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Books

Ergodic Theory with a view towards Number Theory, by Manfred Einsiedler and
Thomas Ward
Geodesic and horocyclic trajectories, by Françoise Dal’bo

Stochastic properties of dynamical systems, by Francoise Pene

Ergodic theory and dynamical systems, by Yves Coudène

Equilibrium states in negative curvature, by F. Paulin, M. Pollicott and Barbara

Schapira

Articles

Regularity of entropy, geodesic currents and entropy at infinity, avec Samuel Tapie,
Annales scientifiques de l’ENS .

Pressure at infinity and strong positive recurrence in negative curvature , with
Sébastien Gouezel, Samuel Tapie, and an appendix by Felipe Riquelme , Commen-
tarii Mathematici Helvetici.

...
Many papers by Andres Sambarino

1 Goal of these lectures

Construct a family of invariant measures wrt the geodesic flow of a hyperbolic
surface, whose chaotic properties reflect the chaotic behaviour of the geodesic flow,
and that also allow to understand deformations of hyperbolic metrics.
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2 What does chaos mean ?

2.1 Back to probability theory (5’)

Consider the Lebesgue measure P = dxdy on the square Ω = [0, 1]2. Define A =
{(x, y) ∈ Ω, 1/4 ≤ x ≤ 1/2} and B = {(x, y) ∈ Ω, 2/3 ≤ y ≤ 3/4}.

Observe that P (A∩B) = P (A)P (B). A and B are independent. More generally,
for any intervals I, J of [O, 1], if A = I × [0, 1] and B = [0, 1] × J , we still have
P (A ∩B) = P (A)P (B).

In other words, the coordinates x and y are independent.
Important to remember : on a product space, with respect to a product measure,

coordinates x and y are independent (in the above sense).

Exercise 2.1 Consider Ω = [0, 1]2 endowed with the Dirac probability measure
δ(1/4,2/3) at the point (1/4, 2/3). Show that the above events A and B are not
independent anymore.

Same question with the (one dimensional) Lebesgue measure on the diagonal
∆ = {(x, x), x ∈ [0, 1]}.

2.2 Expanding dynamics (5’)

Consider the angle doubling map T : x ∈ [0, 1] 7→ 2x mod 1. Observe that if x, y
satisfy |x − y| ∼ 2−12, then after a few iterations (n = 11 ?) the distance between
Tnx, Tny is macroscopic.

Exercise 2.2 Choose distinct x and y in [0, 1] such that |x−y| ≤ 2−12 but the orbit
(Tnx) is periodic and the orbit (Tny) is dense in [0, 1].

Hint: Use binary development. Understand the effect of T on the binary de-
velopment of a number x ∈ [0, 1[. Find a number x whose orbit is periodic. Find
another one whose orbit is dense. At the end answer the initial question.

2.3 The geodesic flow on the hyperbolic disc (5’)

2.3.1 Hyperbolic plane / disc

The hyperbolic plane is defined as H = R × R∗
+ and endowed with the hyperbolic

metric ds2 = dx2+dy2

y2 . The geodesics are the curves which minimize the distance.

Exercise 2.3 Check these classical facts. The hyperbolic geodesics are the vertical
half-lines and the half-circles orthogonal to the boundary R× {0}. The isometries

preserving orientation are the homographies z → az+b
cz+d where

(
a b
c d

)
is a matrix

with determinant 1.

PICTURE

The model of the disk is more natural geometrically. The hyperbolic disk is the
open disk D(0, 1) in C, endowed with the image metric from the hyperbolic metric
of H through the map z 7→ z−i

z+i . In the disk model, the geodesics are the diameters
and the pieces of circles orthogonal to the boundary.

PICTURE
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2.3.2 Geodesic flow

Picture D, geodesics of D.

a vector v on T 1D, the geodesic (at unique speed) (cv(t)) determined by v (such
that c′v(0) = v).

The geodesic flow gt moves v along the geodesic that it determines. If (cv(t)) is
the geodesic such that c′v(0) = v, then

gt(v) = c′v(t) .

