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Abstract

The goal of these lectures is to recall briefly the definition and a geometric
construction of Gibbs measures, and to illustrate their importance in various
geometrical / dynamical contexts.

These notes are my personal notes of the lectures given at IHES in july 2025.
They are not accurate and full of mistakes, not intended for publication. If you do
not understand something, it is maybe false, please ask me! They are available here
https://imag.umontpellier.fr/ schapira/recherche/IHES2025-Barbara.pdf

You can also see the more introductory lectures given at CIRM in april 2025
https://imag.umontpellier.fr/ schapira/recherche/CIRM2025-Barbara.pdf.
My older notes of lectures at CIRM in april 2016 are maybe more elementary, see
https://imag.umontpellier.fr/ schapira/recherche/texteCIRM-Hasselblatt.pdf

1 Construction of Gibbs measures

1.1 The geodesic flow on the hyperbolic disc

1.1.1 Hyperbolic plane / disc

The hyperbolic plane is defined as H = R × R∗
+ and endowed with the hyperbolic

metric ds2 = dx2+dy2

y2 . The geodesics are the curves which minimize the distance.

Exercise 1.1 Check these classical facts. The hyperbolic geodesics are the vertical
half-lines and the half-circles orthogonal to the boundary R× {0}. The isometries

preserving orientation are the homographies z → az+b
cz+d where

(
a b
c d

)
is a matrix

with determinant 1.

The model of the disk is more natural geometrically. The hyperbolic disk is the
open disk D(0, 1) in C, endowed with the image metric from the hyperbolic metric
of H through the map z 7→ z−i

z+i . In the disk model, the geodesics are the diameters
and the pieces of circles orthogonal to the boundary.

1.1.2 Geodesic flow

A vector v on T 1D, the geodesic (at unique speed) (cv(t)) determined by v (such
that c′v(0) = v).
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Figure 1: Two conformal models of the hyperbolic plane and their geodesics

The geodesic flow gt moves v along the geodesic that it determines. If (cv(t)) is
the geodesic such that c′v(0) = v, then

gt(v) = c′v(t) .

Figure 2: Geodesic flow

Exercise 1.2 If c1, c2 are two geodesic rays such that d(c1(t), c2(t)) → 0 when
t→ +∞, then show that for every t ≥ 0,

d(c1(t), c2(t)) ≤ e−td(c1(0), c2(0))

Hint Use the upper half plane model and come back to two vertical rays.

The Busemann cocycle is the following map, defined on S1 × D× D :

βξ(x, y) = lim
t→+∞

d(x, cx(t))− d(y, cx(t)),

where (cx) is a geodesic ray at unit speed from x to ξ. A level set of a function
x→ βξ(x, y) is a horocycle.

Denote by o the center of the disk D. If v ∈ T 1D, π(v) is the basepoint of v.
The Hopf coordinates are given by the homeomorphism

H : v ∈ T 1D 7→
(
v−, v+, βv+(o, π(v)))

)
.

In these coordinates, the geodesic flow acts as follows. If v ≃ (v−, v+, s), then

gt(v) ≃ (v−, v+, s+ t) .

Consider an isometry γ ∈ PSL(2,R). In these coordinates it acts as follows

γ.v ≃ (γv−, γv+, s+ βv+(γ−1o, o) .

Exercise 1.3 Check and prove the above formulas.
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On the unit tangent bundle T 1D of the disk D, the dynamics is not interesting.
Every orbit goes straight, from the horizon at infinity to the horizon at infinity. We
will study the geodesic flow on quotients of T 1D.

Consider a topological surface S, and its fundamental group π1(S) (cf lectures
F Fanoni). Consider a discrete and faithful representation ρ : π1(S) → PSL(2,R)
of π1(S) as a discrete subgroup of PSL(2,R). This allows to put a structure of
Riemann surface on S, and consider S as D/Γ, with Γ = π1(S).

We will study the geodesic flow on the unit tangent bundle T 1S ≃ T 1D/Γ,.

Exercise 1.4 There is a 1−1 correspondance between Radon measures m invariant
under the geodesic flow on T 1S, Radon measure m̃ invariant under the geodesic flow
and the group Γ on T 1D, and geodesic currents, i.e. Radon measures C on ∂2D that
are Γ invariant.

1.2 Patterson Sullivan Gibbs construction

Here, we follow the conventions of [PPS15] and not the slightly different ones from
[Led95]. The differences will be adressed in the last section of these lectures, if time
allows it.

Exercise 1.5 Show that if Γ contains at least two hyperbolic isometries with distinct
axes, then there does not exist Γ-invariant probability measures on S1.

We shall construct a family of measures on T 1S by constructing first quasi-
invariant measures on S1, second geodesic currents on S1 × S1.

