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Abstract. We study the dynamics of unipotent flows on frame bundles of

hyperbolic manifolds of infinite volume. We prove that they are topologi-
cally transitive, and that the natural invariant measure, the so-called ”Burger-

Roblin measure”, is ergodic, as soon as the geodesic flow admits a finite mea-

sure of maximal entropy, and this entropy is strictly greater than the codi-
mension of the unipotent flow inside the maximal unipotent flow. The latter

result generalises a Theorem of Mohammadi and Oh.

1. Introduction

1.1. Problem and State of the art. For d ≥ 3, let Γ be a Zariski-dense, dis-
crete subgroup of G = SOo(d, 1). Let N be a maximal unipotent subgroup of G
(hence isomorphic to Rd−1), and U ⊂ N a nontrivial connected subgroup (hence
isomorphic to some Rk in Rd−1). The main topic of this paper is the study of the
action of U on the space Γ\G. Geometrically, this is the space FM of orthonormal
frames of the hyperbolic manifold M = Γ\Hd, and the N (and U)-action moves
the frame in a parallel way on the stable horosphere defined by the first vector of
the frame. There are a few cases where such an action is well understood, from
both topological and ergodic point of view.

1.1.1. Lattices. If Γ has finite covolume, then Ratner’s theory provides a complete
description of closures of U -orbits as well as ergodic U -invariant measures. If Γ has
infinite covolume, while it no longer provides information about the topology of the
orbits, it still classifies finite U -invariant measures. Unfortunately, the dynamically
relevant measures happen to be of infinite mass. In the rest of the paper, we will
always think of Γ as a subgroup having infinite covolume.

1.1.2. Full horospherical group. If one looks at the action of the whole horospherical
group U = N , a N -orbit projects on T 1M onto a leaf of the strong stable foliation
for the geodesic flow , a well-understood object, at least in the case of geometrically
finite manifolds. In particular, the results of Dal’bo [5] imply that for a geometri-
cally finite manifold, such a leaf is either closed, or dense in an appropriate subset
of T 1M.

From the ergodic point of view, there is a natural good N -invariant measure,
the so-called Burger-Roblin measure, unique with certain natural properties. Recall
briefly its construction. The measure of maximal entropy of the geodesic flow
on T 1M, the Bowen-Margulis-Sullivan measure, when finite, induces a transverse
invariant measure to the strong stable foliation. This transverse measure is often
seen as a measure on the space of horospheres, invariant under the action of Γ.
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Integrating the Lebesgue measure along these leaves leads to a measure on T 1M,
which lifts naturally to FM into aN -invariant measure, the Burger-Roblin measure.

In [26], Roblin extended a classical result of Bowen-Marcus [4], and showed
that, up to scalar multiple, when the Bowen-Margulis-Sullivan measure is finite,
it induces (up to scalar multiple) the unique invariant measure supported on this
space of horospheres, supported in the set of horospheres based at conical (radial)
limit points.

In particular, if the manifold M is geometrically finite, this gives a complete
classification of Γ-invariant (Radon) measures on the space of horospheres, or equiv-
alently of transverse invariant measures to the strong stable foliation. In general,
Roblin’s result says that there is a unique (up to scaling) transverse invariant mea-
sure of full support in the set of vectors whose geodesic orbit returns infinitely often
in a compact set.

It is natural to try to ”lift” this classification along the principal bundle FM→
T 1M, since the structure group is compact. This was done by Winter [33], who
proved that, up to scaling, the only N -invariant measure of full support in the
set of frames whose A-orbit returns i.o. in a compact set is the Burger-Roblin
measure, i.e. the natural M -invariant lift of the above measure (see also [27]). On
geometrically finite manifolds, this statement is simpler: the Burger-Roblin is the
unique (up to scaling) N -invariant ergodic measure of full support.

1.1.3. A Theorem of Mohammadi and Oh. However, if one considers only the action
of a proper subgroup U ⊂ N , the situation changes dramatically, and much less is
known, because ergodicity or conservativity of a measure with respect to a group
does not imply in any way the same properties with respect to proper subgroups. In
this direction, the first result is a Theorem of Mohammadi and Oh [23], which states
that, in dimension d = 3 (in which case dim(U) = 1) and for convex-cocompact
manifolds, the Burger-Roblin measure is ergodic and conservative for the U -action
if and only if the critical exponent δΓ of Γ satisfies δΓ > 1.

1.1.4. Dufloux recurrence results. In [8, 7], Dufloux investigates the case of small
critical exponent. Without any assumption on the manifold, when the Bowen-
Margulis-Sullivan measure is finite (assumption satisfied in particular when Γ is
convex-cocompact, but not only, see many examples in [25, 2, 28]), he proves in [8]
that the Bowen-Margulis-Sullivan is totally U -dissipative when δΓ ≤ dimN−dimU ,
and totally recurrent when δΓ > dimN−dimU . In [7], when the group Γ is convex-
cocompact, he proves that when δΓ = dimN − dimU , the Burger-Roblin measure
is U -recurrent.

1.1.5. Rigid acylindrical 3-manifolds. There is one last case where more is know on
the topological properties of the U -action, in fact in a very strong form. Assuming
M is a rigid acylindrical 3-manifold, McMullen, Mohammadi and Oh recently man-
aged in [21] to classify the U -orbit closures, which are very rigid. Their analysis
relies on their previous classification of SL(2,R)-orbits [22].

Unfortunately, their methods rely heavily on the particular shape of the limit set
(the complement of a countable union of disks), and such a strong result is certainly
false for general convex-cocompact manifolds.
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1.2. Results. The results that we prove here divide in two distinct parts, a topo-
logical one, and a ergodic one. Although they are independent, the strategy of their
proofs follow similar patterns, a fact we will try to emphasise.

1.2.1. Topological properties. Let A ⊂ G be a Cartan Subgroup. Denote by Ω ⊂
FM the non-wandering set for the geodesic flow (or equivalently, the A-action),
and by E the non-wandering set for the N -action. For more precise definitions and
description of these objects, see section 2.

Using a Theorem of Guivarc’h and Raugi [13], we show:

Theorem 1.1. Assume that Γ is Zariski-dense. The action of A on Ω is topologi-
cally mixing.

This allows us to deduce:

Theorem 1.2. Assume that Γ is Zariski-dense. The action of U on E is topologi-
cally transitive.

Both results are new. Note that, for example in the case of a general convex-
cocompact manifold with low critical exponent, the existence of a non-divergent
U -orbit is itself non-trivial, and was previously unknown.

1.2.2. Ergodic properties. We will assume that Γ is of divergent type, and denote
by µ the Bowen-Margulis-Sullivan measure - or more precisely, its natural lift to
FM, normalised to be a probability. We are interested in the case where µ is a
finite measure. Denote by ν the Patterson-Sullivan measure on the limit set, and
λ the Burger-Roblin measure on FM. More detailed description of these objects
is given in section 4.

The following is a strengthening of the Theorem of Mohammadi and Oh [23].

Theorem 1.3. Assume that Γ is Zariski-dense. If µ is finite and δΓ + dim(U) >
d− 1, then both measures µ and λ are U -ergodic.

The hypothesis that µ is finite is satisfied for example when Γ is geometrically
finite see Sullivan [30]. But there are many other examples, see [25, 2, 28]. Note
that the measure µ is not U -invariant, or even quasi-invariant; in this case, ergod-
icity simply means that U -invariant sets have zero or full measure. Apart from
the use of Marstrand’s projection Theorem, our proof differs significantly from the
one of [23], and does not use compactness arguments, allowing us to go beyond the
convex-cocompact case. It is also, in our opinion, simpler. Note that the work of
Dufloux [8] uses the same assumptions as ours.

For the opposite direction, we prove:

Theorem 1.4. Assume that Γ is Zariski-dense. If µ is finite with δΓ + dim(U) <
d− 1, then λ-almost every frame is divergent.

In fact, in the convex-cocompact case, a stronger result holds: for all vectors
v ∈ T 1M and almost all frames x in the fiber of v, the orbit xU is divergent, see
Theorem 4.6 for details.

1.3. Overview of the proofs.
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1.3.1. Topological transitivity. The proof of the topological transitivity can be sum-
marised as follows.

• The U -orbit of Ω is dense in E (Lemma 3.6).
• The mixing of the A-action (Theorem 1.1) implies that there are couples

(x,y) ∈ Ω2, generic in the sense that their orbit by the diagonal action of
A by negative times on Ω2 is dense in Ω2.
• One can ”align” such couples of frames so that x and y are in the same
U -orbit, that is xU = yU (Lemma 3.4).

These facts imply topological transitivity of U on E (see section 3.7).

1.3.2. Ergodicity of µ and λ. In the convex-cocompact case, the Patterson-Sullivan
ν is Ahlfors-regular of dimension δΓ. To go beyond that case, we will need to
consider the lower dimension of the Patterson-Sullivan measure:

dim ν = infess lim inf
r→0

log ν(B(ξ, r))

log r
,

which satisfies the following important property.

Proposition 1.5 (Ledrappier [16]). If µ is finite, then dim ν = δΓ.

The first step in the proof of topological transitivity is the proof that the closure
of the set of U -orbits intersecting Ω is E . The analogue here is to show that for
a U -invariant set E, it is sufficient to show that µ(E) = 0 or µ(E) = 1 to deduce
that λ(E) = 0 or λ(Ec) = 0 respectively. Marstrand’s projection Theorem and
the hypothesis δΓ + dim(U) > d − 1 allow us to prove that the ergodicity of λ is
in fact equivalent to the ergodicity of µ (Proposition 4.10). Although it is highly
unusual to study the ergodicity of non-quasi-invariant measures, it turns out here
to be easier, thanks to finiteness of µ.

For the second step, we know thanks to Winter [33] that the A-action on (Ω2, µ⊗
µ) is mixing. So we can find couples (x,y) ∈ Ω2, which are typical in the sense
that they satisfy Birkhoff ergodic Theorem for the diagonal action of A for negative
times and continuous test-functions. By the same alignment argument as in the
topological part, one can find such typical couples in the same U -orbit.

Unfortunately, from the point of view of measures, existence of one individual
orbit with some specified properties is meaningless. To circumvent this difficulty,
we have to consider plenty of such typical couples on the same U -orbit. More pre-
cisely, we consider a measure η on Ω2 such that almost surely, a couple (x,y) picked
at random using η is in the same U -orbit, and is typical for the diagonal A-action.
For this to make sense when comparing with the measure µ, we also require that
both marginal laws of η on Ω are absolutely continuous with respect to µ. We check
in section 5.2 that the existence of such a measure η is sufficient to prove Theorem
1.3. This measure η is a kind of self-joining of the dynamical system (Ω, µ), but
instead of being invariant by a diagonal action, we ask that it reflects both the
structure of U -orbits, and the mixing property of A.

It remains to show that such a measure η actually exists. In dimension d = 3,
we can construct it (at least locally on FH3) as the direct image of µ ⊗ µ by the
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alignment map, so we present the simpler 3-dimensional case separately in sec-
tion 5.4. The fact that η is supported by typical couples on the same U -orbit
is tautological from the chosen construction. The difficult part is to show that its
marginal laws are absolutely continuous. This is a consequence of the following fact:

If two compactly supported, probability measures on the plane ν1, ν2 have finite
1-energy, then for ν1-almost every x, the radial projection of ν2 on the unit circle
around x is absolutely continuous with respect to the Lebesgue measure on the circle.

Although probably unsurprising to the specialists, as there exist many related
statements in the literature (see e.g. [20],[19]), we were unable to find a reference.
We prove this implicitly in our situation, using the L2-regularity of the orthogonal
projection in Marstrand’s Theorem, and the maximal inequality of Hardy and Lit-
tlewood.

In dimension d ≥ 4, the construction of η, done in section 5.5, is a bit more
involved since there is not a unique couple aligned on the same U -orbit, espe-
cially if dim(U) ≥ 2, so we have to choose randomly amongst them, using smooth
measures on Grassmannian manifolds. Again, the absolute continuity follows from
Mastrand’s projection Theorem and the maximal inequality.

1.4. Organization of the paper. Section 2 is devoted to introductory material.
In section 3, we prove our results on topological dynamics. In section 4, we introduce
the measures µ and λ, establish the dimensional properties that we need, and prove
Theorem 4.6 and the fact that U -ergodicity of µ and λ are equivalent. Finally, we
prove Theorem 1.3 in section 5.

2. Setup and Notations

2.1. Lie groups, Iwasawa decomposition. Let d ≥ 2, and G = SOo(d, 1), i.e.
the subgroup of SL(d + 1,R) preserving the quadratic form q(x1, .., xd+1) = x2

1 +
x2

2 + ..− x2
d+1. It is the group of direct isometries of the hyperbolic n-space Hd =

{x ∈ Rd+1, q(x) = −1, xd+1 > 0}. Define K < G as

K =

{(
k 0
0 1

)
: k ∈ SO(d)

}
.

It is a maximal compact subgroup of G, and it is the stabilizer of the origin x =
(0, . . . , 0, 1) ∈ Hd.

We choose the one-dimensional Cartan subgroup A, defined by

A =

at =

 Id−2 0

0
cosh(t) sinh(t)
sinh(t) cosh(t)

 : t ∈ R

 .

It commutes with the following subgroup M , which can be identified with SO(d−1).

M =

{(
m 0
0 I2

)
: m ∈ SO(d− 1)

}
.

In other words, the group M is the centralizer of A in K. The stabilizer of any
vector v ∈ T 1Hd identifies with a conjugate of M , so that T 1Hd = SOo(d, 1)/M .
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Let n ⊂ so(d, 1) be the eigenspace of Ad(at) with eigenvalue e−t. Let

N = exp(n) .