There is a homeomorphism, the Hopf coordinates,

v ∈ T 1D 7→ (v−, v+, s) ∈ S1 × S1 \Diagonal× R

This gives

• A natural geometric product structure

• Natural coordinates (v−, v+, s), such that the geodesic flow acts as a contrac-
tion in the direction of v+, expansion in the v− coordinates, translation on
the real coordinate.

On the unit tangent bundle T 1D of the disk D, the dynamics is not interesting.
Every orbit goes straight, from the horizon at infinity to the horizon at infinity.

Compare to a linear flow on R2. A linear flow ϕt : x ∈ R2 → x + v⃗ has orbits
that all go straight to infinity. However, the linear flow ϕt : x ∈ T2 → x+v mod Z2

is interesting. If v has irrational slope, all orbits are dense.
Similarly, we will study the geodesic flow on quotients of T 1D. Consider a surface

S, and its fundamental group π1(S) (cf lectures F Fanoni). Consider a discrete and
faithful representation ρ : π1(S) → PSL(2,R) of π1(S) as a discrete subgroup of
PSL(2,R). This allows to put a structure of Riemann surface on S, and consider
S as D/Γ, with Γ = π1(S). We will study the geodesic flow on the unit tangent
bundle T 1S ≃ T 1D/Γ, and show how the above product structure allows to prove
chaotic properties as abundance of periodic orbits, positive entropy, mixing, ...

2.4 What does mean chaotic behaviour in ergodic theory
(15’)

Consider a flow (ϕt)t∈R on a space X. In dynamics, we are interested in the long
time behaviour of orbits {ϕt(x), t ∈ R}.

This behaviour is considered as chaotic when there are many different trajecto-
ries. This can be quantified in different ways.

• (infinitely) many periodic orbits, of different lengths

• (infinitely) many different dense orbits, in different ways

• positive entropy : one fixes a precision ϵ, and count how many distinct orbits
of length T one can see at the precision ϵ. Entropy is the exponential growth
rate of this number.

• Topological mixing : for all open sets U and V there exists T0 > 0 such that
for every t ≥ T0, ϕtU ∩ V ̸= ∅. Starting from everywhere, after a while, you
can go everywhere.

• · · · (a researcher presents only the notions that are familiar to her)
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In ergodic theory, one studies the dynamics from the statistical point of view,
thanks to invariant measures. An invariant (probability) measure is a probability
measure m on X such that for every t ∈ R, (ϕt)∗m = m. In other words, for every
continuous map ψ : X → R and every t ∈ R,

∫
X
ψ ◦ ϕt dm =

∫
ψ dm. Or for every

Borel set A ⊂ X, m(ϕ−tA) = m(A).

Exercise 2.4 Consider the flow ϕt on T2 defined by ϕt(x) = x+ v mod Z2. Show
that the Lebesgue measure on the torus is invariant under the flow.
hint : come back to R2.

A measure is said ergodic if it is not possible to partition X into two flow-
invariant sets X = A ⊔ Ac in a non trivial way. In other words, if ϕ−tA = A for
every t ∈ R, then either m(A) = 0 or m(Ac) = 0. It is the basic irreducibility
assumption in ergodic theory.

The first ergodic theorem is

Theorem 2.1 (Von Neumann, Birkhoff) If (X,T, µ) is ergodic, if ψ : X → R
is an integrable map, then for µ-almost every x ∈ X, the ergodic average

1

T

∫ T

0

ψ(ϕt(x)) dt

converges to
∫
ψ dµ.

In other words, if A ⊂ X is a Borel set (1), µ almost surely, the average time
spent by (ϕt(x))0≤t≤T in A converges to µ(A).

Exercise 2.5 Show that the two versions of the above theorem are equivalent.

In particular, the abundance of distinct ergodic invariant measures will imply the
abundance of orbits typical for these distinct measures, and therefore with distinct
behaviours. Let M1 be the set of invariant probability measures on X. It is a
convex set, and if X is compact, it is compact wrt the weak ∗ topology (µn → µ iff
for every continuous map f : X → R,

∫
f dµn →

∫
f dµ).