1.2.1 Hölder maps, Poincare series

Consider a Hölder continuous map f : T 1S → R, and its Γ-invariant lift f̃ on T 1D.
If a, b ∈ D, denote by

∫ b

a
f the integral of f along the unique geodesic from a to b.

More precisely, if c : [0, d(a, b)]→ D is this geodesic,∫ b

a

f :=

∫ d(a,b)

0

f(c′(t))dt

1 Define the Poincaré series associated with (Γ, f) as

P(Γ,f)(s) =
∑
γ∈Γ

e−sd(o,γo)+
∫ γ
o

f̃

Set

δf = lim
t→∞

1

t
log

∑
γ∈Γ,d(o,γo)∈[t,t+1]

e
∫ γo
o

f̃ .

Exercise 1.6 Show that this series converges for s > δf and diverges for s < δf .

Define a probability measure νsf on D ⊂ D ∪ ∂D by

νfs =
1

P(Γ,f)(s)

∑
γ∈Γ

e−sd(o,γo)+
∫ γ
o

f̃Dγo

where Dx is the Dirac measure at the point x.

By compactness of D∪S1, one can find decreasing sequences sn → δf such that
νfsn → νf .

1If you are very new in the subject, feel free to consider f ≡ 0.
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Theorem 1.1 (Patterson) One can modify P slightly without changing δf and
get that P(Γ,f) diverges at s = δf .

Exercise 1.7 Read Patterson’s trick in [Pat76].

Exercise 1.8 Deduce that νf is supported on S1

Exercise 1.9 Define the limit set ΛΓ = Γo \ Γo.
• Show that it is the smallest Γ-invariant set on S1.

• Show that νf gives full measure to ΛΓ.

Figure 3: Limit set: a radial limit point, and a horospherical limit point

Exercise 1.10 Denote by ρf and βf the cocycles on S1 × D×D defined by

ρfξ (x, y) = lim
t→∞

∫ ξ

x

f̃ −
∫ ξ

y

f̃ and βf = δfβ − ρf

Use the geodesic rays cx and cy from x (resp y) to ξ to give a rigorous meaning to
the above expression.

Exercise 1.11 Show that the measure νf is Γ quasi invariant and that for a.e. ξ
and all γ ∈ Γ,

dγ∗ν
f

dνf
(ξ) = exp = exp(−δfβξ(γo, o) + ρfξ (γo, o)) .

A key property of the measure is the so-called Shadow lemma. A shadow
Ox(B(y,R)) is the set of points ξ ∈ S1 such that [x, ξ) intersects B(y,R).

Picture

Theorem 1.2 (Sullivan, Hamenstadt, Ledrappier ) There exists R0 such that
for R ≥ R0, there exists C > 0 such that for every γ ∈ Γ,

1

C
exp

(
−δfd(o, γo) +

∫ γo

o

f

)
≤ νf (Oo(B(γo,R)) ≤ C exp

(
−δfd(o, γo) +

∫ γo

o

f

)
Exercise 1.12 Prove the above Theorem, by following the steps below.

1. Use the conformality of νf to get

νf (Oo(B(γo,R)) = γ∗ν
f (γ−1(Oo(B(γo,R)) = γ∗ν

f (Oγ−1o(B(o,R))) .

2. Show that on Oγ−1o(B(o,R)) the Radon Nikodym derivative dγ∗ν
f/dνf is

uniformly close to exp
(
−δfd(o, γo) +

∫ γo

o
f
)
.

3. Check that the measure on the right is bounded from above

4. Use the fact that νf is not a single Dirac measure to show that there exists
some α > 0, such that for every y ∈ D ∪ S1, νf (Oy(B(o,R)) ≥ α > 0.
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1.2.2 Product measure

Exercise 1.13 Show that the measure Cf on S1 × S1 defined by

dCf (ξ, η) = exp
(
βf
η (o, x) + βf

ξ (o, x)
)
dνf (ξ) dνf (η),

(with x ∈ (ξη) an arbitrary point= is a geodesic current, i.e. a Γ-invariant measure.
We admit that it gives zero measure to the diagonal of S1 × S1.

It allows to define a measure m̃f on T 1D, as

m̃f = (H−1)∗(C̃
f ⊗ dt) .

This measure m̃f is Γ-invariant and (gt) invariant.Therefore it induces a measure
mf on T 1S = T 1D/Γ, that is a Radon measure, i.e. gives finite mass to compact
sets.

Exercise 1.14 Show that the measure mf is supported on

Ω :=
(
H−1(ΛΓ × ΛΓ × R)

)
/Γ ⊂ T 1S

Exercise 1.15 Show that the surface S = D/Γ is convex-cocompact if and only if
H−1(ΛΓ × ΛΓ × R) is cocompact, i.e.