It is an abelian, maximal unipotent subgroup, normalized by A. The group G
is diffeomorphic to the product K × A × N . This decomposition is the Iwasawa
decomposition of the group G.

The subgroup N is normalized by M , and MnN is a closed subgroup isomorphic
to the orientation-preserving affine isometry group of an d−1-dimensional Euclidean
space.

If U is any closed, connected unipotent subgroup of G, it is conjugated to a
subgroup of N (see for example [3]). Therefore, it is isomorphic to Rk, for some
k ∈ {0, .., d− 1}. Through the article, we will always assume that k ≥ 1.

In this paper, we are interested in the dynamical properties of the right actions
of the subgroups A,N,U on the space Γ\G.

2.2. Geometry.

Fundamental group, critical exponent, limit set. Let Γ ⊂ G = Isom+(Hd) be a
discrete group. Let M = Γ\Hd be the corresponding hyperbolic manifold. The
limit set ΛΓ is the set of accumulation points in ∂Hd ' Sd−1 of any orbit Γo,
where o ∈ Hd. We will always assume that the group Γ is nonelementary, that is
#ΛΓ = +∞.

The critical exponent δ of the group Γ is the infimum of the s > 0 such that the
Poincaré series

PΓ(s) =
∑
γ∈Γ

e−sd(o,γo),

is finite, where o is the choice of a fixed point in Hd. In the convex-cocompact case,
the critical exponent δ equals the Hausdorff dimension of the limit set ΛΓ. Since Γ
is non-elementary, we have 0 < δ ≤ d− 1.

Frames. The space of orthonormal, positively oriented frames over Hd (resp. M)
will be denoted by FHd (resp. FM). As G acts simply transitively on FHd, FHd
(resp. FM) can be identified with G (resp. Γ\G) by the map g 7→ g.x0, where
x0 is a fixed reference frame. Note that FHd is a M -principal bundle over T 1Hd,
and so is FM over T 1M. Denote by π1 : FM → T 1M (resp. FHd → T 1Hd) the
projection of a frame onto its first vector.

As said above, we are interested in the properties of the right actions of A,N,U
on FM.

Given a subset E ⊂ M (resp. T 1M, FM), we will write Ẽ for its lift to Hd
(resp. T 1Hd, FHd).

Denote by FSd−1 the set of (positively oriented) frames over ∂Hd = Sd−1. We
will write FΛΓ for the subset of frames which are based at ΛΓ.
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Figure 1. Right actions of A, N , U

Generalised Hopf coordinates. Choose o to be the point (0, . . . , 0, 1) ∈ Hd. Recall
that the Busemann cocycle is defined on Sd−1 ×Hd ×Hd by

βξ(x, y) = lim
z→ξ

d(x, z)− d(y, z)

By abuse of notation, if x,x′ are frames (or v, v′ vectors) with basepoints x, x′ ∈ Hd,
we will write βξ(x,x

′) or βξ(v, v
′) for βξ(x, x

′).
We will use the following extension of the classical Hopf coordinates to describe

frames. To a frame x ∈ FHd, we associate

FHd → (FSd−1 ×∆ Sd−1)× R,
x = (v1, . . . , vd) 7→ (x+, x−, tx),

where x− (resp. x+) is the negative (resp. positive) endpoint in Sd−1 of the geodesic
xA, tx = βx+(o,x), and x+ ∈ FSd−1 is the frame over x+ obtained for example
by parallel transport along xA of the (d − 1)-dimensional frame (v2, . . . , vn). The
subscript ∆ in (FSd−1 ×∆ Sd−1) indicates that this is the product set, minus the
diagonal, i.e. the set of (x+, x−) where x+ is based at x−.

x

x−

x+

tx

o

Figure 2. Hopf frame coordinates

Define the following subsets of frames in Hopf coordinates

Ω̃ = (FΛΓ ×∆ ΛΓ)× R,
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and

Ẽ = (FΛΓ ×∆ ∂Hn)× R.
Consider their quotients Ω = Γ\Ω̃ and E = Γ\Ẽ . These are closed invariant subsets
of FM for the dynamics of M × A and (M × A) n N respectively, where all the
dynamics happens. Let us state it more precisely.

The non-wandering set of the action of N (resp. U) on Γ\G is the set of frames
x ∈ FM such that given any neighbourhood O of x there exists a sequence nk ∈ N
(resp. uk ∈ U) going to ∞ such that nkO ∩ O 6= ∅. As a consequence of Theorem
1.2, the following result holds.

Proposition 2.1. The set E is the nonwandering set of N and of any unipotent
subgroup {0} 6= U < N .

3. Topological dynamics of geodesic and unipotent frame flows

3.1. Dense leaves and periodic vectors. For the proof of Theorem 1.1, we will
need the following intermediate result, of independent interest.

Proposition 3.1. Let Γ be a Zariski-dense subgroup of SOo(d, 1). Let x ∈ Ω be
a frame such that π1(x) is a periodic orbit of the geodesic flow on T 1M. Then its
N -orbit xN is dense in E.

Proof. First, observe that if v = π1(x) ∈ T 1M is a periodic vector for the geodesic
flow, then its strong stable manifold W ss(v) is dense in π1(E) [5, Proposition B].

Therefore, π−1
1 (W ss(π1(x))) = xNM = xMN is dense in E . Thus it is enough

to prove that

xM ⊂ xN.

The crucial tool is a Theorem of Guivarc’h and Raugi [13, Theorem 2]. We will use
it in two different ways depending if G = SOo(3, 1) or G = SOo(d, 1), for d ≥ 4,
the reason being that M = SO(d− 1) is abelian in the case d = 3.

Choose x̃ a lift of x to Ω̃. As π1(x) is periodic, say of period l0 > 0, but x itself
has no reason to be periodic, there exists γ0 ∈ Γ and m0 ∈M such that

x̃al0m0 = γ0x̃.

First assume d = 3, so that both M and MA are abelian groups. Let C be the
connected compact abelian group C = MA/〈al0m0〉. Let ρ be the homomorphism
from MAN to C defined by ρ(man) = ma mod 〈al0m0〉. Define Xρ = G× C/ ∼,
where (g, c) ∼ (gman, ρ(man)−1.c). The set Xρ is a fiber bundle over G/MAN =
∂Hn, whose fibers are isomorphic to C. In other terms, it is an extension of the
boundary containing additional information on how g is positioned along AM ,
modulo al0m0. Let ΛρΓ be the preimage of ΛΓ ⊂ ∂Hn inside Xρ. Now, since C is
connected, [13, Theorem 2] asserts that the action of Γ on ΛρΓ is minimal. Denote
by [g,m] the class of (g,m) in Xρ.

Let us deduce that xM ⊂ xN . Choose some m ∈ M . As Γ acts minimally on
ΛρΓ, there exists a sequence (γk)k≥1 of elements of Γ, such that γk[x̃, e] converges to
[x̃m, e]. It means that there exist sequences (mk)k ∈MN, (ak)k ∈ AN, (nk)k ∈ NN,
such that γkx̃mkaknk → x̃m in G, whereas ρ(mkaknk)→ e in C, which means that
there exists some sequence jk of integers, such that dk := (mkak)−1(al0m0)jk → e
in MA.
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Now observe that the sequence

γkx̃(al0m0)jk(d−1
k nkdk) = (γkγ

jk
0 )x̃(d−1

k nkdk) ∈ Γx̃N

has the same limit as the sequence

γkx̃(al0m0)jkd−1
k nk = γkx̃mkaknk,

which by construction converges to x̃m. On FM = Γ\G, it proves precisely that
xm ∈ xN . As m was arbitrary, it concludes the proof in the case n = 3.

In dimension d ≥ 4, 〈al0m0〉 is not always a normal subgroup of MA anymore,
so we have to modify the argument as follows.

Denote by Mx the set

Mx = {m ∈M,xm ∈ xN} .

This is a closed subgroup of M ; indeed, if m1,m2 ∈ Mx, then xm1 ∈ xN , so
xm1m2 ∈ xNm2 = xm2N since m2 normalises N . Since xm2 ∈ xN , we have
xm2N ⊂ xN . So xm1m2 ∈ xm2N ⊂ xN . Thus Mx is a subsemigroup, non-empty
since it contains e, and closed. Since M is a compact group, such a closed semi-
group is automatically a group.

We aim to show that the group Mx is necessarily equal to M .

Let C = MA/〈al0〉. It is a compact connected group. Consider ρ(man) = ma
mod 〈al0〉, and the associated boundary Xρ = G×C/ ∼. Choose some m ∈M . As
above, [13, Theorem 2] asserts that the action of Γ on ΛρΓ is minimal. Therefore,
there exists a sequence (γk)k≥1 of elements of Γ, such that γk[x̃, e] converges to
[x̃m, e]. As above, consider sequences (mk)k ∈ MN, (ak)k ∈ AN, (nk)k ∈ NN,
such that γkx̃mkaknk → x̃m in G, whereas ρ(mkaknk) → e in C, which with
this new group C means that there exists some sequence jk of integers, such that
dk := (mkak)−1(al0)jk → e in MA.

Similarly to the 3-dimension case, we can write

γkx̃mkaknkdk = γkx̃a
jk
l0

(d−1
k nkdk) = (γkγ

jk
0 )x̃m−jk0 (d−1

k nkdk)

The above argument shows that some sequence of frames in x〈m0〉N = xN〈m0〉
converges to xm. This implies that the set of products Mx.〈m0〉 is equal to M .

We use a dimension argument to conclude the proof. The group 〈m0〉 is a torus
inside M = SO(d − 1), therefore of dimension at most d−1

2 . The group M has

dimension (d−1)(d−2)
2 , so that Mx.〈m0〉 = M implies that dimMx ≥ (d−1)(d−3)

2 .
By [24, lemma 4], the dimension of any proper closed subgroup of M = SO(d− 1)

is smaller than dim SO(d − 2) = (d−2)(d−3)
2 . Therefore, Mx cannot be a proper

subgroup of M , so that Mx = M .
�

The following corollary is a generalization to FM of a well-known result on
T 1M, due to Eberlein. A vector v ∈ T 1M is said quasi-minimizing if there exists
a constant C > 0 such that for all t ≥ 0, d(gtv, v) ≥ t − C. In other terms, the
geodesic (gtv) goes to infinity at maximal speed. We will say that a frame x ∈ FM
is quasi-minimizing if its first vector π1(x) is quasi-minimizing.
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Corollary 3.2. Let Γ be a Zariski dense subgroup of G = SOo(d, 1). A frame
x ∈ Ω is not quasi-minimizing if and only if xN is dense in E.

Proof. First, observe that when x ∈ Ω is quasi-minimizing, then the strong stable
manifold W ss(π1(x)) of its first vector is not dense in π1(Ω). Therefore, xN ⊂
π−1

1 (W ss(π1(x)) cannot be dense in Ω.
Now, let x ∈ Ω be a non quasi-minimizing vector. Then W ss(π1(x)) is dense in

π1(Ω), so that xNM = xMN = π−1
1 (W ss(π1(x)) is dense in Ω, and therefore in

E = ΩN . Choose some y ∈ Ω such that π1(y) is a periodic orbit of the geodesic
flow. By the above proposition, yN is dense in E . As xNM is dense in E ⊃ Ω, we
have yM ⊂ xNM = xNM (this last equality following from the compactness of
M), so that there exists m ∈ M with ym ∈ xN . But π1(ym) = π1(y) is periodic,
so that ymN is dense in E and xN ⊃ ymN ⊃ E . �

3.2. Topological Mixing of the geodesic frame flow. Recall that the continu-
ous flow (φt)t∈R (or a continuous transformation (φk)k∈Z) on the topological space
X is topologically mixing if for any two non-empty open sets U ,V ⊂ X, there exists
T > 0 such that for all t > T ,

φ−tU ∩ V 6= ∅.
Let us now prove Theorem 1.1, by a refinement of an argument of Shub also used

by Dal’bo [5, p988].

Proof. A direct proof would provide for any two open sets U and V sequences of
times tn → +∞ so that Uatn ∩ V 6= ∅. Therefore, we will proceed by contradiction
and assume that the action of A is not mixing. Thus there exist U ,V two non-
empty open sets in Ω, and a sequence tk → +∞, such that U .atk ∩ V = ∅. Choose
x ∈ V such that π1(x) is periodic for the geodesic flow - this is possible by density
of periodic orbits in π1(Ω) [9, Theorem 3.10]. Let l0 > 0,m0 ∈ M be such that
xal0m0 = x.

We can find integers (jk)k (the integer parts of tk/l0) and real numbers (sk)k
such that:

tk = jkl0 + sk, with 0 ≤ sk < l0.

Without loss of generality, we can assume that the sequence (sk)k≥0 converges

to some s∞ ∈ [0, l0], and that mjk
0 converge in the compact group M to some

m∞ ∈M . By Proposition 3.1, the N -orbit xa−s∞m∞N is dense in E . Notice that
UN is an open subset of E ; therefore one can choose a point w = xa−s∞m∞n ∈ U ,
for some n ∈ N .

We have

watk = xa−s∞m∞atka−tknatk

= x(al0m0)jk(m−jk0 m∞)(ask−s∞)(a−tknatk)

= x(m−jk0 m∞)(ask−s∞)(a−tknatk).

Observe that, as N -orbits are strong stable manifolds for the A-action, so

lim
k
a−tknatk = e.

By definition of m∞ and s∞, limkm
−jk
0 m∞ = e and limk ask−s∞ = e. Therefore,

watk tends to the frame x in the open set V. Thus, we found a frame w ∈ U , with
watk ∈ V for all k large enough. Contradiction. �
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Figure 3. The frame flow is mixing

3.3. Dense orbits for the diagonal frame flow on Ω2. Recall that a continuous
flow (φt)t∈R (or a continuous transformation (φk)k∈Z) on the topological space X
is said to be topologically transitive if any nonempty invariant open set is dense.