Exercise 2.6 Assume that X is compact. Let (fn) be a countable dense family of
maps in C(X,R). Show that a basis of neighbourhoods of µ ∈ M1 for the weak ∗
topology is given by{

ν ∈M1, ∀1 ≤ i ≤ N
∣∣∣∣∫ fi dν −

∫
fi dµ

∣∣∣∣ ≤ ϵ}
From the ergodic point of view, the dynamical system has chaotic features if

• M1 is large

• there are measures of positive entropy, of maximal entropy (see later)

• there are measures with positive Lyapounov exponents (outside of these lec-
tures)

• there are mixing measures, i.e. measures such that past and future are asym-
totically independent : for all Borel sets A,B,

µ(A ∩ ϕ−t(B))→ µ(A)µ(B) .

1with µ(∂A) = 0
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3 Invariant measures for the geodesic flow

3.1 Hopf coordinates 5’

Picture : disk, boundary at infinity, several geodesics with same endpoint ξ ∈ S1.

Exercise 3.1 If c1, c2 are two geodesic rays such that d(c1(t), c2(t)) → 0 when
t→ +∞, then show that for every t ≥ 0,

d(c1(t), c2(t)) ≤ e−td(c1(0), c2(0))

Hint Use the upper half plane model and come back to two vertical rays.

The Busemann cocycle is the following map, defined on S1 × D× D :

βξ(x, y) = lim
t→+∞

d(x, cx(t))− d(y, cx(t)),

where (cx) is a geodesic ray at unit speed from x to ξ.

Picture

A level set of a function x→ βξ(x, y) is a horocycle.

Denote by o the center of the disk D. If v ∈ T 1D, π(v) is the basepoint of v.
The Hopf coordinates are given by

v ∈ T 1D 7→
(
v−, v+, βv+(o, π(v)))

)
.

In these coordinates, the geodesic flow acts as follows. If v ≃ (v−, v+, s), then

gt(v) ≃ (v−, v+, s+ t) .

Consider an isometry γ ∈ PSL(2,R). In these coordinates it acts as follows

γ.v ≃ (γv−, γv+, s+ βv+(γ−1o, o)

Exercise 3.2 Check and prove the above formulas.

3.2 Invariant measures and geodesic currents 5’

Consider now a hyperbolic surface S = D/Γ, with Γ a discrete subgroup of PSL(2,R)
without torsion. The unit tangent bundle T 1S identifies with T 1D/Γ.

A (gt) invariant Radon measure m on T 1S can be lifted into a (gt)-invariant
and Γ-invariant Radon measure m̃ on T 1D. In the Hopf coordinates, we deduce
that H∗m̃ can be written as

H∗m̃ = C × dt
where C is a geodesic current, i.e. a Γ-invariant Radon measure on S1 × S1.

Exercise 3.3 Provide details to the above assertion.

NB : for geometers, a geodesic current is usually a measure on S1×S1/ ∼ where
(x, y) ∼ (y, x).

Said differently, understanding invariant measures on T 1S and understanding
the geodesic currents on S1 × S1 (that give zero measure to the diagonal) is essen-
tially the same.

NB : When S is not closed, one does not see on C if m will be finite or not.
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3.3 Patterson Sullivan Gibbs construction

Exercise 3.4 Show that if Γ contains at least two hyperbolic isometries with distinct
axes, then there does not exist Γ-invariant probability measures on S1.

We shall construct a family of measures on T 1S by constructing first quasi-
invariant measures on S1, second geodesic currents on S1 × S1.

3.3.1 Hölder maps, Poincare series

Consider a Hölder continuous map f : T 1S → R, and its Γ-invariant lift f̃ on T 1D.
If a, b ∈ D, denote by

∫ b

a
f the integral of f along the unique geodesic from a to b.

More precisely, if c : [0, d(a, b)]→ D is this geodesic,∫ b

a

f :=

∫ d(a,b)

0

f(c′(t))dt

If you are very new in the subject, feel free to consider f ≡ 0.

Define the Poincaré series associated with (Γ, f) as

P(Γ,f)(s) =
∑
γ∈Γ

e−sd(o,γo)+
∫ γ
o

f̃

Let

δf = lim
t→∞

1

t
log

∑
γ∈Γ,d(o,γo)∈[t,t+1]

e
∫ γo
o

f̃

Exercise 3.5 Show that this series converges for s > δf and diverges for s < δf .