Ω :=
(
H−1(ΛΓ × ΛΓ × R)

)
/Γ

is compact.
Hint: Recall that S is convex-cocompact, by definition, if the convex hull Ccore of

the limit set in D is cocompact. First observe that Ω ⊂ T 1Ccore/Γ and deduce that
one direction of the equivalence is easy. For the other direction, use the fact that
triangles are thin to show that any point of Ccore is at uniformly bounded distance
of a geodesic joining two points of ΛΓ.

Remark 1.3 If S is compact or convex cocompact, then mf is finite.

Theorem 1.4 (Lifshits) The measures mf and mg coincide iff f = g + cste +
coboundary, where “coboundary” means a function which is the derivative of an-
other map in the direction of the flow.

Said in other words, mf = mg iff for every periodic orbit p ∈ P,
∫
p
(δf − f) =∫

p
(δg − g).

Exercise 1.16 Show the above Theorem, thanks to the transitivity and closing
lemma / density of periodic orbits in the set of invariant probability measures.

Remark 1.5 If S is compact, T 1S is also compact, and therefore mf is finite, and
implicitely (here) renormalized as a probability measure.

If S is not compact, there are criteria [?], and sufficient conditions [?], to ensure
that mf is finite, and examples where it is (or not) the case.

When it is finite, we assume that this measure is normalized into a probability
measure.

This family of measures have many interesting features.

Exercise 1.17 Define a dynamical ball as the set

B(v, T, ϵ) = {w ∈ T 1S, ∀0 ≤ t ≤ T, d(gtv, gtw) ≤ ϵ}

Show that B(v, T, ϵ) is comparable (in Hopf coordinates) to Oπ(v)(B(π(gT v), r))×
Oπ(gT v)(B(v, r))× [−ρ, ρ] for r, ρ suitable constants. See [PPS15] (Completer ref)
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Proposition 1.6 When finite, the measure mf satisfies the Gibbs property : for
every v ∈ T 1S,

mf (B(v, T, ϵ)) ≍ exp

(
−δfT +

∫ T

0

f(gtv)

)
dt

Exercise 1.18 Prove the above proposition thanks to the Shadow Lemma and the
above exercise.

END OF FIRST Lecture

Second lecture :

RECALL DIAGRAMM T 1D, T 1S, S1 × S1 \ diag× R, S1, measures mf ,
m̃f , Cf , νf , invariances

Definition 1.7 The local entropy is “defined” as

hloc(m) = supessv∈T 1S lim sup
T→∞

− 1

T
logm(B(v, T, ϵ)) or hloc(m) = infessv∈T 1S lim inf

T→∞
− 1

T
logm(B(v, T, ϵ))

Corollary 1.8 In particular, we have

h(mf ) = δf −
∫

f dmf

Exercise 1.19 Check that the corollary is true.

Theorem 1.9 (Hopf, Sullivan, Hamenstadt, Ledrappier, Babillot, Otal-Peigné, PPS...)
If mf is finite, then it satisfies the following properties :

• it is ergodic (Hopf argument) ,

• it is mixing, (Babillot)

• when S is compact, it is exponentially mixing (Dolgopyat)(2)

• It satisfies the Gibbs property : for every v ∈ T 1S, denote by B(v, T, ϵ) =
{w ∈ T 1S, ∀0 ≤ t ≤ T, d(gtv, gtw) ≤ ϵ)}. Then for every v ∈ T 1S,

mf (B(v, T, ϵ)) ≍ exp

(
−δfT +

∫ T

0

f(gtv)

)
dt

• Its entropy, “defined” as the a.s. limit of − 1
T logmf (B(v, T, ϵ) when T →∞,

satisfies h(mf ) = δf −
∫
f dmf .

• It is the unique measure maximizing the pressure, i.e. realizing the following
supremum :

δf = sup
m∈M1

(
h(m) +

∫
f dm

)
• When f = 0 we recover the so-called Bowen-Margulis-Sullivan measure.

• Weighted equidistribution of periodic orbits, counting (PPS, Schapira-Tapie)
: If δf > 0, then ∑

p∈PK(T )

e
∫
p
f ∼ eδ

fT

δfT
.

2It is the only place in the statement, and in these lectures where being on a compact hyperbolic
surface, and not an arbitrary nonnecessarily compact negatively curved manifold is important.
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1.2.3 Interesting examples

Consider here a manifoldM with variable negative curvature instead of a hyperbolic
surface. The above construction works exactly in the same way.

• When f ≡ 0, one obtains the so-called BMS measure, measure that maximizes
entropy as soon as it is finite.

• When S has finite volume and f = d
dtJ(g

t)|Esu (in variable curvature) one
recovers the Liouville/Lebesgue measure.