In the case of a continuous transformation on a complete separable metric space
without isolated points, topological transitivity is equivalent to the existence of a
dense positive orbit, or equivalently, to the fact that the set of dense positive orbits
is a Gδ-dense set (see for example [6]).

It is clear that topological mixing implies topological transitivity. Moreover, as
is easily checked, topological mixing of (X,φt) implies topological mixing for the
diagonal action on the product (X ×X, (φt, φt)).

A couple (x,y) ∈ Ω2 will be said generic if the negative diagonal, discrete-time
orbit (xa−k,ya−k)k≥0 is dense in Ω2. Theorem 1.1 about topological mixing of
the A-action on Ω has the following corollary, which will be useful in the proof of
Theorem 1.2.

Corollary 3.3. If Γ ⊂ G = SOo(d, 1) is a Zariski-dense discrete subgroup, then
there exists a generic couple (x,y) ∈ Ω2.

Proof. By Theorem 1.1, the geodesic frame flow is topologically mixing. Therefore,
so is the diagonal flow action of A on Ω2. This implies that the transformation
(a−1, a−1) on Ω2 is also topologically mixing, hence topologically transitive, i.e.
has a dense positive orbit. �

3.4. Existence of a generic couple on the same U-orbit.

Lemma 3.4. There exists a generic couple of the form (x,xu), with x ∈ Ω and
u ∈ U .

Proof. By Corollary 3.3, there exists a generic couple.

Let (y, z) ∈ (FHd)2 be the lift of a generic couple. Notice that, since the actions
of A and M commute with A, the set of generic couples is invariant under the
action of (A×M)× (A×M). This means that in Hopf coordinates, being the lift
of a generic couple does not depend on the orientation of the frame y+, z+, nor
of the times ty, tz. Moreover, since being generic is defined as density for negative
times, one can also freely change the base-points of y+, z+ because the new negative
orbit will be exponentially close to the old one. In short, being the lift of a generic
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couple (or not) depends only on the past endpoints (y−, z−), or equivalently, is

((M ×A) nN−)
2
-invariant. Obviously, y− 6= z− since generic couple cannot be on

the diagonal.

Up to conjugation by elements of M , we can freely assume that U contains the
subgroup corresponding to following the direction given by the second vector of a
frame. Pick a third point ξ ∈ ΛΓ distinct from y− and z−, and choose a frame
x+ ∈ FΛΓ based at ξ, whose first vector is tangent to the circle determined by
(ξ, y−, z−). Therefore, the two frames of Hopf coordinates x = (x+, y−, 0) and
(x+, z−, 0) lie in the same U -orbit, thus (x+, z−, 0) = xu for some u ∈ U . By
construction, the couple (x,xu) is the lift of a generic couple. �

3.5. Minimality of Γ on FΛΓ. We recall the following known fact.

Proposition 3.5. Let Γ be a Zariski-dense subgroup of SOo(d, 1). Then the action
of Γ on FΛΓ is minimal.

In dimension d = 3, this is due to Ferte [11, Corollaire E]. In general, this is again
a consequence of Guivarc’h-Raugi [13, Theorem 2], applied with G = SOo(d, 1),
C = M . In the notations of [13], the set F∂Hd is a compact extension of ∂Hd,
and more precisely, it identifies with (G×M)/ ∼ where (g,m) ∼ (gm′an,m′−1m).
[13, Theorem 2] asserts that the Γ-action on F∂Hd = (G ×M)/ ∼ has a unique
minimal set, which is necessarily FΛΓ.

3.6. Density of the orbit of Ω.

Proposition 3.6. The U -orbit of Ω is dense in E.

Proof. Up to conjugation by an element ofM , it is sufficient to prove the proposition
in the case where U contains the subgroup corresponding to shifting in the direction
of the first vector of the frame x+.

Consider the subset E of FΛΓ defined by (ξ,R) ∈ E if ξ ∈ ΛΓ and there exists
a sequence (ξn)n≥0 ⊂ ΛΓ \ {ξ} such that ξn → ξ tangentially to the direction of
the first vector of R, in the sense that the direction of the geodesic (on the sphere
∂Hn) from ξ to ξn converges to the direction of the first vector of R. Clearly, E is
a non-empty, Γ-invariant set. By Proposition 3.5, it is dense in FΛΓ.

Let x be a frame in Ẽ , we wish to find a frame arbitrarily close to x, which is

in the U -orbit of Ω̃. Let x = (x+, x−, tx) be its Hopf coordinates, by assumption
x+ ∈ FΛΓ. Pick (ξ,R) ∈ E very close to x+. By definition of E, there exists
ξ′ ∈ Λ, very close to ξ such that the direction (ξξ′) is close to the first vector of
the frame R. We can find a frame y+ ∈ FΛΓ, based at ξ, close to x+, whose first
vector is tangent to the circle going through (ξ, ξ′, x−).

By construction, the two frames y = (y+, x−, tx) and z = (y+, ξ′, tx) belong to

the same U -orbit; notice that z ∈ Ω̃, so we have y ∈ Ω̃U . Since y+ and x+ are
arbitrarily close, so are x and y. �

3.7. Proof of Theorem 1.2. Let O,O′ ⊂ E be non-empty open sets. We wish to
prove that O′U ∩ OU 6= ∅. By Proposition 3.6, O ∩ ΩU 6= ∅, therefore OU ∩ Ω is
an open nonempty subset of Ω. Similarly, O′U ∩ Ω 6= ∅.

Let (x,xu) a generic couple given by Lemma 3.4. By density, there exists a
k ≥ 0 such that (xa−k,xua−k) ∈ (OU ∩Ω)× (O′U ∩Ω). But since A normalizes U ,
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xua−k ∈ xa−kU ⊂ OU . Therefore xua−k ∈ O′U ∩ OU , which is thus non-empty,
as required.

4. Mesurable dynamics

4.1. Measures. Let us introduce the measures that will play a role here.

The Patterson-Sullivan measure on the limit set is a measure ν on the boundary,
whose support is ΛΓ, which is quasi-invariant under the action of Γ, and more
precisely satisfies for all γ ∈ Γ and ν-almost every ξ ∈ ΛΓ,

dγ∗ν

dν
(ξ) = e−δβξ(o,γo) .

When Γ is convex-cocompact, this measure is proportional to the Hausdorff mea-
sure of the limit set [32], it is the intuition to keep in mind here.

On the unit tangent bundle T 1Hd, let us define a Γ-invariant measure by

dm̃BM (v) = eδβv− (o,v)+δβv+ (o,v)dν(v−)dν(v+)dt .

By construction, this measure is invariant under the geodesic flow and induces
on the quotient on T 1M the so-called Bowen-Margulis-Sullivan measure mBMS .
When finite, it is the unique measure of maximal entropy of the geodesic flow, and
is ergodic and mixing.

On the frame bundle FHd (resp. FM), there is a unique way to define a M -
invariant lift of the Bowen-Margulis measure, that we will denote by µ̃ (resp. µ).
We still call it the Bowen-Margulis-Sullivan measure. On FM, this measure has
support Ω. When it is finite, it is ergodic and mixing [33]. The key point in our
proofs will be that it is mixing, and that it is locally equivalent to the product
dν(x−)dν(x+) dt dmx, where dmx denotes the Haar measure on the fiber of π1(x),
for the fiber bundle FM → T 1M. This measure is MA-invariant, but not N -(or
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U)-invariant, nor even quasi-invariant.

The Burger-Roblin measure is defined locally on T 1Hd as

dm̃BR(v) = e(d−1)βv− (o,v)+δβv+ (o,v)dL(v−)dν(v+)dt ,

where L denotes the Lebesgue measure on the boundary Sd−1 = ∂Hd, invariant
under the stabiliser K ' SO(d) of o. We denote its M -invariant extension to FHd
(resp. FM), still called the Burger-Roblin measure, by λ̃ (resp. λ). This measure
is infinite, A-quasi-invariant, N -invariant. It is N -ergodic as soon as µ is finite.
This has been proven by Winter [33]. See also [27] for a short proof that it is the
unique N -invariant measure supported in Erad.

In some proofs, we will need to use the properties of the conditional measures of
µ on the strong stable leaves of the A-orbits, that is the N -orbits. These conditional
measures can easily be expressed as

dµxN (xn) = eδβ(xn)− (x,xn) dν((xn)−),

and the quantity eδβ(xn)− (x,xn) is equivalent to |n|2δ when |n| → +∞.
Observe also that by construction, the measure µxN has full support in the set

{y ∈ xN, y− ∈ ΛΓ}.
Another useful fact is that µxN does not depend really on x in the sense that it

comes from a measure on ∂Hn \ {x+}. In other terms, if m ∈ M and y ∈ xmN ,
and z ∈ xN is a frame with π1(z) = π1(y), one has dµxmN (y) = dµxN (z).

4.2. Dimension properties on the measure ν. Most results in this paper rely
on certain dimension properties on ν, allowing to use projection theorems due to
Marstrand [18], and explained in the books of Falconer [10] and Mattila [19]. These
properties are easier to check in the convex-cocompact case, relatively easy in the
geometrically finite, and more subtle in general, under the sole assumption that µ
is finite.

Define the dimension of ν, like in [17], by

dim ν = infess lim inf
r→0

log ν(B(ξ, r))

log r
.

Denote by gt the geodesic flow on T 1M. For v ∈ T 1M, let d(v, t) be the distance
between the base point of gtv and the point Γ.o.

Proposition 1.5 in the introduction has been established by Ledrappier [16] when
µ is finite. It is also an immediate consequence of Proposition 4.1 and Lemma 4.2
below, as it is well known that when the measure µ is finite, it is ergodic and
conservative.

Proposition 4.1. If µ-almost surely, we have d(v,t)
t → 0, then dim ν ≥ δΓ.

If µ is ergodic and conservative, then dim ν ≤ δΓ.

Proof. We will come back to the original proof of the Shadow Lemma, of Sulli-
van, and adapt it (the proof, not the statement) to our purpose. The Shadow
Oo(B(x,R)) of the ball B(x,R) viewed from o is the set {ξ ∈ ∂Hd, [oξ)∩B(x,R) 6=
∅}. Denote by ξ(t) the point at distance t of o on the geodesic [oξ). It is well known
that for the usual spherical distance, a ball B(ξ, r) in the boundary is comparable
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to a shadow Oo(B(ξ(− log r), R)). More precisely, there exists a universal constant
t1 > 0 such that for all ξ ∈ ∂Hd and 0 < r < 1, one has

Oo(B(ξ(− log r + t1), 1)) ⊂ B(ξ, r) ⊂ Oo(B(ξ(− log r − t1), 1))

Denote by d(ξ, t) the distance d(ξ(t),Γ.o). By assumption (in the application this
will be given by Lemma 4.2), for ν-almost all ξ ∈ ∂Hd and 0 < r < 1 small
enough, the quantity d(ξ,− log r± t1) ≤ t1 + d(ξ,− log r) is negligible compared to
t = − log r. Let γ ∈ Γ be an element minimizing this distance d(ξ, t). It satisfies
obviously |d(o, γo)− t| ≤ d(ξ, t). Observe that, by a very naive inclusion, using just
1 ≤ 1 + (C + 1)d(ξ, t),

Oo(B(ξ(t− t1), 1) ⊂ Oo(B(γ.o, 1 + d(ξ, t− t1))

Now, using the Γ-invariance properties of the probability measure ν, and the fact
that for η ∈ Oo(B(γ.o, 1+d(ξ, t−t1)), the quantity |−βη(o, γo)+d(o, γ.o)−2d(ξ, t)|
is bounded by some universal constant c, one can compute

ν(B(ξ, r)) ≤ ν(Oo(B(γ.o, 1 + d(ξ, t− t1))))

=

∫
Oo(B(γ.o,1+d(ξ,t−t1)))

e−δΓβη(o,γo)dγ∗ν(η)

≤ eδΓc e−δΓd(o,γo)+2δΓd(ξ,t)γ∗ν(Oo(B(γ.o, 1 + d(ξ, t− t1))))

≤ eδΓc e−δΓt+2δΓd(ξ,t)

Recall that t = − log r. Up to some universal constants, we deduce that

ν(B(ξ, r)) ≤ rδΓe2δΓ d(ξ,− log r)(1)

It follows immediately that dim ν ≥ δΓ − 2limd(ξ,t)
t . By lemma 4.2 below, under

the assumption that µ-a.s. d(v,t)
t → 0, we have dim ν ≥ δΓ.

The other inequality follows easily from the classical version of Sullivan’s Shadow
Lemma, or from the well known fact that δΓ is the Hausdorff dimension of the radial
limit set, which has full ν-measure. �

Lemma 4.2. The following assertions are equivalent, and hold when µ is finite.

• for µ-a.e. x ∈ FM , one has

lim
t→+∞

d(x,xat)

t
= 0 .

• for λ-a.e. x ∈ FM , one has

lim
t→+∞

d(x,xat)

t
= 0 .

• for mBM or mBR a.e. v ∈ T 1M , one has

lim
t→+∞

d(v, gtv)

t
= lim
t→+∞

d(v, t)

t
= 0 .

• ν-almost surely,

lim
t→+∞

d(ξ(t),Γ.o)

t
= lim
t→+∞

d(ξ, t)

t
= 0 .
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When Γ is geometrically finite, a much better estimate is known thanks to Sul-
livan’s logarithm law (see [31], [29], [15, Theorem 5.6]), since the distance grows
typically in a logarithmic fashion. However, this may not hold for geometrically
infinite manifolds with finite µ. In any case, the above sublinear growth is sufficient
for our purposes.