Define a probability measure νsf on D ⊂ D ∪ ∂D by

νfs =
1

P(Γ,f)(s)

∑
γ∈Γ

e−sd(o,γo)+
∫ γ
o

f̃Dγo

where Dx is the Dirac measure at the point x.

By compactness of D∪S1, one can find decreasing sequences sn → δf such that
νfsn → νf .

Theorem 3.1 (Patterson) One can modify P slightly without changing δf and
get that P(Γ,f) diverges at s = δf .

Exercise 3.6 Deduce that νf is supported on S1

Define the limit set ΛΓ = Γo \ Γo. It is the smallest Γ-invariant set on S1.
PICTURE.

Exercise 3.7 Show that νf gives full measure to ΛΓ.

Denote by ρf the cocycle on S1 × D×D defined by

ρfξ (x, y) = lim
t→∞

∫ ξ

x

f̃ −
∫ ξ

y

f̃ and βf = δfβ − ρf

Exercise 3.8 Use the geodesic rays cx and cy from x (resp y) to ξ to give a rigorous
meaning to the above expression.
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Exercise 3.9 Show that the measure νf is Γ quasi invariant and that for a.e. ξ
and all γ ∈ Γ,

dγ∗ν
f

dνf
(ξ) = exp(−βf

ξ (γo, o)) = exp(−δfβξ(γo, o) + ρfξ (γo, o)) .

A key property of the measure is the so-called Shadow lemma. A shadow
Ox(B(y,R)) is the set of points ξ ∈ S1 such that

Theorem 3.2 (Sullivan, Hamenstadt, Ledrappier (?) ) There exists R0 such
that for R ≥ R0, there exists C > 0 such that for every γ ∈ Γ,

1

C
exp

(
−δfd(o, γo) +

∫ γo

o

f

)
≤ νf (Oo(B(γo,R)) ≤ C exp

(
−δfd(o, γo) +

∫ γo

o

f

)
Proof :

νf (Oo(B(γo,R)) = γ∗ν
f (γ−1(Oo(B(γo,R)) = γ∗ν

f (Oγ−1o(B(o,R))) .

Now, on Oγ−1o(B(o,R)) the Radon Nikodym derivative dγ∗ν
f/dνf is uniformly

close to exp
(
−δfd(o, γo) +

∫ γo

o
f
)
. We deduce that

νf (Oo(B(γo,R)) ≍ exp
(
−δfd(o, γo) +

∫ γo

o

f

)
× νf (Oγ−1o(B(o,R)) .

It remains to show that this measure is uniformly bounded from above and below.
The upper bound, 1, is obvious. The lower bound is more subtle. It uses the fact
(not proven here) that νf has no atoms, to deduce that for R large enough, there
exists some α > 0, such that for every y ∈ D ∪ S1, νf (Oy(B(o,R)) ≥ α > 0

□

3.3.2 Product measure

Exercise 3.10 Show that the measure Cf on S1 × S1 defined by

dCf (ξ, η) = exp
(
βf
η (o, x) + βf

ξ (o, x)
)
dνf (ξ) dνf (η), for any point x ∈ (ξ, η) ,

is a geodesic current. (Admit that it gives zero measure to the diagonal of S1×S1.)

It allows to define a measure m̃f on T 1D, as

m̃f = (H−1)∗(C̃
f ⊗ dt) .

This measure m̃f is Γ-invariant and (gt) invariant.Therefore it induces a measure
mf on T 1S = T 1D/Γ, that is a Radon measure, i.e. gives finite mass to compact
sets.

Theorem 3.3 mf = mg iff f = g+ cste+ coboundary, where “coboundary” means
a function which is the derivative of another map in the direction of the flow.

NB : If S is compact, T 1S is also compact, and therefore mf is finite.

Exercise 3.11 Show that the measure mf is supported on

Ω :=
(
H−1(ΛΓ × ΛΓ × R)

)
/Γ ⊂ T 1S
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Exercise 3.12 Show that the surface S = D/Γ is convex-cocompact if and only if
H−1(ΛΓ × ΛΓ × R) is cocompact, i.e.