• For a suitable potential, one gets the harmonic measure.

Sullivan conjecture These measures, well defined on any compact negatively
curved manifold, coincide iff the manifold is locally symmetric. Proven by Katok
and Ledrappier in dimension 2.

Other examples : you want to create a bump or a hole. You consider a poten-
tial f that equals 0 everywhere except at the place where you want to create the
bump/hole, where you can choose it positively/negatively large. Then the associ-
ated Gibbs measure will see mainly the trajectories that go through the bump/hole
very often/rarely, but they will still have full support, with good ergodic properties.
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2 Patterson-Sullivan Gibbs construction twisted by
a representation and amenanility of covers

Topic added after listening to the first lecture of Roman Sauer on amenability and
(T ).

For f ≡ 0 we set δΓ instead of δ0 for the associated critical exponent.
Goal prove the following theorem.

Theorem 2.1 (Cohen, Brooks,..., Stadlbauer, Coulon-dal’bo-Sambusetti, Coulon-Dougall-schapira-Tapie)
Let Γ < Γ0 be a subgroup of a discrete group of isometries of X proper hyperbolic
space. Assume the action ΓO on X is SPR (for example cocompact but much more
general).

Then δΓ = δΓ0 iff Γ0/Γ is amenable.

2.1 Strategy of the proof

We will give details here on the implication δΓ = δΓ0
implies Γ0/Γ amenable.

(For the other implication, we use Kesten criterion. We construct measures on
spheres of increasing radius of Γ0/Γ, and compute the spectral radius of random
walks associated with the uniform measure on these spheres, in terms of δΓ and δΓ0

.
Kesten criterion implies that the spectral radius is 1 and therefore, that δΓ = δΓ0

.)
For the direct implication, consider the regular representation ρ : Γ0 → U(ℓ2(Γ0/Γ)).

We want to show that this representation almost has invariant vectors.

1. (Twisted Poincaré series) Consider A(s) =
∑

γ∈Γ e
−sd(o,γo)ρ(γ). It is a count-

able (weighted) sum of unitary representations. Therefore, it is maybe a
bounded operator, but not unitary a priori. Define the critical exponent δρ
as the infimum δρ = inf{s ∈ R, ∥A(s)∥ <∞}. Check that δΓ ≤ δρ ≤ δΓ0

.

2. (Twisted PS-Measure on the boundary) Define a(s) = 1
∥A(s)∥

∑
γ∈Γ e

−sd(o,γo)ρ(γ)Dγo.

It is a measure on D ∪ ∂D, with values in the set of bounded representations.
By taking subsequences, consider a measure aρ on ∂D, with values bounded
operators.

3. (Absolute continuity) Using δΓ = δΓ0 and therefore δρ = δΓ0 , show that
aρ << ν, where ν is the classical PS measure (for f ≡ 0)

4. (Ergodicity) By ergodicity show that aρ = Dν, where D is the Radon-
Nikodym derivative, and is a.s. constant.

5. (Conclusion) The quasi-invariance properties of aρ and ν show that the almost
sure value of D produces the desired ’almost invariant vectors“.

2.2 details on each step

See the beamer of my talk here
https://imag.umontpellier.fr/ schapira/recherche/beamer-Cetraro.pdf

2.2.1 The twisted Poincaré series

Study A(s) =
∑

γ∈Γ e
−sd(o,γo)ρ(γ). The Hilbert space H = ℓ2(Γ0/Γ) admits a

partial order : Φ ≥ 0 iff for every y ∈ Γ0/Γ, Φ(y) ≥ 0. The partial order allows to
define a positive cone H+ = {Φ ∈ H,Φ ≥ 0}.

Say that A(s) is bounded if there exists M < ∞ st for every finte set S ⊂ Γ,
∥
∑

γ∈S e−sd(o,γo)ρ(γ)∥ ≤M .
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Thanks to positivity arguments, there exists δρ st A(s) bounded for every s > δρ.
Easy to show that δΓ ≤ δρ ≤ δΓ0 .
The assumption δΓ = δΓ0 is only - but crucially - used to show that δρ = δΓ0

2.2.2 The twisted PS measure

See the beamer of my talk here
https://imag.umontpellier.fr/ schapira/recherche/beamer-Cetraro.pdf

2.2.3 Absolute continuity

See the beamer of my talk here
https://imag.umontpellier.fr/ schapira/recherche/beamer-Cetraro.pdf

See the beamer of my talk here
https://imag.umontpellier.fr/ schapira/recherche/beamer-Cetraro.pdf

2.2.4 Ergodicity

See the beamer of my talk here
https://imag.umontpellier.fr/ schapira/recherche/beamer-Cetraro.pdf

2.2.5 Conclusion

See the beamer of my talk here
https://imag.umontpellier.fr/ schapira/recherche/beamer-Cetraro.pdf

3 Regularity of entropy under perturbations

Assume in this section that S is compact, and see [?] for the noncompact case.