Proof. First, observe that all statements are equivalent. Indeed, first, as mBR and
mBM differ only by their conditionals on stable leaves, and the limit d(v, gtv)/t
when t→ +∞ depends only on the stable leaf W ss(v), this property holds (or not)
equivalently for mBR and mBM .

Moreover, as FM is a compact extension of T 1M , this property holds (or not)
equivalently for λ on FM and mBR on T 1M or µ on FM and mBM on T 1M .

As this limit depends only on the endpoint v+ of the geodesic, and not really on
v, the product structure of mBR implies that this property holds true equivalently
for mBM -a.e. v ∈ T 1M and ν almost surely on the boundary.

Let us prove that all these equivalent properties indeed hold when µ is finite.
Let f(v) = d(v, 1) − d(v, 0). As the geodesic flow is 1-lipschitz, this map is

bounded, and therefore µ-integrable. Thus, Snf
n converges a.s. to

∫
f dµ, and

therefore d(v, t)/t→
∫
f dµ, µ-a.s.

It is now enough to show that this integral is 0. This would be obvious if we
knew that the distance d(v, 0) is µ-integrable.

Divide Ω in annuli Kn = {v ∈ T 1M, d(π(v), o) ∈ (n, n + 1)}, and set Bn =
T 1B(o, n+ 1). If an = µ(Kn), we have

∑
n an = 1.

Observe that
∫
f dµ = limn→∞

∫
Bn

f dµ.

It is enough to find a sequence nk → +∞ such that these integrals are arbitrarily
small. Observe that∫

BN

f(x)dµ(x) =

∫
g1(BN )

d(v, 0)dµ−
∫
BN

d(v, 0)dµ

But now, the symmetric difference between g1BN andBN is included inKN∪KN+1.
As d(v, 0) ≤ N + 2 in this union, we get∣∣∣∣∫

BN

f(x)dµ(x)

∣∣∣∣ ≤ (N + 2)(aN + aN+1).

As
∑
an = 1, there exists a subsequence nk → +∞, such that (nk + 2)(ank +

ank+1)→ 0. This proves the lemma. �

4.3. Energy of the measure ν. The t-energy of ν is defined as

It(ν) =

∫ ∫
Λ2

1

|ξ − η|t
dν(ξ) d ν(η) .

The finiteness of a t-energy is sufficient to get the absolute continuity of the pro-
jection of ν on almost every k-plane of dimension k < t. However, a weaker form
of finiteness of energy will be sufficient for our purposes, namely

Lemma 4.3. For all t < dim ν, there exists an increasing sequence (Ak)k≥0 such
that It(ν|Ak) <∞, and ν(∪kAk) = 1.
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Proof. When t < dim ν, choose some t < t′ < dim ν. One has, for ν-almost all x,
and r small enough, ν(B(x, r)) ≤ Cst.rt′ . It implies the convergence of the integral∫

Λ

1

|ξ − η|t
d ν(η) = t

∫ ∞
0

ν(B(ξ, r))

rt−1
dr <∞

Therefore, the sequence of sets AM = {x ∈ ∂Hn,
∫

ΛΓ

1
|ξ−η|t d ν(η) ≤ M} is an

increasing sequence whose union has full measure. And of course, It(ν|AM ) <
∞. �

It is interesting to know when the following stronger assumption of finiteness of
energy is satisfied. In [23], when dimN = 2 and dimU = 1, Mohammadi and Oh
used the following:

Lemma 4.4. If Γ is convex-cocompact and δ > d−1−dimU then Id−1−dimU (ν) <
∞.

Proof. For ξ ∈ ΛΓ, and k ≥ 1, define Ak = {η ∈ ∂Hd, |ξ − η| ∈]2−k, 2−k+1]}, and
compute ∫

ΛΓ

1

|ξ − η|dimN−dimU
d ν(η) ≤

∑
k∈N∗

2k(dimN−dimU)ν(Ak)

Denote by ξk log 2 the point at distance k log 2 of o on the geodesic ray [oξ). As
Γ is convex-cocompact, Ω is compact, so that ξk log 2 is at bounded distance from
Γo. Sullivan’ Shadow lemma implies that, up to some multiplicative constant,
ν(Ak) ≤ ν(B(ξ, 2−k+1)) ≤ Cst.2−kδ. We deduce that, up to multiplicative con-
stants (independent of ξ),∫

ΛΓ

1

|ξ − η|dimN−dimU
d ν(η) ≤

∑
k

2k(dimN−dimU−kδ)

If δ > dimN − dimU , the above series converges, uniformly in ξ ∈ ΛΓ, so that the
integral

∫ ∫
Λ2

Γ

1
|ξ−η|dimN−dimU d ν(η)d ν(ξ) is finite, and the Lemma is proven. �

As mentioned before, the reason we have to be interested in these energies is the
following version of Marstrand’s projection theorem, see for example [19, thm 9.7].

Theorem 4.5. Let ν1 be a finite measure with compact support in Rm, such that
It(ν1) <∞, for some 0 < t < m. For all integers k < t, and almost all k-planes P
of Rm, the orthogonal projection (ΠP )∗ν1 of ν1 on P is absolutely continuous w.r.t.
the k-dimensional Lebesgue measure of P . Moreover, its Radon-Nikodym derivative
satisfies the following inequality∫

Gmk

∫
P

(
d(ΠP )∗ν1

dLP

)2

dLP dσmk < c.Ik(ν1)

where σmk is the natural measure on the Grassmannian Gmk , invariant by isometry,
and c some constant depending only on k and m.

4.4. Conservativity/ Dissipativity of λ. In this section, we aim to prove The-
orem 1.4.

The measure λ is N -invariant (and N -ergodic), therefore, U -invariant for all
unipotent subgroups U < N .

It is U -conservative iff for all sets E ⊂ FM with positive measure, and λ-almost
all frames x ∈ FM, the integral

∫∞
0

1E(xu)du diverges, where du is the Haar
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measure of U . In other words, it is conservative when it satisfies the conclusion of
Poincaré recurrence theorem (always true for a finite measure).

It is U -dissipative iff for all sets E ⊂ FM with positive finite measure, and
λ-almost all frames x ∈ FM, the integral

∫∞
0

1E(xu)du converges.
A measure supported by a single orbit can be both ergodic and dissipative.

In other cases, ergodicity implies conservativity [1]. Therefore, Theorem 1.3 im-
plies that when the Bowen-Margulis-Sullivan measure is finite, and δΓ > dimN −
dimU = d− 1− dimU , the Burger-Roblin measure λ is U -conservative.

In the case δΓ < dimN−dimU , we prove below (Theorem 4.6) that the measure
λ is U -dissipative. Unfortunately, our method does not work in the case δΓ =
dimN − dimU . We refer to works of Dufloux [8] and [7] for the proof that

• When µ is finite and Γ Zariski dense, the measure µ is U -dissipative iff
δΓ ≤ dimN − dimU

• When moreover Γ is convex-cocompact, if δΓ = dimN − dimU , then λ is
U -conservative.

Theorem 4.6. Let Γ be a discrete Zariski dense subgroup of G = SOo(d, 1) group
and U < G a unipotent subgroup. If δ < d − 1 − dimU , then for all compact sets
K ⊂ FM and λ-almost all x ∈ FM the time spent by xU in K is finite.

Let d = dimU . Let r > 0. Let Nr ⊂ N (resp. Ur ⊂ U) be the closed ball of
radius r > 0 and center 0 inN (resp. in U). LetKr = K.Nr be the r-neighbourhood
of K along the N -direction.

Let µxN be the conditional measure on W ss(x) = xN of the Bowen-Margulis
measure.

xUNr x x.U

ΛΓ

x.N

Γ.K̃r

Figure 5. Intersection of a U -orbit with the Γ-orbit of a compact

set K̃r

Lemma 4.7. For all compact sets K ⊂ Ω, and all x ∈ E , if Kr = K.Nr, for all
r > 0, there exists c = c(x, r,K) > 0 such that∫

U

1K2r (xu)du ≤ c µxN (xUN2r).
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Proof. First, Flaminio-Spatzier established in [12, Cor. 1.4] that all proper alge-
braic sets of ∂Hd have ν-measure zero. In all their statements, they assume that the
group Γ is geometrically finite and Zariski dense. But in the proof of this precise
result, they only use that Γ is Zariski dense and the Bowen-Margulis measure is
ergodic.

In particular, all k-dimensional spheres, for 1 ≤ k ≤ d− 2 have ν-measure zero.
One easily deduces that for all ρ > 0, the map ξ ∈ ΛΓ → ν(B(ξ, ρ)) is continuous.

The image of a Euclidean sphere on xN through the map xn→ (xn)− ∈ ∂Hd is
also a sphere, therefore of ν-measure zero. Recall that µxN is equivalent (through
this map) to the measure ν, with a continuous density. We deduce that any sphere
of xN has µxN -measure zero, in particular, µxN (∂xNr) = 0, and that the map
x ∈ Ω 7→ µxN (xNr) is continuous.

The above map is also positive on Ω, and therefore bounded away from 0 and +∞
on any compact set. Let 0 < cr = infz∈K4r µzN (zNr) ≤ Cr = supz∈K4r

µzN (zNr) <
∞.

Let us work now on G and not on Γ\G. Fix a frame x ∈ Ẽ ⊂ FHd. For
all y ∈ xU ∩ ΓKNr, choose some z ∈ yNr ∩ ΓK and consider the ball zNr.
Choose among them a maximal (countable) family of balls ziNr ⊂ xUN2r which
are pairwise disjoint. By maximality, the family of balls ziN4r cover xUNr∩ΓKNr.

We deduce on the one hand∫
U

1Kr (xu)du ≤
∑
i

µxN (ziN4r) ≤ C4r|I| .

On the other hand, as the balls ziNr are disjoint,

µxN (xUN2r) ≥
∑
i

µxN (ziNr) ≥ cr|I|.

This proves the lemma. �

To prove Theorem 4.6, it is therefore sufficient to prove the following lemma.

Lemma 4.8. Assume that δΓ < dimN − dimU . Then for all x ∈ E such that
d(x,xat)

t → 0 when t→ +∞, we have∫
M

µxmN (xmUNr)dm <∞.

Indeed, Lemma 4.2 ensures that the assumption of Lemma 4.8 is satisfied λ-
almost surely. And by Lemma 4.7, its conclusion implies that for λ-a.e. x ∈ E and
almost all m ∈M , the orbit xmU does not return infinitely often in a compact set
K. As λ is by construction the lift to FM of mBR on T 1M , with the Haar measure
of M on the fibers, this implies that for λ-almost all x, the orbit xmU does not
return infinitely often in a compact set K. This implies the dissipativity of λ w.r.t.
the action of U , so that Theorem 4.6 is proved.

Proof. Recall first that for n ∈ N not too small, one has dµxN (xn) ' |n|2δdν((xn)−).
We want to estimate the integral

∫
M
µxmN (xmUNr)dm.

First, observe that the measure µxN on xN does not depend really on the orbit
xN , in the sense that it is the lift of a measure on W ss(π1(x)) through the inverse
of the canonical projection y ∈ xN → π1(y) from xN to W ss(π1(x)). Therefore,
one has µxmN (xmUNr) = µxN (xmUm−1Nr).
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Thus, by Fubini Theorem, one can compute :

F (x) =

∫
M

µxmN (xmUNr)dm

=

∫
M

µxN (xmUm−1Nr)dm

=

∫
M×N

1m∈M,mUm−1∩nNr 6=∅(m)dmdµxN (n)

Observe that mUm−1 is a k-dimensional plane of the d − 1-dimensional space N ,
inducing a k − 1-dimensional space of the unit sphere N1 of N . Moreover, it
intersects nNr if and only if it intersects a r/|n|-neighbourhood of n/|n|, denoted
by N1

r/|n| in this unit sphere. Therefore, the above integral equals∫
M×N

1m∈M,mUm−1∩ n
|n|N

1
r/|n| 6=∅

(m)dmdµxN (n)

In the d− 2-dimensional sphere N1, the probability that a k− 1-dimensional space
intersects a ball of radius ρ is comparable, up to some geometric constant, to
ρd−2−(k−1) = ρdimN−dimU , see for example [19, chapter 3]. Therefore, up to a
multiplicative constant, the above integral is bounded from above by

'
∫
N̂0

rdimN−dimU |n|dimU−dimNdµxN (n)

'
∫
N̂0

rdimN−dimU |n|dimU−dimN+2δdν((xn)−)

where N̂t = {n ∈ N ; |n| ≥ 2t}.
Therefore, up to some multiplicative constant, we get

F (x) ≤
∑
l≥0

2l(dimU−dimN+2δ)ν((xN̂l)
−) .

Now, observe that (xN̂l)
− is comparable to the ball of center x+ and radius 2−l

on the boundary. By Inequality (1), we deduce that

ν((xN̂l)
−) ≤ 2−δleδΓd(xal log 2,Γo) .

For all ε > 0, there exists l0 ≥ 0, such that d(xal log 2) ≤ εl log 2 for l ≥ l0. Thus,
up to the l0 first terms of the series, we get the following upper bound for F (x).

F (x) ≤
l0−1∑
l=0

· · ·+
∑
l≥0

2l(dimU−dimN+δ)eδΓd(xal log 2,Γo)

≤
l0−1∑
l=0

· · ·+
∑
l≥l0

2l(dimU−dimN+δ+εδ)

Thus, if δ < dimN−dimU , we can choose ε > 0 so that dimU−dimN+δ+εδ <
0, and F (x) is finite. �

Remark 4.9. Observe that the above argument, in the case δ + dimU = dimN ,
would lead to the fact that∫

M

µxmN (xmUNr)dm =∞,
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which is not enough to conclude to the conservativity, that is that almost surely,
µxmN (xmUNr) = +∞. We refer to the works of Dufloux for a finer analysis in this
case.