Ω :=
(
H−1(ΛΓ × ΛΓ × R)

)
/Γ

is compact.
Hint: First observe that Ω ⊂ T 1Ccore/Γ and deduce that one direction of the

equivalence is easy. For the other direction, use the fact that triangles are thin to
show that any point of Ccore is at uniformly bounded distance of a geodesic joining
two points of ΛΓ.

NB : If S is convex cocompact, then mf is finite.
If S is not compact, there are criteria, and sufficient conditions, to ensure that

mf is finite, and examples where it is (or not) the case.

When it is finite, we assume that this measure is normalized into a probability
measure.

These family of measures have many interesting features.

Theorem 3.4 (Hopf, Sullivan, Hamenstadt, Ledrappier, Babillot, Otal-Peigné, PPS...)
If mf is finite, then it satisfies the following properties :

• it is ergodic (Hopf argument) ,

• it is mixing, (Babillot)

• when S is compact, it is exponentially mixing (Dolgopyat)

• It is the unique measure maximizing the pressure, i.e. realizing the following
supremum :

δf = sup
m∈M1

(
h(m) +

∫
f dm

)
• It satisfies the Gibbs property : for every v ∈ T 1S, denote by B(v, T, ϵ) =
{w ∈ T 1S, ∀0 ≤ t ≤ T, d(gtv, gtw) ≤ ϵ)}. Then for every v ∈ T 1S,

mf (B(v, T, ϵ)) ≍ exp

(
−δfT +

∫ T

0

f(gtv)

)
dt

• When f = 0 we recover the so-called Bowen-Margulis-Sullivan measure.

• Weighted equidistribution of periodic orbits, counting (PPS, Schapira-Tapie)

• More interesting examples later.

• These measures are involved in many deformation problems.

3.4 The Hopf argument for ergodicity

Exercise 3.13 The measure mf is ergodic iff it satisfies the conclusion of Birkhoff
ergodic theorem.

Let us prove that when mf is finite, then mf is ergodic.
First, the measure mf (when finite) always satisfies the following property (ad-

mitted).
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Theorem 3.5 (Non ergodic Birkhoff Theorem) every ψ ∈ L1(mf ),and a.e.
v ∈ T 1S,

1

T

∫ T

0

ψ ◦ gtv dt→ E(ψ|I)(v) when T → ±∞

Showing ergodicity is therefore equivalent to show that E(ψ|I) ≡
∫
ψ, dmf for

every ψ ∈ L1(mf ).

Exercise 3.14 By density, it is enough to prove that E(ψ|I) =
∫
ψ dmf for every

ψ ∈ Cc(T
1S).

For ψ ∈ Cc(T
1S), define

ψ±(v) = lim sup
T→±∞

1

T

∫ T

0

ψ ◦ gtvdt

Exercise 3.15 Prove that ψ+ and ψ− are (gt) invariant.
Prove that if v and w are on the same stable horocycle, i.e. d(gtv, gtw) → 0 when
t→ +∞, then ψ+(v) = ψ+(w). Prove the analogous property for ψ− when t→ −∞.

By definition of ψ± and E(ψ|I), we have

ψ+ = E(ψ|I) mf − a.e. and ψ− = E(ψ|I) mf − a.e.

Lift these functions on T 1D (as Γ-invariant functions), and use Hopf coordinates.
We deduce that E(ψ|I) is (gt)-invariant, and therefore does not depend on the real
coordinate. Moreover, mf almost surely it depends only on v−, and mf -a.e. it
depends only on v+.

As mf has a product structure, by a Fubini like argument, we deduce that
it depends neither on s nor on v− or v+, i.e. it is constant. See my notes of my last
lectures at CIRM 10 years ago here
https://perso.univ-rennes1.fr/barbara.schapira/recherche/texteCIRM-Hasselblatt.pdf

3.5 (Local) entropy of a measure

We introduced earlier dynamical balls B(v, T, ϵ).

Exercise 3.16 Try to show a property like

B(v, T, ϵ) ≍ Oπ(v)(B(π(gT v), ϵ))×Oπ(gT v)(B(π(v), ϵ))× [−ϵ, ϵ]

The topological entropy of the flow can be defined as

htop(g
t) = sup

K
lim sup

1

T
logN(K,T, ϵ)

where N(K,T, ϵ) is the maximal number of disjoint dynamical balls B(v, T, ϵ) in-
cluded in the compact set K / the min number of dyn balls needed to cover K.