3.1 Boundaries

Consider a same topological surface with two (hyperbolic) metrics (S, g1) and (S, g2)

PICTURE

Consider the universal cover as the same differentiable manifold with two distinct
metrics (S̃, g1) and (S̃, g2).

The boundaries at infinity are a priori distinct, but when S is compact for
example, or when the two metrics are equivalent, then (Morse) the g1-geodesics
are at bounded distance of a g2 geodesic, so that we can identify the boundaries
∂g1 S̃ ≃ ∂g2 S̃.

3.2 Identifying the sets of invariant measures

Denote byM1
gi the set of invariant probability measures on T 1

giS, and by Curr(Γ)

the set of projective geodesic currents on ∂2S̃ (i.e. geodesic currents up to normal-
ization).
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The Hopf correspondance Hgi : T 1
gi S̃ → ∂2S̃ × R leads to a bijection between

M1
gi and Curr(Γ), and therefore a bijection betweenM1

g1 andM1
g2 . (It is necessary

to take care of the normalization)

DIAGRAMME

Given a geodesic current C, denote by mgi
C the normalized invariant probability

measure associated with C on T 1
giS.

Exercise 3.1 Show the following properties

• mg1
C has full support iff mg2

C has full support.

• mg1
C is ergodic iff mg2

C is ergodic.

• mg1
C is supported on a periodic orbit iff mg2

C is supported on a periodic orbit.

• mg1
C is a quasi product measure (i.e. C is equivalent to a product measure) iff

mg2
C is a quasi product measure.

I will give the flavour of the proof of

Theorem 3.1 (Schapira-Tapie) Assume that S is a compact surface (manifold).
(Compactness not necessary).

• mg1
C is a Gibbs measure wrt the potential f1 iff mg2

C is a Gibbs measure wrt
the potential f2 (details below).

• mg1
C has positive entropy iff mg2

C has positive entropy.

3.3 Geodesic stretch

Consider (S, g1) and (S, g2) two hyperbolic (neg. curved) metrics on the same
differentiable surface (manifold), consider S̃ the universal cover as a differentiable
surface.

As said above, one can identify the boundaries, denoted by ∂S̃.
Given a vector v ∈ T 1

g1 S̃, we can consider the g1 geodesic (gt1v)t≥0, the g1-

endpoint vg1+ ∈ ∂S̃, and the g2-Busemann cocycle βg2
v
g1
+

(π(v), π(gt1v)).

PICTURE

Proposition 3.2 (Ledrappier) The map t 7→ βg2
v
g1
+

(π(v), π(gt1v)) is differentiable

at t = 0.

We introduce ([?]) the infinitesimal geodesic stretch as

Eg1→g2(v) =
d

dt t=0
βg2
v
g1
+

(π(v), π(gt1v))

Exercise 3.2 Use the fact that the g1 and g2- geodesics from π(v) to vg1+ are at
bounded distance one another to prove that the ergodic average of the geodesic stretch
satisfies

1

T

∫ T

0

Eg1→g2(gt1v)dt ≍
dg2(π(v), π(gT1 v))

dg1(π(v), π(gT1 v))
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3.4 Morse correspondance

Hopf coordinates give a homeomorphism

T 1
g1 S̃ ←→ ∂2S̃ × R←→ T 1

g2 S̃

However, the homeomorphism Φg1→g2 = (Hg2)−1 ◦ Hg1 is NOT Γ-invariant, and
therefore does NOT induce a map from T 1

g1S to T 1
g2S.

That is a good news in some sense, because if it were true, it would mean that
the geodesic flows (gt1) and (gt2) are conjugated, which is false in general.

Indeed, by construction, we have the following :

Exercise 3.3 Check from the definition that the Hopf coordinates, and therefore
the homeomorphism Φg1→g2 commute with the geodesic flow :

Φg1→g2 ◦ gt1 = gt2 ◦ Φg1→g2

The point is that the two Γ-actions

γ.v ≃ (γv−, γv+, s+ βgi

v+(γ
−1o, o)

on ∂2S̃ × R differ on the third (real) coordinate.
The good news is that one can build an orbit equivalence, i.e. a homeomorphism

from T 1
g1S to T 1

g2S, that sends orbits to orbits, by modifying slightly Φg1→g2 . There

are several ways to do that. For example, define Ψ̃g1→g2 as the map from T 1
g1 S̃ to

T 1
g2 S̃ that associates to v the unique vector Ψ̃g1→g2(v) ∈ T 1

g2 S̃ on the g2 geodesic
from vg1− to vg1+ that satisfies βg2

v
g1
+

(π(v), π(w)) = 0.