4.5. Equivalence of the Bowen-Margulis-Sullivan measure and the Burger-
Roblin measure for invariants sets. As claimed in the introduction, we reduce
the study of ergodicity of the Burger-Roblin measure λ to the ergodicity of the
Bowen-Margulis-Sullivan measure µ. The rest of the section is devoted to the proof
of the following Proposition:

Proposition 4.10. Assume that Γ is Zariski-dense. If µ finite and δΓ + dim(U) >
d − 1, then for any U -invariant Borel set E, we have λ(E) > 0 if and only if
µ(E) > 0.

We denote by B the Borel σ-algebra of E , and IU ⊂ B the sub-σ-algebra of
U -invariant sets. The first part of the proof of Proposition 4.10 is the following.

Lemma 4.11. Assume that Γ is Zarisi-dense in SOo(d, 1) and that µ is finite. If
δ > dimN − dimU and E is a Borel U -invariant set such that µ(E) > 0, then
λ(E) > 0.

Proof. Let E be a Borel U -invariant set with µ(E) > 0. It is sufficient to show

that λ̃(Ẽ) > 0. Let x0 = (x+
0 , x

−
0 , tx0

) be a frame in the support of the (non-zero)
measure 1Ẽµ̃, and F be a small neighbourhood of x0. Denote by H(x+, tx) the

horosphere passing through the base-point of the frame x. The measure µ̃(Ẽ ∩ F )
can be written

µ̃(Ẽ ∩ F ) =

∫
FΛΓ×R

(∫
H(x+,t)

1Ẽ∩F (x+, x−, t) .gdν(x−)

)
dν̃(x+)dtx,

where g is a positive continuous function, namely the exponential of some Busemann
functions, and ν̃ the M -invariant lift of ν to FΛΓ. The main point is that it is
positive, so for a set J ⊂ FΛΓ×R of positive ν̃ ⊗ dt measure, for any (x+, tx) ∈ J ,
the set

EFx+,t = {x− : (x+, x−, tx) ∈ Ẽ ∩ F, },
has positive ν-measure.

∂Hd \ {x+}

x.N
supp(µx.N )

x
Ẽ ∩ xV

x.V

Ẽ ∩ xN

Figure 6
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Since similarly,

λ̃(Ẽ) =

∫
FΛΓ×R

(∫
H(x+,tx)

g′.1Ẽ(x+, x−, tx)dL(x−)

)
dν̃(x+)dtx,

with g′ > 0, it is sufficient to show that for a subset of (x+, tx) ∈ J of positive
measure, the set

Ex+,t = {x− : (x+, x−, tx) ∈ Ẽ, }
has positive Lebesgue L-measure.

On each horosphere H(x+, tx), we wish to use Marstrand’s projection Theorem,
and therefore to use an identification of the horosphere with Rd−1. A naive way
would be to say that H(x+, tx) is diffeomorphic to xN , and therefore to N ' Rd−1.
However, it will be more convenient to use an identification of these horospheres
with N ' Rd−1 which does not depend on a frame x in π−1

1 (H(x+, tx)).
In order to obtain these convenient coordinates, we fix a smooth section s from

a neighbourhood of x+
0 to F∂Hd. If x ∈ F , the horosphere H(x+, tx) can be iden-

tified (in a non-canonical way) with N the following way: let n ∈ N , we associate
to it the base-point of (s(x+), x−0 , tx)n. This way, the identification does depend
only on the MN -orbit of x, that is depends on the horosphere only.

For x+ ∈ FΛΓ, define m = m(x+) ∈ M by the relation x+ = s(x+)m. If

x ∈ Ẽ, then so does xu = (s(x+)m,x−0 , tx)u = (s(x+), x−0 , tx)mu, which has the
same base-point as (s(x+), x−0 , tx)mum−1. This means that the set Ex+,t, viewed
as a subset of N , is invariant by translations by the subspace mUm−1 in these
coordinates. From now on, Ex+,t will always be seen as a subset of N .

Let V be the orthogonal complement of U in N , and ΠmVm−1 : N → mVm−1

be the orthogonal projection onto mVm−1. What we saw is that the set Ex+,t

is a product of mUm−1 and ΠmVm−1(Ex+,t). Clearly, it contains the product of

mUm−1 and ΠmVm−1(EFx+,t), so it is of positive Lebesgue V -measure as soon as

ΠmVm−1(EFx+,t) has positive Lebesgue measure in mVm−1.

The strategy is now to use the projection Theorem 4.5 on each horosphere to de-
duce that ΠmVm−1(EFx+,t) is of positive Lebesgue measure for almost every m ∈M .

Unfortunately, we cannot apply it to the measure 1EF
x+,t

ν directly, since the set

EFx+,t depends on the orientation m of the frame x+ = s(x+)m (and not only on

the Horosphere H(x+, tx)), so it depends on M .

By Lemma 4.3, we can find a subset L ⊂ ΛΓ, such that ν|L has finite dim(N)−
dim(U)-energy, and EFx+,t ∩ L has positive ν-measure for any (x+, t) ∈ J ′, where

J ′ ⊂ J is of positive ν̃ ⊗ dt- measure.

One can moreover assume that for every horosphere H(x+, tx) with x ∈ F , L
lies in a fixed compact set of N using both identifications of the horosphere with
∂Hd and N . Notice that these identifications are smooth maps, so the finiteness of
the energy of ν|L does not depend on the model metric space chosen.
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By Theorem 4.5, applied on each horosphere H(x+, t) ' N = U ⊕ V , the or-
thogonal projection (ΠmVm−1)∗ν|L is m-almost surely absolutely continuous with

respect to the Lebesgue measure on mVm−1. But since 1EF
x+,t

ν|L � ν|L, we have

for almost every m

(ΠmVm−1)∗(1EF
x+,t

ν|L)� (ΠmVm−1)∗ν|L � LmVm−1 .

This forces the projection set ΠmVm−1EFx+,t to be of positive LmVm−1 -measure

m-almost surely, for those m such that (s(x+)m, t) ∈ J ′. �

The second step of the proof is the following.

Lemma 4.12. Assume that Γ is Zariski-dense in SOo(d, 1), that µ is ergodic and
conservative, and δ > dimN − dimU . If E is a Borel U -invariant set such that
µ(E) = 1, then λ(E4E) = 0.

Proof. First, pick some element a ∈ A whose adjoint action has eigenvalue log(λa) >
0 on n such that ana−1 = λan for all n ∈ N .

Replacing E by ∩k∈ZE.ak (another set of full µ-measure), we can freely assume
that E is a-invariant.

By Lemma 4.11, we already know that λ(E) > 0. As above also, let V ⊂ N be
a supplementary of U in N . As λ(E) > 0, we know that for λ-almost all x ∈ E,
the set V (x, E) = {v ∈ V,xv ∈ E} has positive V -Lebesgue (Haar) measure dv.

The Lebesgue density points of V (x, E) have full dv-measure. Recall that Vt is
the ball of radius t in V .

Let ε ∈ (0, 1), and define for all x ∈ E (not only x ∈ E)

Fε,E(x) = sup

{
T > 0 : ∀t ∈ (0, T ),

∫
V

1xVt∩Edv ≥ (1− ε)|Vt|
}
,

with the convention that it is zero if no such T exists; it may take the value +∞.
Observe that Fε,E is a U -invariant map, because E is U -invariant.

Since the Lebesgue density points of V (x, E) have full dv-measure, then for λ-
almost all x ∈ E, and dv-almost all v ∈ V (x, E), Fε,E(xv) > 0. Moreover, this
statement stays valid for other U -invariant sets E′ of positive λ-measure.

We claim that for µ-almost every x ∈ E, Fε,E(x) > 0. Assuming the contrary,

E′ = F−1
ε,E(0)∩E is a U -invariant set of positive µ-measure, so by Lemma 4.11, it is

also of positive λ-measure. As E′ ⊂ E, Fε,E′ ≤ Fε,E , so that the function Fε,E′ is
identically zero on E′. But there exists x ∈ E′ and v ∈ V (x, E′) such that xv ∈ E′
(by definition of V (x, E′)) and Fε,E′(xv) > 0, by the previous consideration of
Lebesgue density points, leading to an absurdity.

We will now show that Fε,E is in fact infinite, µ-almost surely. First, the clas-
sical commutation relations between A and N (and therefore A and V ⊂ N) give
aVTa

−1 = VλaT . Observe also that,by a-invariance of E,

V (xa,E) = {v,xav ∈ E} = {v ∈ V,xava−1 = x.(λa.v) ∈ E} = λ−1
a V (x, E).
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Therefore, Fε,E(xa) = λaFε,E(x), i.e. it is a function increasing along the orbits
of an ergodic and conservative measure-preserving system. This situation is con-
strained by the conservativity of µ. Indeed, assume there exists t1 < t2 such that
µ(F−1

ε,E(t1, t2)) > 0. Then for all k large enough (namely s.t. λka > t2/t1), we have(
F−1
ε,E(t1, t2)

)
ak ∩

(
F−1
ε,E(t1, t2)

)
= ∅,

in contradiction to the conservativity of µ w.r.t. the action of a.

This shows that Fε,E(x) = +∞ for µ-almost all x ∈ E .

Define now IE = ∩j∈N∗F−1
1/j,E(+∞). It is a U -invariant set of full µ-measure as

a countable intersection of sets of full µ-measure. Therefore λ(IE) > 0 by Lemma
4.11. By definition of Fε,E , IE consists of the frames x such that V (x, E) is of full
measure in V , a property that is V -invariant. Hence IE is N -invariant of positive
λ-measure, so by ergodicity of (N,λ), it is of full λ-measure.

Unfortunately, we know that E ⊂ IE but IE does not have to be a subset of
E. To be able to conclude the proof (i.e. show that λ(Ec) = 0), we consider the
complement set E′ = Ec, and assume it to be of positive λ-measure. For any
x ∈ IE and v ∈ V , by definition of IE , Fε,Ec(xv) = 0. So the intersection of IE
and Ec is of zero measure, and thus λ(Ec) = 0.

�

Let us now conclude the proof of Proposition 4.10. Let E be a U -invariant set.
We already know that µ(E) > 0 implies λ(E) > 0. For the other direction, assume
that µ(E) = 0, so that µ(Ec) = 1. The above Lemma applied to Ec therefore
would imply Ec = E λ-almost surely, so that λ(E) = 0. Thus, λ(E) > 0 implies
µ(E) > 0.

5. Ergodicity of the Bowen-Margulis-Sullivan measure

5.1. Typical couples for the negative geodesic flow. Let us say that a couple
(x,y) ∈ Ω2 is typical (for µ⊗µ) if for every compactly supported continuous function
f ∈ C0

c (E2), the conclusion of the Birkhoff ergodic Theorem holds for the couple
(x,y) in negative discrete time for the action of a1, more precisely:

lim
N→+∞

1

N

N−1∑
k=0

f(xa−k,ya−k) = µ⊗ µ(f).

Write T for the set of typical couples, which is a subset of the set of generic couples.

Let us explain briefly why this is a set of full µ ⊗ µ-measure. Since the action
of A on (Ω, µ) is mixing, so is the action of a−1. A fortiori, the action of a−1 on
(Ω, µ) is weak-mixing, so the diagonal action of a−1 on (Ω2, µ ⊗ µ) is ergodic. It
follows from the Birkhoff ergodic Theorem applied to a countable dense subset of
the separable space (C0

c (E2), ‖.‖∞) that µ⊗ µ-almost every couple is typical.

As the set of generic couples used in the topological part of the article (see
section 3), the subset of typical couples enjoys the same nice invariance properties

by ((M ×A) nN−)
2
. That is, (x,y) ∈ (FHd)2 being the lift of a typical couple

only depends on (x−, y−) in Hopf coordinates. This follows from the fact that M×A
acts isometrically on C0

c (E2) and commutes with a−1, so T is (M ×A)2-invariant,
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and the fact that, since elements of C0
c (E2) are uniformly continuous, two orbits in

the same strong unstable leaf have the same limit for their ergodic averages.

5.2. Plenty of typical couples on the same U-orbit. We will say that there are
plenty of typical couples on the same U -orbit if there exists a probability measure
η on Ω2 such that the three following conditions are satisfied:

(1) Typical couples are of full η-measure, that is η(T ) = 1.
(2) Let p1(x,y) = x, p2(x,y) = y be the coordinates projections. We assume

that, for i = 1, 2, (pi)∗η is absolutely continuous with respect to µ. We
denote by D1, D2 their respective Radon-Nikodym derivatives, so that
(pi)∗η = Diµ. We assume moreover that D2 ∈ L2(µ).

(3) Let ηx and ηy be the measures on Ω obtained by disintegration of η along
the maps pi, i = 1, 2 respectively. More precisely, for any f ∈ L1(η),∫

Ω2

fdη =

∫
Ω

(∫
Ω

f(x,y)dηx(y)

)
dµ(x) =

∫
Ω

(∫
Ω

f(x,y)dηy(x)

)
dµ(y).

Note that ηx (resp ηy) have total mass D1(x) (resp. D2(y)). Whenever this
makes sense, define the operator Φ which to a function f on Ω associates
the following function on Ω:

Φ(f)(x) =

∫
Ω

f(y)dηx(y).

The condition (3) here is that if f is a bounded, measurable U -invariant
function, then

Φ(f)(x) = f(x)D1(x)

for µ-almost every x ∈ Ω. Note that even if f is bounded, Φ(f) may not
be defined everywhere.

Remark 5.1. Observe that we do not require any invariance of the measure η.
Condition (1) replaces the A-invariance, whereas Condition (3) establish a link
between the structure of U -orbits and η.

