^+, s+t) \,.$$

Consider an isometry $\gamma \in PSL(2, \mathbb{R})$. Show that it acts as follows

$$\gamma . v \simeq (\gamma v^-, \gamma v^+, s + \beta_{v^+}(\gamma^{-1}o, o))$$

Exercise 0.9 Show that given a (g^t) invariant Radon measure m on T^1S n its lift \tilde{m} on $T^1\mathbb{D}$ satisfies

$$H_*\tilde{m} = \mathcal{C} \times dt$$

where C is a geodesic current, i.e. a Γ -invariant Radon measure on $S^1 \times S^1$.

Exercise 0.10 Show that if $\Gamma < PSL(2, \mathbb{R})$ is a discrete group that contains at least two hyperbolic isometries with distinct axes, then there does not exist Γ -invariant probability measures on S^1 .

Exercise 0.11 Show that the Poincaré series

$$P_{(\Gamma,f)}(s) = \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o) + \int_o^{\gamma} \hat{f}}$$

associated with (Γ, f) converges for $s > \delta^f$ and diverges for $s < \delta^f$, where

$$\delta^{f} = \lim_{t \to \infty} \frac{1}{t} \log \sum_{\gamma \in \Gamma, d(o, \gamma o) \in [t, t+1]} e^{\int_{o}^{\gamma o} \tilde{f}}$$

Exercise 0.12 Show that the measure ν^f obtained through the Patterson Sullivan Gibbs construction is supported on S^1

Exercise 0.13 Show that ν^f gives full measure to Λ_{Γ} .

Exercise 0.14 Use the geodesic rays c_x and c_y from x (resp y) to ξ to give a rigorous meaning to the quantity

$$\rho_{\xi}^{f}(x,y) = \lim_{t \to \infty} \int_{x}^{\xi} \tilde{f} - \int_{y}^{\xi} \tilde{f} \quad and \quad \beta^{f} = \delta^{f}\beta - \rho^{f}$$

Exercise 0.15 Show that the measure ν^f is Γ quasi invariant and that for a.e. ξ and all $\gamma \in \Gamma$,

$$\frac{d\gamma_*\nu^f}{d\nu^f}(\xi) = \exp(-\beta_{\xi}^f(\gamma o, o)) = \exp(-\delta^f \beta_{\xi}(\gamma o, o) + \rho_{\xi}^f(\gamma o, o)).$$

Exercise 0.16 Show that the measure C^f on $S^1 \times S^1$ defined by

$$d\mathcal{C}^{f}(\xi,\eta) = \exp\left(\beta_{\eta}^{f}(o,x) + \beta_{\xi}^{f}(o,x)\right) d\nu^{f}(\xi) d\nu^{f}(\eta), \quad \text{for any point } x \in (\xi,\eta),$$

is a geodesic current. (Admit that it gives zero measure to the diagonal of $S^1 \times S^1$.)

Exercise 0.17 Show that the measure m^f is supported on

$$\Omega := \left(H^{-1}(\Lambda_{\Gamma} \times \Lambda_{\Gamma} \times \mathbb{R}) \right) / \Gamma \subset T^1 S$$

Exercise 0.18 Show that the surface $S = \mathbb{D}/\Gamma$ is convex-cocompact if and only if $H^{-1}(\Lambda_{\Gamma} \times \Lambda_{\Gamma} \times \mathbb{R})$ is cocompact, i.e.

$$\Omega := \left(H^{-1}(\Lambda_{\Gamma} \times \Lambda_{\Gamma} \times \mathbb{R}) \right) / \Gamma$$

is compact.

Hint: First observe that $\Omega \subset T^1 \mathcal{C}^{core} / \Gamma$ and deduce that one direction of the equivalence is easy. For the other direction, use the fact that triangles are thin to show that any point of C^{core} is at uniformly bounded distance of a geodesic joining two points of Λ_{Γ} .

Exercise 0.19 The measure m^f is ergodic iff it satisfies the conclusion of Birkhoff ergodic theorem.

Exercise 0.20 Show that $E(\psi|\mathcal{I}) \equiv \int \psi, dm^f$ for every $\psi \in L^1(m^f)$ iff $E(\psi|\mathcal{I}) = \int \psi dm^f$ for every $\psi \in C_c(T^1S)$.

Exercise 0.21 For $\psi \in C_c(T^1S)$, define

$$\psi^{\pm}(v) = \limsup_{T \to \pm \infty} \frac{1}{T} \int_0^T \psi \circ g^t v dt$$

Prove that ψ^+ and ψ^- are (g^t) invariant.

Prove that if v and w are on the same stable horocycle, i.e. $d(g^t v, g^t w) \to 0$ when $t \to +\infty$, then $\psi^+(v) = \psi^+(w)$. Prove the analogous property for ψ^- when $t \to -\infty$.

Exercise 0.22 Try to show a property like

$$B(v,T,\epsilon) \asymp \mathcal{O}_{\pi(v)}(B(\pi(g^T v),\epsilon)) \times \mathcal{O}_{\pi(g^T v)}(B(\pi(v),\epsilon)) \times [-\epsilon,\epsilon]$$

Exercise 0.23 Prove

- $m_{\mathcal{C}}^{g_1}$ and $m_{\mathcal{C}}^{g_2}$ are simultaneously periodic
- $m_{\mathcal{C}}^{g_1}$ and $m_{\mathcal{C}}^{g_2}$ are simultaneously ergodic
- $m_{\mathcal{C}}^{g_1}$ and $m_{\mathcal{C}}^{g_2}$ are simultaneously of full support
- $m_{\mathcal{C}}^{g_1}$ and $m_{\mathcal{C}}^{g_2}$ are simultaneously product measures or not.