Exercise 3.4 Show that Ψ̃g1→g2 is Γ-equivariant, and induces therefore an orbit
equivalence from T 1

g1S to T 1
g2S.

Exercise 3.5 Let G : T 1
g2S → R be a continuous map, and mgi

C be two invariant

probability measures on T 1
giS associated with the same geodesic current C on ∂2S̃.

Show that∫
T 1
g2

S

G(w) dmg2
C (w) =

∫
T 1
g1

S

G ◦Ψg1→g2(v)× Eg1→g2(v) dmg1
C (v) .

If you succeeded to prove that, you forgot the normalization. Indeed, mgi
C are the

normalized probability measures on T 1
giS associated through quotient by Γ and Hopf

coordinates Hgi to the measure C ⊗ dt. Show that the correct formula is∫
T 1
g2

S

G(w) dmg2
C (w) =

∫
T 1
g1

S
G ◦Ψg1→g2(v)× Eg1→g2(v) dmg1

C (v)∫
T 1
g1

S
Eg1→g2(v) dmg1

C (v)

3.5 Shadows are shadows

Let (S, g1) and (S, g2) be two hyperbolic metrics on the same surface. Let C > 0
be a constant such that any g1 geodesic of S̃ is at distance at most C from a g2
geodesic with the same endpoints and conversely.

Exercise 3.6 Show that

Og1
x (Bg1(y, r)) ⊂ Og2

x (Bg2(y, r + C)) .

As a corollary we get
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Exercise 3.7 Prove that mg2
C is a Gibbs measure wrt the potential G iff mg1

C is a
Gibbs measure wrt the potential G ◦ Eg1→g2 .

Exercise 3.8 Prove that

h(mg2
C ) =

1∫
T 1
g1

S
Eg1→g2dmg1

C
× h(mg1

C )

Using the above, we proved in [?] a generalization in a noncompact setting of a
result of [?]:

Theorem 3.3 (Katok-Knieper-Weiss, Schapira-Tapie) Let (gϵ) be a C1-uniform
variation of the hyperbolic metric g0 on S (compact or SPR). The entropy htop(gϵ)
is C1 at 0. More precisely

d

dt |t=0
h(gϵ) = −h(g0)

∫
d∥v∥gϵ
dϵ

dmg0

BMS

4 Invariant measures under the horocyclic flow on
abelian covers, after Babillot-Ledrappier [?]

4.1 Horocyclic flow, invariant measures

The horocyclic flow is defined as follows : Picture
Identify T 1D with T 1H through the bihol map z ∈ H 7→ z−i

z+i ∈ D, and T 1H with
PSL(2,R), through the classical map

g ∈ PSL(2,R) 7→ g.(i, i)

where (i, i) denotes the vertical vector tangent to i in the upper direction.

Exercise 4.1 In this identification, check that the action of the geodesic flow (gt)

on T 1D or T 1H corresponds to the right multiplication by diagonal matrices

(
et/2 0
0 e−t/2

)
.

Definition 4.1 In this identification, the stable horocycle flow (hs)s∈R is defined

by the right multiplication by unipotent matrices

(
1 s
0 1

)
.

PICTURE

Exercise 4.2 Check that on T 1D, the orbits of the horocyclic flow are the stable
manifolds of the geodesic flow.

gt ◦ hs = hse−t

◦ gt

Picture

As consequences of this deep relation, properties of (gt) and (hs) are intricated.
It is classical (and not the topic of these lectures) that one has the following impli-
cations (on a compact hyperbolic surface).

• Product structure −→ ergodicity of the geodesic flow wrt any quasi product
measure.

12



• Ergodicity of the geod flow wrt the Liouville (BMS) measure −→ ergodicity
of the horocyclic flow wrt to the Liouville (BR) measure.

• Ergodicity of the horocyclic flow −→ mixing of the geodesic flow.

• Mixing of the geodesic flow −→ unique ergodicity of the horocyclic flow.

The ergodic behaviour of the horocyclic flow reflects the different possible asymp-
totic behaviours of the geodesic flow.

Theorem 4.2 (Hedlund 30’,Furstenberg, Dani, Dani-Smillie 70’s) When S
is compact, the horocyclic flow is minimal and uniquely ergodic. All orbits are
equidistributed towards the Liouville measure: for all ϕ : T 1S → R and every
v ∈ T 1S, we have

1

T

∫ T

0

ϕ ◦ hs(v)ds→
∫

ϕdL

When S has finite volume, all orbits are periodic or dense, and the Liouville measure
is the unique nonperiodic ergodic measure, all nonperiodic orbits are equidistributed
toward the Liouville measure.