Remark 5.2. Let us comment a little bit on condition (3): it is obviously satisfied
if, for example, ηx is supported on xU for almost every x, that is, η is supported
on couples of the form (x,xu) with u ∈ U . It will be the case for the measures η
we will construct in section 5.4 and 5.5 in dimension 3 and higher respectively.
A good example of a measure η satisfying (2) and (3) is the following: let (µx)x∈Ω

be the conditional measures of µ with respect to the σ-algebra of U -invariant sets,
and define η as the measure on Ω2 such that ηx = µx by the above disintegration
along p1. However, it seems difficult to prove directly that it also satisfies (1). This
example also highlights that condition (3) is in fact weaker than requiring that ηx
is supported on xU .

Remark 5.3. The condition that the Radon-Nikodym derivativesDi be in L2 is not
restrictive. Indeed, we will construct a measure η′ satisfying all above conditions
except this L2-condition. The Radon-Nikodym derivatives Di are integrable, so
that they are bounded on a set of large measure. We will simply restrict η′ to this
subset, and normalize it, to get the desired probability measure η.

The interest we have in finding plenty of typical couples on the same U -orbit is
due to the following key observation.
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Lemma 5.4. To prove Theorem 1.3, it is sufficient to prove that there are plenty of
typical couples on the same U -orbit, that is that there exists a probability measure
η satisfying (1),(2) and (3).

The next section is devoted to the proof of this observation. The idea is the
following: suppose g is a bounded U -invariant function. We aim to prove that g
is constant µ-almost everywhere. Consider the integral of the ergodic averages for
the function g ⊗ g on Ω2 with respect to η,

JN =

∫
Ω2

1

N

N−1∑
k=0

g ⊗ g(xa−k,ya−k)dη(x,y).

If η is supported only on couples on the same U -orbit, then since g is constant on
U -orbits, g(xa−k) = g(ya−k) for η-almost every (x,y), so

JN =

∫
Ω2

1

N

N−1∑
k=0

g(xa−k)2dη(x,y)

=

∫
Ω

1

N

N−1∑
k=0

g(xa−k)2D1(x)dµ(x) =

∫
Ω

g(x)2

(
1

N

N−1∑
k=0

D1(xak)

)
dµ(x),

so JN →
∫

Ω
g2dµ by the Birkhoff ergodic Theorem applied to D1. Observe that

Property (3) is used in the first equality, and Property (2) in the second.
For the sake of the argument, assume that g is moreover continuous with com-

pact support. Then by Condition (1) on typical couples, since g ⊗ g is continuous
with compact support, the same sequence JN tends to

∫
Ω2 g⊗gdµ⊗µ = (

∫
Ω
gdµ)2.

Hence g has zero variance, so is constant. Unfortunately, one cannot assume g
to be continuous, nor approximate it by continuous functions in L∞(µ). The reg-
ularity Condition (2) that D2 ∈ L2 will nevertheless allow us to use continuous
approximations in L2(µ).

5.3. Proof of Lemma 5.4. We first need to collect some facts about the operator
Φ, and its behaviour in relationship with ergodic averages for the negative-time
geodesic flow a−1.

Lemma 5.5. The operator Φ is a continuous linear operator from L2(µ) to L1(µ).

As we will see, Property (2) of the measure η is crucial here.

Proof. Let f ∈ L2(µ), we compute

‖Φ(f)‖L1(µ) =

∫
Ω

|Φ(f)(x)| dµ(x) ≤
∫

Ω

(∫
Ω

|f(y)|dηx(y)

)
dµ(x),

≤
∫

Ω2

|f(y)|dη(x,y) ≤
∫

Ω

|f(y)|
(∫

Ω

dηy(x)

)
dµ(y),

≤
∫

Ω

|f(y)|D2(y)dµ(y) ≤ ‖f‖L2(µ) ‖D2‖L2(µ).

�
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Given f, g two functions on Ω, write f⊗g for the function f⊗g(x,y) = f(x)g(y)
on Ω2. Denote by 〈f, g〉µ =

∫
Ω
f.g dµ the usual scalar product on L2(µ). For

f ∈ L∞(µ) and g ∈ L2(µ), a simple calculation gives∫
Ω2

f ⊗ g dη = 〈f,Φ(g)〉µ.

Let Ψ be the Koopman operator associated to a1, that is Ψ(f)(x) = f(xa1).
The Ergodic average of a tensor product can be written in terms of Φ and Ψ the

following way:∫
Ω2

1

N

N−1∑
k=0

f ⊗ g(xa−k,ya−k)dη(x,y) =
1

N

N−1∑
k=0

〈Ψ−k(f),Φ(Ψ−k(g))〉µ,

= 〈f, 1

N

N−1∑
k=0

Ψk ◦ Φ ◦Ψ−k(g)〉µ

= 〈f,ΞN (g)〉µ,

where ΞN is the operator ΞN = 1
N

∑N−1
k=0 Ψk◦Φ◦Ψ−k. Since the Koopman operator

is an isometry from Lq(µ) to Lq(µ) for both q = 1 and q = 2, the operator ΞN from
L2(µ) to L1(µ) has norm at most

‖ΞN‖L2→L1 ≤ ‖Φ‖L2→L1 .

Notice also that if f, g are continuous with compact support, the above ergodic
average converges toward 〈f, 1〉µ〈g, 1〉µ for η-almost every x, y, by Condition (1).
By the Lebesgue dominated convergence Theorem, we also have

(2) lim
N→∞

〈f,ΞN (g)〉µ = 〈f, 1〉µ〈g, 1〉µ.

Let g be a bounded measurable, U -invariant function. Since Ψ−k(g) is also
bounded and U -invariant, by property (3), we have

Φ(Ψ−k(g))(x) = g(xa−k)D1(x).

Therefore,

ΞN (g)(x) = g(x)

(
1

N

N−1∑
k=0

D1(xak)

)
.

By the Birkhoff L1-ergodic Theorem and boundedness of g, it follows that ΞN (g)
tends to g in L1(µ)-topology.

Our aim is to show that g has variance zero. Let (gn)n≥0 be a sequence of
uniformly bounded continuous functions with compact support converging to g in
L2(µ) (and hence also in L1(µ)). Let D > 0 be such that ‖gn‖∞ ≤ D for all n. For
n,N positive integers, we have

〈g, g〉µ − 〈g, 1〉2µ = 〈g − gn, g〉µ + 〈gn, g − ΞN (g)〉µ + 〈gn,ΞN (g − gn)〉µ
+
(
〈gn,ΞN (gn)〉µ − 〈gn, 1〉2µ

)
+
(
〈gn, 1〉2µ − 〈g, 1〉2µ

)
.

Therefore,
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∣∣〈g, g〉µ − 〈g, 1〉2µ∣∣ ≤‖g − gn‖1‖g‖∞ +D‖g − ΞN (g)‖1 +D‖ΞN‖L2→L1‖g − gn‖2
+
∣∣〈gn,ΞN (gn)〉µ − 〈gn, 1〉2µ

∣∣+ ‖g − gn‖1‖g + gn‖1.

First fix n and let N go to infinity. By what precedes, ΞN (g) converges to g in
L1 so that the second term vanishes. Since gn is continuous, by (2), the last but
one term of the upper bound vanishes. We obtain

∣∣〈g, g〉µ − 〈g, 1〉2µ∣∣ ≤ ‖g − gn‖1‖g‖∞ +D‖Φ‖L2→L1‖g − gn‖2 + 2D‖g − gn‖1.
We now let n go to infinity, and we get

〈g, g〉µ − 〈g, 1〉2µ = 0

Therefore, g has variance zero, so is constant.

5.4. Constructing plenty of typical couples : the dimension 3 case.

The candidate to be the measure η, in dimension 3. First, recall that N is identified
with Rd−1 = R2. Fix also an isomorphism U ' R, so that the set U+ of positive
elements is well defined.

Consider the map R̃ : Ω̃2 → Ω̃2 defined as follows. The image (x′,y′) of (x,y)
is the unique couple such that x′+ = x+ = y′+, x′− = x−, y′− = y−, tx′ = tx = ty,
and x+,y+ are the unique frames such that there exists u ∈ U+ with x′u = y′.

x−

x+

y+

y−

y′

x′

x−

x
y

x+

y+

y−

The map R

Figure 7. The alignement map R

Consider the restriction of this map to couples (x,y) inside some fundamental

domain for the action of Γ on Ω̃, so that we get a well defined map R : Ω2 → Ω2.
Define η as the image η := R∗(µ⊗ µ).

Observe that condition (1) in 5.2 is automatic, as being typical depends only on
x− and y−. Remark 5.2 shows that condition (3) is also automatic. By Remark
5.3, we only need to show that its projections (p1)∗η and (p2)∗η are absolutely
continuous w.r.t. µ. That is the crucial part of the proof. We do it in the next
sections.

The key assumption will of course be our dimension assumption on δΓ > dimN−
dimU . Then, we will try to follow the classical strategy of Marstrand, Falconer,
Mattila. However, a new technical difficulty will appear, because we will need to do
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radial projections on circles instead of orthogonal projections on lines. The length
of the proof below is due to this technical obstacle.

Projections. First of all, by lemma 4.3, we can restrict the measure ν to some sub-
set A ⊂ ΛΓ of measure as close to 1 as we want, with I1(ν|A) < ∞. In the sequel,
we denote by νA the measure restricted to A and normalized to be a probability
measure. Fix four disjoint compact subsets X+, X−, Y+, Y− of A ⊂ ΛΓ, each of pos-
itive ν-measure, and write νX+

, νX− , νY+
, νY− for the Patterson measures restricted

to each of these sets, normalized to be probability measures. Therefore, all their
energies I1(νX±) and I1(νY±) are finite.

In fact, the definition of the measure η will be slightly different than said above.

First, η̃ will be the image by the projection map R̃ defined above of the restriction

of µ̃ ⊗ µ̃ to the set of couples (x,y) ∈ Ω̃2, such that x± ∈ X± and y± ∈ Y±,
tx ∈ [0, 1], ty ∈ [0, 1]. Then η will be defined on Ω2 as the image of η̃.

Pick two distinct points outside X+, called ’zero’ and ’one’. For any x+ ∈ X+,
we identify ∂H3 \ {x+} to the complex plane C by the unique homography, say

hx
+

: ∂H3 → C ∪ {∞}, sending x+ to +∞, zero to 0 and one to 1. We get a well
defined parametrization of angles, as soon as x+ is fixed.

Remark 5.6. Observe that when x+ varies in the compact set X+, as 0 and 1 do
not belong to X+, all the quantities defined geometrically (projections, intersections
of circles, ...) vary analytically in x+.

In particular, if x ∈ Ω is a frame, the frame x+ in the boundary determines a
unique half-circle from x+ to x− in ∂H3, which is tangent to the first direction of
x+ at x+, and therefore, a unique half-line originating from x− in C ' ∂H3 \ {x+}.
We use therefore an angular coordinate θx ∈ [0, 2π) instead of x+.

Let ~uθ be the unit vector ei(θ+π/2) in the complex plane. Define the projection

πx
+

θ in the direction θ from ∂H3 \{x+} to itself as πx
+

θ (z) = z.~uθ. Observe that the
line R~uθ in C, orthogonal to θ, has a canonical parametrization, and a Lebesgue

measure, denoted by `x
+

θ .
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C ' ∂H3 \ {x+}

Y−

θ = θx

0 1

x−X−

πx
+

θ

~uθ

Figure 8. Angular parameter on C ' ∂H3 \ {x+}

Once again, the variations of x+ 7→ πx
+

θ and x+ 7→ `x
+

θ are as regular as possible.

For measures, it means that the Lebesgue measures `x
+

θ are equivalent one to an-
other when x+ varies, with analytic Radon-Nikodym derivatives in x+ in restriction
to any compact set of ∂Hd which does not contain x+.

Observe also that when x+ varies in X+, the distances dx
+

induced by the
complex metric on C ' ∂H3 \ {x+}, when restricted to the compact set X− ∪ Y−,
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are uniformly equivalent to the usual metric on ∂H3. In particular, if we denote by

Ix
+

1 the energy of a measure relatively to the distance dx
+

, there exists a constant
c = c(X+, X−, Y+) such that for all x+ ∈ X+,

1

c
I1(νA) ≤ Ix

+

1 (νX−) ≤ cI1(νA) and
1

c
I1(νA) ≤ Ix

+

1 (νY−) ≤ cI1(νA)(3)

Rephrasing Marstrand’s projection Theorem in dimension 2, we have:

Theorem 5.7. (Falconer, [10, p82], Mattila [20, th 4.5]) Assume that I1(νA) <∞.

Then for all fixed x+ ∈ X+, and almost all θ ∈ [0, π), the projection (πx
+

θ )∗νY −

(resp. (πx
+

θ )∗νX−) is absolutely continuous w.r.t `x
+

θ . Moreover, the map Hx+

defined as

Hx+

: (θ, ξ) ∈ [0, π)× R 7→ d(πx
+

θ )∗νY −

d`x
+

θ

(ξ)

belongs to L2([0, π) × R), and we have ‖Hx+‖2L2([0,π)×R) ≤ CI1(νA), with C a

universal constant which does not depend on x+ ∈ X+.
In particular, as the variation in x+ is analytic and X+ compact, the map

(x+, θ, ξ) → Hx+

θ (ξ) = Hx+

(θ, ξ) belongs to L2(X+ × [0, π] × R), with L2-norm
bounded by the same upper bound CI1(νA).

The same result is true when replacing Y − with X−.