The Katok entropy of an ergodic invariant probability measure is defined as

hKat(m) = lim sup
T

1

T
logM(T, ϵ, α)

whereM(T, ϵ, α) is the min number of dynamical balls needed to cover a set of mass
at least α.

The local (upper ) Brin Katok entropy of an ergodic invariant probability mea-
sure is defined as

hloc(m) = supessv∈T 1S lim sup
T→∞

− 1

T
logm(B(v, T, ϵ))
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Theorems of Katok, Brin-Katok and Riquelme in the noncompact case ensure
that these entropies coincide with the usual (Kolmogorov Sinai entropy) and we
have

Theorem 3.6 (OP, PPS) When mf is finite, it is the unique measure realizing
the supremum below.

δf = sup
m∈M1

erg

(
h(m) +

∫
f dm

)
= h(mf ) +

∫
f dmf .

Theorem 3.7 (GST, unpublished) Gibbs measures have positive entropy

4 Change of metric and Gibbs measures

4.1 Identifying boundaries

Consider a closed surface with genus ≥ 2, and two hyperbolic metrics, denoted
by g1 and g2, on S. Consider the universal cover S̃ as a differentiable surface,
endowed with two distinct Riemannian metrics, instead of D. Observe that the
tangent bundle is a differentiable notion, but the unit tangent bundle depends on
the metric. Thus we will denote them by T 1

gi S̃ and T 1
giS.

A classical result ensures that g1-geodesics and g2-geodesics stay at uniformly
bounded distance. Therefore, ∂∞(S̃, g1) ≃ ∂∞(S̃, g2). We denote them by ∂S̃.

A contrario, observe that the Busemann cocycle βgi
ξ (x, y) is a metric notion.

Moreover, as S is compact, the limit set satisfies ΛΓ = ∂S̃.
The Hopf coordinates give two distinct homeomorphisms

H1 : T 1
g1 S̃ → ∂S̃ × ∂S̃ × R ← T 1

g2 S̃ : H2

Therefore, there is a 1− 1-correspondance betweenM1(T 1
g1S) and Currents(∂S̃ ×

∂S̃) on the one hand, and betweenM1(T 1
g2S) and Currents(∂S̃× ∂S̃) on the other

hand.

Remark 4.1 Be very careful about the fact that the action of Γ on ∂S̃ × ∂S̃ does
not depend on the metric gi but the action of Γ on ∂S̃×∂S̃ involves the Busemann
cocyle, and therefore does depend on the metric.

4.2 The set of invariant measures does not depend (so much)
on the metric

As said above, there is a 1−1-correspondance betweenM1
g1(T

1
g1S), Currents(∂S̃×

∂S̃), andM1
g1(T

1
g1S).

For a given current, say C in Currents(∂S̃ × ∂S̃), denote by mgi
C the associated

(gti)-invariant measures.
It is natural to ask which properties depend really on the metric gi and which

are independent of the metric.
We have the following

Theorem 4.2 • mg1
C and mg2

C are simultaneously periodic

• mg1
C and mg2

C are simultaneously ergodic

• mg1
C and mg2

C are simultaneously of full support
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• mg1
C and mg2

C are simultaneously product measures or not.

• mg1
C and mg2

C have simultaneously positive (or zero) entropy)

• mg1
C and mg2

C are simultaneously Gibbs measures (or not), for different poten-
tials.

Exercise 4.1 Prove the first four properties. (The last two are proven in [Schapira-
Tapie]

4.3 Geodesic stretch

Proposition 4.3 (Ledrappier, ?) The following quantity is well defined, for ev-
ery v ∈ T 1

g1M̃ ,

Eg1→g2(v) =
d

dt |t=0
βg2
v
g1
+

(π(v), π(gt1v))

We call it the infinitesimal geodesic stretch

Given a geodesic current C and the associated invariant measures mgi
C , we define

the average

IC(g1, g2) =
1

∥mg1
C ∥

∫
T 1
g1

S

Eg1→g2 dmg1
C

PICTURE

As noticed above, the actions of Γ on ∂S̃ × ∂S̃ × R associated with g1 and g2
are not the same. Therefore, the map Φg1→g2 := Hg2)−1 ◦ Hg1 : T 1

g1 S̃ → T 1
g2 S̃ is

not Γ-equivariant (but satisfies gt2 ◦ Φg1→g2 = Φg1→g2 ◦ gt1).
One can define a Γ-equivariant map, called Morse correspondance, as follows.