Remark 4.3 When S is geometrically finite, similar results, see Burger, Roblin,
Schapira

4.2 Abelian covers

Abelian covers are another very interesting situation where the ergodic components
of the horocyclic flow are completely understood. Babillot-Ledrappier exhibited an
infinite family of ergodic invariant measures. Sarig proved that there are no other
ergodic invariant measures, and Sarig-Schapira proved an associated equidistribu-
tion result. [?] (Completer ref)

The case of nilpotent covers is partially understood (Babillot), see also Bispo-
Stadlbauer or Ofer Schwartz for general covers.

The framework is the following.
S0 = D/Γ0 compact surface. S = D/Γ (abelian) cover. i.e. Γ ◁ Γ0 and Γ0/Γ =

G ≃ Zd.

Theorem 4.4 (Babillot 04) S → S0 nilpotent cover of a compact hyperbolic sur-
face, G = Γ0/Γ nilpotent. There is a 1− 1 correspondance between

1. Characters of G

2. Cohomology classes of S0 that vanish on Γ

3. Γ-conformal ergodic measures ν on S1 (up to multiplicative constants)

4. Radon measures M that are Γ-invariant and ergodic on S1 × R and quasi
invariant under (gt) (dM = dνeδtdt

5. (hs)-invariant ergodic measures on T 1S that are quasi invariant under (gt)
(of the form ds(v−)dν(v+)eδtdt

Theorem 4.5 (Ledrappier-Sarig 04, Sarig 00) S → S0 Regular cover. All
(hs)-invariant measures ergodic are also quasi invariant under the geodesic flow

13



Theorem 4.6 (Babillot-Ledrappier, 98) S → S0, G = Γ0/Γ ≃ Zd. For every

V⃗ ∈ Rd there exists a unique (up to normalization) (hs) invariant ergodic measure
λV⃗ on T 1S such that for every a ∈ Zd,

a∗λV⃗ = e<v|a>λV⃗

It is an effective (older) version of the above Theorem. The measures λV⃗ are given
by the thermodynamical formalism. The same should be true in the case of nilpotent
covers. Not clear why it does not work.

Remark 4.7 The characters of G : same as the caracters of G/[G,G]. So it is too
small when G ≃ F2 for example, or when [G,G] is very close to G, i.e. G very far
to be abelian. (

Our Goal : understand the construction of the measures in the case of abelian
covers. More precisely, understand the objects appearing in the Theorem below :

Theorem 4.8 (Babillot-Ledrappier 98) There is a 1 − 1-correspondance be-
tween

• Characters, i.e. morphisms χ : G→ R∗
+

• de Rahm cohomology classes of 1-forms ω that vanish on loops of Γ

• ergodic (δ,Γ)-conformal probability measures on S1, i.e. that satisfy

dγ∗ν

dν
(ξ) = exp(δβξ(o, γo)) .

• (hs)-Invariant ergodic measures on T 1S (up to multiplicative constants

• extremal eigenfunctions of ∆S for nonnegative eigenvalues, where ∆S is the
Laplace operator of S

4.2.1 Characters and cohomology classes

First a notation. Fix D0 a fundamental domain for G action on T 1S. You can think
of T 1S as T 1D0 ×G. Given such an identification, denote by |w] ∈ Zd the element
g ∈ G such that w ∈ gD0. Coordinate in Zd.

Given w ∈ T 1S0 and ŵ ∈ T 1S a lift, the following limit exists m a.s., for any m
invariant proba measure on T 1S0 :

e(w) = lim
1

t
[gt(ŵ]Zd ∈ Rd

It is the drift of ŵ ∈ Zd.

Proposition 4.9 For every χ : G→ R∗
+ character , there exists V⃗ ∈ Rd such that

for every g ∈ G(= Zd),

χ(g) = e<V⃗ ,g>

A character ξ : G→ R∗
+ ↔ a morphism Γ0 → R∗

+ that vanishes on Γ
As R∗

+ is abelian, it is equivalent to have a linear form H1(S0) → R that vanishes
on homology classes of elements of Γ.

By Poincaré duality, it is the same as having a de Rahm colhomology class of
a 1- form α ∈ H1

dR(S0) that vanishes on loops of Γ. Given α such a 1-form, let χα

14



the associated character, and V⃗α the associated vector in Rd. As a consequence, for
every γ ∈ Γ0, one has

χ(g) = exp(

∫
[γ]α

= exp(< V⃗α, [g
tw]Zd >)

Exercise 4.3 If ŵ ∈ T 1D0, then

logχ([gtw]Zd)−
∫ t

0

α(gsw) ds

is bounded independently of w and t.