Proof. Thanks to the comparison (3) between the different notions of energy, we

can replace Ix
+

1 (νX+
) by I1(νA), and get the desired result. �

Hardy-Littlewood Maximal Inequality. Let Hx+

θ be the map

Hx+

θ : ξ ∈ R.~uθ 7→
d(πx

+

θ )∗νY −

d`x
+

θ

(ξ)

Its maximal function is defined as

MHx+

θ (t) = sup
ε>0

1

2ε

∫ t+ε

t−ε

d(πx
+

θ )∗νY −

d`x
+

θ

(ξ)dξ = sup
ε>0

1

2ε
νY −({y ∈ Y −, πx

+

θ (y) ∈ [t−ε, t+ε]}) .

The strong maximal inequality of Hardy-Littlewood [14] with p = 2 on R (of
dimension 1) asserts that there exists C = C2,1 independent of θ such that for all
θ ∈ [0, π),

‖MHx+

θ ‖L2(R) ≤ C2,1‖Hx+

θ ‖L2(R)

We deduce that

‖MHx+

‖L2([0,π)×R) ≤
∫ π

0

C2
2,1‖Hx+

θ ‖2L2(R)dθ = C2
2,1‖Hx+

θ ‖2L2([0,π)×R) < +∞

The above also holds for the map Gx
+

defined by

Gx
+

θ : ξ ∈ R.~uθ 7→
d(πx

+

θ )∗νX−

d`x
+

θ

(ξ) ,

with the same constants.
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A geometric inequality. We want to show that the projections (pi)∗η on Ω are
absolutely continuous w.r.t. µ. We will first prove it for p1, and then observe that
for p2, the situation is completely symmetric, when reversing the role of x− and
y−.

Given a Borel set P = E+×E−×Et×Eθ ⊂ X+×X−× [0, 1]× [0, 2π), observe
that

(p1)∗η(P ) = µ̃⊗ µ̃({(x,y) ∈ Ω̃2, x+ ∈ E+, x
− ∈ E−, tx ∈ Et, y− ∈ Cx

+

(x−, Eθ) }

where Cx
+

(x−, Eθ) is the cone of center x− with angles in Eθ in the complex plane
C ' ∂H3 \ {x+}.

Similarly,

(p2)∗η(P ) = µ̃⊗ µ̃({(x,y) ∈ Ω̃2, x+ ∈ E+, y
− ∈ E−, tx ∈ Et, x− ∈ Cx

+

(y−, Eθ) } .

Lemma 5.8. To prove that (p1)∗η (resp. (p2)∗η) is absolutely continuous w.r.t. µ,
it is enough to show that there exists a nonnegative measurable map F1 (resp. F2)
such that for all rectangles P = E+ × E− × Et × Eθ ∈ X+ ×X− × [0, 1] × [0, 2π)
(resp. P = E+ × E− × Et × Eθ ∈ X+ × Y− × [0, 1]× [0, 2π) ) we have

(p1)∗η(P ) ≤
∫
P

F1(x+, x−, θ)dνX+(x+)dνX−(x−)dtdθ

and

(p2)∗η(P ) ≤
∫
P

F2(x+, y−, θ)dνX+(x+)dνY −(y−)dtdθ

with F1 ∈ L1(νX+ × νX− × [0, π]), and F2 ∈ L1(νX+ × νY− × [0, π))

Proof. It is clear that µ(P ) = 0 will imply (p1)∗η(P ) = 0 for all rectangles. As

they generate the σ-algebra of Ω̃ ∩ (X+ ×X− × [0, 1]× [0, π) it implies that (p1)∗η
is absolutely continuous w.r.t. µ. The proof is the same with p2. �

Let us show that such integrable maps F1 and F2 exist.
In fact, we will prove that for all given x+, Fi(x

+, .) is integrable. And the fact
that, as usual, the variation of all involved quantities in x+ is analytic will imply
that ‖Fi(x+, .)‖ is integrable also in x+.

As said above, for P = E+ × E− × Et × Eθ we have

(p1)∗η(P ) =

∫
E+×E−×Et

∫
Y −

1Cx+ (x−,Eθ)(y
−)dνY−(y−)dνX−(x−)dνX+

(x+)dt

Now, we wish to study the quantity νY −(Cx
+

(x−, Eθ)) in order to prove that,
x+ being fixed, the radial projection of νY − on the circle of directions around x− is
absolutely continuous w.r.t the Lebesgue measure dθ, and control the norm of the
Radon-Nikodym derivative, which a priori depends on, and needs to be integrable
in the variable x+.

It seems now appropriate to use Theorem 5.7 to conclude. Unfortunately, we
have to prove that a radial projection is absolutely continuous, whereas Theorem
5.7 deals with orthogonal projection in a certain direction. The Hardy-Littlewood
maximal L2-inequality will allow us to overcome this difficulty.

Denote by Θx+

(x−, y−) the angle in ∂H3 \ {x+} ' C at x− of the half-line from
x− to y−.

First, as the distance from X− to Y − is uniformly bounded from below, the cone

Cx
+

(x−, [θ0 − ε, θ0 + ε]) intersected with Y − is uniformly included in a rectangle
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of the form {y− ∈ Y −, |πx+

θ0
(y−) − πx

+

θ0
(x−)| ≤ c0ε}, for some uniform constant

depending only on the sets X± and Y±, and not on ε, x±, y±. In particular, the
following result holds.
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C = ∂H3 \ {x+}

x−

πx
+

θ0R.~uθ0

Cx
+

(x−, [θ0 − ε, θ0 + ε])

Cx
+

(x−, Eθ)

Y −

{y− ∈ Y −, |πx+

θ0
(y−)− πx+

θ0
(x−)| ≤ c0ε}

Figure 9. Radial versus orthogonal projections of νY −

Lemma 5.9. There exists a geometric constant c0 > 0 depending only on the sizes
and respective distances of the sets X± and Y±, such that

νY−(Cx
+

(x−, [θ0 − ε, θ0 + ε]) ∩ Y −) ≤ 2c0εMHx+

θ0 (πx
+

θ0 (x−))

Conclusion of the argument. The above inequality does not allow directly to con-
clude. Let us integrate it in θ, to recover the L2-norm of the maximal Hardy-
Littlewood function. The first inequality follows from the inclusion [θ0−ε, θ0 +ε] ⊂
[θ − 2ε, θ + 2ε] for θ in the first interval, the second inequality from Lemma 5.9.

νY−( Cx
+

(x−, [θ0 − ε, θ0 + ε]) ∩ Y −)

≤
∫ θ0+ε

θ0−ε
νY −({y− ∈ Y −,Θx+

(x−, y−) ∈ [θ − 2ε, θ + 2ε]}) dθ
2ε

≤ 4c0ε

∫ θ0+ε

θ0−ε
MHx+

θ (πx
+

θ (x−))
dθ

2ε

= 2c0

∫ θ0+ε

θ0−ε
MHx+

θ (πx
+

θ (x−)) dθ

Define F1(x+, x−, θ) as

F1(x+, x−, θ) = 2c0MHx+

θ

(
πx

+

θ (x−)
)

= 2c0 sup
ε>0

1

2ε

∫ πx
+

θ (x−)+ε

πx
+

θ (x−)−ε
Hx+

θ (t)dt .
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The absolute continuity of πx
+

θ w.r.t `θ, the Cauchy-Schwartz inequality and the
Hardy-Littlewood maximal inequality imply that

‖F1(x+, ., .)‖L1([X−×[0,π]) = 2c0

∫
X−

∫ π

0

MHx+

θ (πx
+

θ (x−))dνX−(x−)dθ

=

∫
R

∫ π

0

MHx+

θ (ξ)
d(πx

+

θ )∗νX−

d`x
+

θ

(ξ)dξdθ

≤ ‖MHx+‖L2(R×[0,π]) ×

∥∥∥∥∥d(πx
+

θ )∗νX−

d`x
+

θ

(ξ)

∥∥∥∥∥
L2(R×[0,π])

≤ C1‖Hx+

‖L2(R×[0,π]) × ‖Gx
+

‖L2(R×[0,π])

which is, by Projection Theorem 4.5, bounded from above by C2
1I1(νA)2 <∞.

The uniformity of the bound in x+ ∈ X+ allows to integrate once again the
above quantities and deduce that F1 ∈ L1(X− ×X+ × [0, π]).

Remark 5.10. This computation proves the following fact announced at the end of
the introduction, and maybe well known from experts. If two compactly supported
probability measures ν1, ν2 on the plane have finie 1-energy, then for ν1-almost every
x, the radial projection of ν2 on the unit circle around x is absolutely continuous
w.r.t. the Lebesgue measure on the circle.

5.5. The higher dimensional case. In higher dimension, the strategy of the
proof is similar. We want to build a measure η on Ω2 which gives positive measure
to plenty of couples on the same U -orbit.

We will build η from the measure µ⊗µ, to obtain a measure defined on (a subset
of) {(x,y) ∈ Ω2, xU = yU}, which gives full measure to typical couples (x,y)
(whose negative orbit satisfies Birkhoff ergodic theorem for the diagonal action of
a−1, and whose projections (p1)∗η and (p2) ∗ η on Ω are absolutely continuous
w.r.t. µ.

Contrarily to the dimension 3 case, we will not define any ”alignment map”.
Indeed, given a typical couple (x,y), one can begin as in dimension 3, and try to
find a frame x′ ∈ xM and a frame y′ ∈ x′U (or in other words y′U = x′U), so that
in particular y′+ = x′+ = x+, with the same past as y (that is, y′− = y−). However,
there is no canonical choice of such x′, y′, due to the fact that the dimension and/or
the codimension of U in N will be greater than one.

Therefore, we will directly define the new measure η, by a kind of averaging
procedure of all good choices of couples (x′,y′).

Identify the horosphere xNM = xMN in T 1Hd with a d− 1-dimensional affine
space. As in dimension 3, we wish that the frames x′ and y′ have their first vectors
on xNM , that x′ belongs to the fiber xM of the vector π1(x), and y′− = y−,
so that y′ belongs to the fiber y′M (with an abuse of notation, as y′ is not well
defined) of the well defined vector vy = (y−, x+, tx) of xMN .

These vectors xM and y′M are well defined, so that the line from xM to y′M
in the affine space xNM is also well defined.

Now, given any two frames x′ and y′ in the respective fibers of xM and y′M ,
such that x′U = y′U , the k-dimensional oriented linear space P = x′UM contains
the line from xM to y′M . The set of such P can be identified with SO(d −
2)/ (SO(k − 1)× SO(d− k − 1)).
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We will first choose randomly P using the SO(d − 2)-invariant measure on the
latter space. Now, given P , the set of frames x′ such that the direction of the affine
subspace x′UM is P can be identified with SO(k)× SO(d− k− 1), and we choose
x′ randomly using the Haar measure of this group. This determines the element
u ∈ U such that x′uM = y′M , so it determines y′ = x′u completely.

As in dimension 3, the non-trivial part is to show that the measure obtained
by this construction has absolutely continuous marginals. We first describe more
precisely the construction to fix notations.

5.5.1. Restriction of the support of µ ⊗ µ. Recall that the lift µ̃ of the measure µ

on Ω̃ can be written locally as

dµ̃(x) = dν(x−)dν(x+)dtxdm ,

where dm denotes the Haar measure on the fiber xM over π1(x). Remember that a
frame x with first vector π1(x) induces (by parallel transport until infinity) a frame
at infinity in Tx+∂Hd, or Tx−∂Hd, so that dm can also be seen as the Haar measure
on the set of frames based at x− inside Tx−∂Hd.

As in dimension 3, consider a subset A ⊂ ΛΓ of positive ν-measure such that
I1(ν|A) < ∞. Choose four compact sets X±, Y ± inside A, pairwise disjoint, and

restrict µ̃ ⊗ µ̃ to the couples (x,y) ∈ Ω̃2 such that x± ∈ X± and y± ∈ Y ±, and
tx, ty ∈ [0, 1].

5.5.2. Coordinates on ∂Hd. For the purpose of contructing η, it will be convenient
to have a family of identifications of horospheres, or here the complement of a point
x+ in ∂Hd, with the vector space Rd−1. Let (ei)1≤i≤d−1 be the canonical basis of
Rd−1. Choose three different points x+

0 ∈ X+, x−0 ∈ X− and y0 ∈ Y −, in the
support of ν|X+ , ν|X− and ν|Y − respectively.

Now we want to get a unique homography hx+ from ∂Hd \{x+} to Rd−1 sending
x0 to 0, y0 to e1, and x+ to infinity, with a smooth dependence in x+.

To do so, choose successively d−3 other points, say q2, ... qd−2 in ∂Hd, in such a
way that, uniformly in x+ ∈ X+, none of the points x+, x0, y0, q2, . . . , qd−2 belongs
to a circle containing three other points. Now, it is elementary to check that there
is a unique conformal map hx+ sending x+ to infinity, x0 to 0, y0 to e1, q2 inside
the half-plane R.e1 + R+e2, q3 inside the half-space Re1 + Re2 + R+e3, and so on
up to qd−2. This is the desired map.

Up to decreasing the size of X+, X− and Y − using neighbourhoods of x+
0 , x

−
0 , y

−
0

respectively, we can moreover assume that for all these conformal maps, uniformly

in x+ ∈ X+, x− ∈ X−, y− ∈ Y −, the first coordinate of the vector
−−−−−−−−−−−−→
hx+(x−)hx+(y−)

belongs to [1
2 , 2], and the norm of this vector is bounded by 3. In the sequel, we

use the coordinates induced by hx+ on ∂Hd.