Ψg1→g2(v) is the unique vector w on the g2 geodesic joining v−g1 to v+g1 such that
βg2
v+
g1

(π(v), π(w)) = 0.

Then one can show the following properties :

Theorem 4.4 •
∫
T 1
g2

S
Gdmg2

C =
∫
T 1
g1

S
G ◦Ψg1→g2 × Eg1→g2 dmg1

C

• ∥mg2
C ∥ =

1
∥mg1

C ∥

∫
T 1
g1

S
Eg1→g2 dmg1

C × ∥m
g1
C ∥

• If (γk) is a sequence of periodic orbits such that
dℓg1γk

ℓg1 (γk)
converges to 1

∥mg1
C ∥m

g1
C ,

then
dℓg2γk

ℓg2 (γk)
converges to 1

∥mg1
C ∥m

g2
C AND ℓg2(γk)/ℓ

g1(γk) converges to
1

∥mg1
C ∥

∫
T 1
g1

S
Eg1→g2 dmg1

C .

• h(mg1
C ) = 1

∥mg1
C ∥

∫
T 1
g1

S
Eg1→g2 dmg1

C × h(m
g2
C ).

• If mg1
C = mf is the Gibbs measure associated with f : T 1

g1S → R, then mg2
C is

also a Gibbs measure, associated with the Hölder potential

g = (f − δfg1) ◦Ψ
g2→g1 × Eg2→g1

Corollary 4.5 Consider the map f ≡ 0 on T 1
g1S. The measure m0 is called the

Bowen-Margulis-Sullivan measure. As S is a hyperbolic surface of finite measure,
it coincides with the Lebesgue / Liouville / Haar measure. Denote by Cg1BMS the
associated current. Then for any periodic orbit p and any vector w ∈ T 1

g2 on it, we
have

mg2
Cg1
BMS

(Bg2(wγ , T, ϵ) ≍ e−δ
g1
Γ T

ℓg1 (p)

ℓg2 (p)
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The key argument in all proofs is very elementary : A shadow for g1 is a shadow
for g2, but at different distances. It allows to show that a dynamical ball Bg1(v, T, ϵ)
is sent by Ψg1→g2 to a dynamical ball Bg2(Ψg1→g2(v), S, ϵ′), and S/T is essentially

the ergodic average 1
T

∫ T

0
Eg1→g2(gt1v) dt.

Our initial goal was to prove

Theorem 4.6 (Katok Knieper Weiss, Schapira Tapie) (gϵ) C
1 variation of

the metric. Then ϵ→ δgϵΓ is C1 and

d

dt |t=0
δΓ(g

ϵ) = −δg0Γ ×
∫
T 1
g0

S

d∥v∥gϵ
dϵ

× dmg0
BMS

5 Higher Teichmuller spaces and Gibbs measures

We saw rank one situations where Gibbs measures are useful. They are also useful
in higher rank, for proving several statements. To give a flavour, let me state a few
results.

5.1 Examples of statements

A. Sambarino.
Let ρ : Γ = π1(S) → PGL(d,R) be a deformation of ρ0π1(S) → PGL(2,R) →

PGL(d,R) where PGL(2,R) → PGL(d,R) is the irreducible embedding. Assume
that the representation is P1-Anosov. There exists h > 0 and c > 0 such that

#{γ ∈ Γ, ∥ρ(γ)∥ ≤ R} ∼ Rh

c
.

And h is independent of the norm chosen on Rd.

#{[γ] ∈ [Γ], λ1(ρ(γ)) ≤ t} ∼
eht

ht

Sambarino

5.2 A few words on the strategy

Representation ρ → cocycle → potential → measure → many properties.
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