in particular, when the limits exist, we get :

lim
1

t

∫ t

0

α(gsw)ds = lim
t→∞

1

t
logχα([g

tw]Zd) = lim
1

t
< V⃗α, [g

tw]Zd >=< V⃗α, e(w) >

4.2.2 Babillot-Ledrappier measures

If α is a closed 1-form, i.e. a section α : x ∈ S → αx ∈ (TxS)
∗, then it induces a

smooth potential fα : v ∈ T 1M → απ(v)(v).
We can do the Patterson Sullivan Gibbs construction of the measure mα asso-

ciated with (fα or) α.
The measure να is quasi invariant in the sense that for all γ ∈ Γ0, we have

dγ∗ν

dν
(ξ) = e−δαβξ(o,γo)+α([γ])

As α vanishes on Γ, it follows that να is (δα,Γ) conformal.
Therefore, the measure ds(v−)dνα(v

+)eδαtdt is (hs)-invariant and Γ-invariant
and descends to a (hs) inv measure on T 1S.

On the other hand, the measure Cα⊗dt induces a (gt) invariant measure mα on
T 1S0, that is the Gibbs measure associated with α. It realizes the supremum

P (α) = P (V⃗α) = sup
m∈M1(T 1S0)

(
h(m) +

∫
αdm

)
= sup

m
h(m)+ < V⃗α,

∫
T 1S0

e(w)dm >

It can be rewritten
P (V⃗ ) = suph(m)+ < V⃗ , e(m) >

where e(m) is the average drift wrt to m.
We get

Proposition 4.10 (Babillot Ledrappier) P : Rd → R is analytic and ∇P :
Rd → Rd realizes a diffeomorphism Rd →

∫
C where C = {e(w), w ∈ T 1D0} ⊂ Rd.

Now, the ergodicity of λα comes from the mixing property of mα, and more
precisely of

Theorem 4.11 (BL98) mα a.s.∫ 1

−1

ϕ ◦ g−T ◦ hswds ∼ ceTh(mα)T−d/2

∫
ϕdλα
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4.2.3 From (δ,Γ)-conformal measures to (hs)-invariant measures

(hs)-invariant measures on T 1S are in 1 − 1 correspondance with (hs)- invariant
and Γ invariant measures on T 1S̃

Observe that in the Hopf coordinates, a (hs) orbit is a set S1 \ {v+} × {v+} ×
{τ(v)} ≃ R × {v+} × {τ(v)}. If the first real factor is parametrized accordingly
to the (hs) action, a (hs-invariant measure is of the form ds × dM , where M is
a Γ-invariant measure on S1 × R. Therefore, (hs)-invariant measures are in 1 − 1
correspondance with Γ-invariant measures on S1×R. Here, the Γ action on S1×R
is the natural action induced by the action on ∂2S̃ × R:

γ.(v−, v+, τ) = (γv−, γv+, τ + βv+(γ−1o, o)

so that
γ.(ξ, τ) = (γξ, τ + βξ(γ

−1o, o)

Exercise 4.4 If ν is a (δ,Γ) conformal measure, observe that dM(ξ, t) := dν(ξ)eδtdt
is Γ-invariant on S1 × R.

Moreover, show that if M is ergodic, then ν is ergodic. The converse is not
obvious a priori.

Check that M induces a (hs)-invariant measure defined locally as ds(v−)dM(v+, t).
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5 Positivity and renormalization

Ledrappier, normalization
s0 = lim sup 1

n log#{γ ∈ Γ,
∫
γ
f ∈ [n, n+ 1[}.

Exercise 5.1 Assume δf is finite. Show that δ(−s0f) = 0.
hint : you can consider separately those γ ∈ Γ, such that

∫
γ
f ≤ CT and the

γ ∈ Γ, such that
∫
γ
f ≥ CT .

Theorem 5.1 (Gouezel, Schapira, Tapie) As soon as they are finite, Gibbs mea-
sures have positive entropy.

6 Gibbs measures and higher Teichmuller theory

6.1 Ledrappier’s Theorem

Potentials / cocycles / measures / ...

Theorem 6.1 (Ledrappier [Led95]) Let S be a compact negagatively curved sur-
face (manifold). There is a 1− 1 correspondance between

• (Cohomology classes) of Hölder potentials on T 1S

• (Cohomology classes of ) Hölder cocycles on Γ× ∂S̃

• (Cohomology classes of) quasi invariant measures on ∂S̃ (completer for-
mule)

• ... (voir ce dont je me sers)

6.2 Representations and cocycles

S compact hyperbolic surface. ρ : Γ = π1(S)→ SL(n,R) Anosov representation.

Iwasawa-Busemann cocycle

Real-valued cocycle

Ledrappier Theorem → Hölder continuous potential

Periods of the cocycle are positive → reparametrization of the flow

New Anosov flow, with unique measure of maximal entropy, equidistribution of
periodic orbits, ...

Examples of consequences (Sambarino and coauthors)
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