5.5.3. A nice bundle. We will construct a measure η̃ on the set

S̃η = {(x,y) ∈ Ω̃2, : x+ = y+ ∈ X+, x− ∈ X−, y− ∈ Y −,xU = yU, tx = ty ∈ [O, ε]} ,

and prove that it satisfies assumptions (1),(2),(3) of Lemma 5.4, so that Theorem
1.3 follows. Observe that this space Sη is a fiber bundle over some subset

P ⊂ X+ ×X− × Y − × Gd−1
k ,
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whose projection is simply

(x,y) ∈ S̃η → (x+, x−, y−, V ect(x1, . . . , xk)) ∈ P ,

where V ect(x1, . . . , xk) is the oriented k-linear space spanned by the k first vectors
of the frame x+ at infinity with orientation x1∧ ...∧xk, or equivalently the k-plane
spanned by these k vectors viewed around x− at infinity, i.e. inside Rd−1 identified
with ∂Hd \ {x+} using the map hx+ .

Moreover, observe that it is a principal bundle, whose fibers are isomorphic
to SO(k) × SO(d − 1 − k) × A. Indeed, given a couple (x,y) in the fiber of
(x+, x−, y−, P ), after maybe letting A act diagonally so that both couples are
based on the horosphere passing through the origin o ∈ Hd, any other couple
differs from (x,y) only by changing (x1, . . . , xk) into another orthonormal ba-
sis of V ect(x1, . . . , xk), and (xk+1, . . . , xd−1) into another orthonormal basis of
V ect(xk+1, . . . , xd−1), preserving the orientation.

5.5.4. Defining the measure. Given x+ ∈ X+, we first define a measure η̄x+ sup-
ported on the set

Px+ = {(x−, y−, P ) : x− ∈ X−, y− ∈ Y −, P ∈ Gd−1
k , s.t.

−−−−−−−−−−−−→
hx+(x−)hx+(y−) ∈ P} .

(a subset of X− × Y − × Gd−1
k ) as follows.

Observe that, thanks to our choice of coordinates, the vector
−−−−−−−−−−−−→
hx+(x−)hx+(y−)

has always a nonzero coordinate along e1. Therefore, any k-plane P containing−−−−−−−−−−−−→
hx+(x−)hx+(y−) is uniquely determined by its k−1-dimensional intersection P ∩e⊥1
with e⊥1 .

Thus, we have a well defined measure on Px+ :

dη̄x+(x−, y−, P ) = dνX−(x−)dνY −(y−)dσd−2
k−1(P ∩ e⊥1 ) ,

where σd−2
k−1 is the SO(d − 2)-invariant probability measure on the Grassmannian

manifold of (k − 1)-planes in e⊥1 .

Now, P is a bundle over X+ with fibers Px+ . Define η̄ on P as the measure
which disintegrates as νX+ on the basis X+ and η̄x+ in the fibers.

Pick ε small enough, and lift η̄ to η̃ on Ω̃2, or more precisely on its subset

S̃η = {(x,y) ∈ Ω̃2, x+ = y+ ∈ X+, x− ∈ X−, y− ∈ Y −, xU = yU, tx = ty ∈ [0, ε]}

by endowing the fibers with the Haar measure of SO(k)× SO(d− 1− k) times the
uniform probability measure on the interval [0, ε].

If X±, Y ± and ε are small enough, we can assume that the support of η̃ is
included inside the product of two single fundamental domains of the action of Γ
on SOo(d, 1), so that it induces a well defined measure η on the quotient.

By construction, it is supported on couples (x,y) in the same U -orbit, and as in
dimension 3, it gives full measure to couples (x,y) which are typical in the past,
because this property of being typical depends only on x−, y−, and ν|X− ⊗ ν|Y −
gives full measure to the pairs (x−, y−) which are negative endpoints of typical
couples (x,y).

The main point to check is that (p1)∗η and (p2)∗η are absolutely continuous
w.r.t. µ.
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5.5.5. Absolute continuity. Let us reduce the absolute continuity of (pi)∗η to an-
other absolute continuity property, by a succession of elementary observations.

First, to prove that (p1)∗η and (p2)∗η are absolutely continuous w.r.t. µ, it is

sufficient to prove that (p̃1)∗η̃ and (p̃2)∗η̃, where p̃i : Ω̃2 → Ω̃ are the coordinates
maps, are both absolutely continuous with respect to µ̃.

Both measures are defined on the compact set

T = {x ∈ Ω̃ : tx ∈ [0, ε], x+ ∈ X+, x− ∈ (X− ∪ Y −)} .

This set T is fibered over

X+ × (X− ∪ Y −)× Gd−1
k ,

with projection map x→ (x+, x−,xMU) and fiber isomorphic to SO(k)×SO(d−
k − 1)× [0, ε].

S̃η ⊂ Ω̃2

��

p̃i // T ⊂ Ω̃

��

P ⊂ X+ ×X− × Y − × Gd−1
k

��

p̄i // X+ × (X− ∪ Y −)× Gd−1
k

��

X+ X+

On the upper left part of this diagram, observe that the measure η̃ disintegrates
over P, with the Haar measure of SO(k)× SO(d− 1− k)×A in the fibers, and η̄
on P.

Similarly, on the upper right of the diagram, the measure µ̃ restricted to T
disintegrates over X+ × (X− ∪ Y −)× Gd−1

k , with measure νX+ ⊗ νX−∪Y − × σd−1
k

on the basis, and Haar measure of SO(k)× SO(d− 1− k)×A in the fibers.
Therefore, to prove that (p̃i)∗η̃ is absolutely continuous w.r.t. µ̃, it is enough to

prove that (p̄i)∗η̄ is absolutely continuous w.r.t. νX+ ⊗ νX−∪Y − × σd−1
k .

Look at the lower part of the diagram now. The measure η̄ itself disintegrates
over X+, with νX+ on the base and η̄x+ on each fiber Px+ , whereas the measure
(p̄i)∗η̄ disintegrates also over νX+ , with measure νX−∪Y − × σd−1

k on each fiber.
Thus, it is in fact enough to prove that for νX+ -almost every x+, the image of

the measure η̄x+ under the natural projection map Px+ → {x+}×X−∪Y −×Gd−1
k

is absolutely continuous w.r.t. νX−∪Y − ⊗ σd−1
k .

The precise statement that we will prove is Lemma 5.11. By the above discus-
sion, it implies that (pi)∗η is absolutely continuous w.r.t. µ, and therefore, as in
dimension 3, Theorem 1.3 follows from Lemma 5.4.

5.5.6. Absolute continuity of conditional measures. We discuss now the absolute
continuity of the marginals laws of η̄x+ .

In order to do so, it is necessary to say a few words about the distance on the
Grassmannian manifolds of oriented subspaces that we shall use. As we are only
interested in the local properties of the distance, we will (abusively) define it only
on the Grassmannian manifold of unoriented subspaces.

If P is a l-dimensional subspace of a Euclidean space of dimension n, we write ΠP

for the orthogonal projection on P . If P, P ′ ∈ Gnl are two l-dimensional subspaces,
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a distance between P and P ′ can be defined as the operator norm of ΠP − ΠP ′

(which is also the operator norm of ΠP⊥ −Π(P ′)⊥).
We will use the following facts.

(1) The above distance is Lipschitz-equivalent to any Riemannian metric on Gnl ,
and σnl is a smooth measure. In particular, up to multiplicative constants,
the measure of a ball of sufficiently small radius r around a point P is

σnl (BGnl (P, r)) ' rl(n−l).

(2) Identify e⊥1 with Rd−2. Define

(Gd−1
k )′ = {P ∈ Gd−1

k : P 6⊂ e⊥1 }.

The map P ∈ (Gd−1
k )′ 7→ P ∩e⊥1 ∈ Gd−2

k−1 is well-defined and smooth, so that
its restriction to any compact set is Lipschitz.

(3) Let P, P1 be two k-dimensional subspaces of Rd−1. If v ∈ P , ‖v‖ ≤ 3 and
dGd−1

k
(P, P1) ≤ r, then

‖ΠP⊥1
(v)‖ ≤ 3r.

Lemma 5.11. There exist two functions Fx+,1 ∈ L1(νX−⊗σd−1
k ), Fx+,2 ∈ L1(νY −⊗

σd−1
k ) such that for any E ⊂ (X− ∪ Y −), any ball B = B(P0, r) ⊂ Gd−1

k of suffi-

ciently small radius r around some P0 ∈ Gd−1
k , and any x+ ∈ X+,

η̄x+({(x−, y−, P ) ∈ Px+ : (x−, P ) ∈ E ×B}) ≤
∫
E×B

Fx+,1 dνX− ⊗ σd−1
k ,

and

η̄x+({(x−, y−, P ) ∈ Px+ : (y−, P ) ∈ E ×B}) ≤
∫
E×B

Fx+,2 dνY − ⊗ σd−1
k .

Moreover, the L1-norms of Fx+,i are uniformly bounded on X+.

Proof. We prove only the second inequality, the first one is similar and only ex-
changes the roles of x− and y− in the following.
First choose some P1 ∈ BGd−1

k
(P0, r). If (x−, y−, P ) ∈ Px+ with P ∈ BGd−1

k
(P1, 2r),

then, provided r is small enough, both P and P1 are in a fixed compact subset of
(Gd−1
k )′. This implies that for some fixed c0 > 0,

Q = P ∩ e⊥1 ∈ BGd−2
k−1

(P1 ∩ e⊥1 , c0r).

We also have
dP⊥1 (ΠP⊥1

(x−),ΠP⊥1
(y−)) ≤ 6r.

Thus we have the inequalities

η̄x+({(x−, y−, P ) ∈ Px+ : (y−, P ) ∈ E ×BGd−1
k

(P1, 2r)})

=

∫
1B
Gd−1
k

(P1,2r)(Q⊕
−−−−−−−−−−−−→
hx+(x−)hx+(y−)) dνX−(x−)dνY −(y−)dσd−2

k−1(Q),

≤ σd−2
k−1(BGd−2

k−1
(P1 ∩ e⊥1 , c0r))

∫
E

∫
X−

1B(Π
P⊥1

(y),6r)(ΠP⊥1
(x))dνX−(x−)dνY −(y−),

≤ σd−2
k−1(BGd−2

k−1
(P1 ∩ e⊥1 , c0r))

∫
E

(ΠP⊥1
)∗νX−(B(ΠP⊥1

(x), 6r))dνY −(y−)

≤ σd−2
k−1(BGd−2

k−1
(P1 ∩ e⊥1 , c0r))

∫
E

(6r)d−k−1MHx+,P1
(ΠP⊥1

(y))dνY −(y−),
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where MHx+,P1
is the maximal function

MHx+,P1
(v) = sup

ρ>0
ρ−(d−k−1)

∫
B
P⊥1

(v,ρ)

d(ΠP⊥1
◦ hx+)∗νX−

dw
(w)dw .

We now integrate this inequality over P1 ∈ BGd−1
k

(P0, r) using the uniform mea-

sure and the fact that

BGd−1
k

(P0, r) ⊂ BGd−1
k

(P1, 2r).

We obtain

η̄x+({(x−, y−, P ) ∈ Px+ : (y−, P ) ∈ E ×BGd−1
k

(P0, r)})

≤
∫
B
Gd−1
k

(P0,r))

η̄x+

(
{(x−, y−, P ) ∈ Px+ : (y−, P ) ∈ E ×BGd−1

k
(P1, 2r)}

) dσd−1
k (P1)

σd−1
k (BGd−1

k
(P0, r))

≤
∫
E×B

Gd−1
k

(P0,r))

σd−2
k−1(BGd−2

k−1
(P1 ∩ e⊥1 , c0r))(6r)d−k−1

σd−1
k (BGd−1

k
(P0, r))

MHx+,P1
(ΠP⊥1

(y−))dν|Y −(y−)dσd−1
k (P1).

Now, the ratio
σd−2
k−1(BGd−2

k−1
(P1 ∩ e⊥1 , c0r))(6r)d−k−1

σd−1
k (BGd−1

k
(P0, r))

,

is bounded by a uniform constant c > 0, since the dimension of the Grassmannian
manifolds Gnr is r(n − r), so the above ratio is comparable, up to multiplicative

constants, with r(k−1)(d−k−1)×rd−k−1

rk(d−k−1) = 1.
This proves an inequality of the desired form with the function

Fx+,2(y−, P ) = cMHx+,P (ΠP⊥(hx+(y−))).

We still have to show that this function is in L1(νY − ⊗ σd−1
k ). Let us compute its

norm

N =

∫
Y −×Gd−2

k−1

MHx+,P (ΠP⊥(hx+(y−))) dνY −(y−)dσd−1
k (P )

=

∫
Gd−2
k−1

(∫
P⊥

MHx+,P (v) d(ΠP⊥ ◦ hx+)∗ν|Y −(v)

)
dσd−1

k (P )

=

∫
Gd−2
k−1

(∫
P⊥

MHx+,P (v)
d(ΠP⊥ ◦ hx+)∗ν|Y −

dv
(v)dv

)
dσd−1

k (P ).

By [19, Theorem 9.7], the two Radon-Nikodym derivatives

d(ΠP⊥ ◦ hx+)∗ν|Y −

dv
,
d(ΠP⊥ ◦ hx+)∗ν|X−

dv
,

have the square of their L2-norms bounded by a constant times the respective
energies

Id−1−k((hx+)∗ν|Y −), Id−1−k((hx+)∗ν|X−).

By the Hardy-Littlewood inequality [19, Theorem 2.19], this is also true for their
maximal functions, with a different constant. By the choices of X+, X−, Y − and
hx+ , the family of maps (hx+)x+∈X+ is uniformly bilispchitz when restricted to the
compact set X− ∪ Y −. In particular, the above energies are in turn bounded by a
constant times Id−1−k(ν).
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The integral N is thus the scalar product of two L2 functions, each one of norm
less that a fixed multiple of

√
Id−1−k(ν).

This implies that there exists a constant c > 0 such that

N ≤ c Id−1−k(ν).

�
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