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Abstract. A point is called generic for a flow preserving an infinite ergodic

invariant Radon measure, if its orbit satisfies the conclusion of the ratio ergodic

theorem for every pair of continuous functions with compact support and non-
zero integrals. The generic points for horocycle flows on hyperbolic surfaces of

finite genus are understood, but there are no results in infinite genus. We give

such a result, by characterizing the generic points for Zd–covers.

1. Introduction

Generic Points. Suppose φt : X → X is a continuous flow on a second count-
able locally compact metric space X. Let Cc(X) denote the set of all continuous
functions with compact support. A point x ∈ X is called generic for an invariant
Radon measure m, if

(1) m(X) <∞, and for all f ∈ Cc(X), 1
T

∫ T

0
f(φtx)dt −−−−→

T→∞
1

m(X)

∫
fdm,

(2) m(X) = ∞, and for all f, g ∈ Cc(X) with non-zero integrals,∫ T

0
f(φtx)dt∫ T

0
g(φtx)dt

−−−−→
T→∞

∫
fdm∫
gdm

.

If m is ergodic and conservative, then m–almost every x is generic, because of the
ratio ergodic theorem. The question is to identify this set of full measure.

Horocycle Flows. Suppose M is a connected hyperbolic surface, and let T 1M
denote its unit tangent bundle (made of all tangent vectors of length one). The
(stable) horocycle of ω ∈ T 1M is the set Hor(ω) of all unit tangent vectors ω′ such
that d(gsω′, gsω) −−−→

s→∞
0, where gs : T 1M → T 1M is the geodesic flow, and d is

the hyperbolic metric of T 1M . This is a smooth curve. The (stable) horocycle flow
is the flow ht : T 1M → T 1M which moves a vector ω ∈ T 1M along Hor(ω) at unit
speed, in the positive direction (to determine the orientation, lift to the universal
cover T 1D, D := {z ∈ C : |z| < 1}).

If M has finite volume, then the generic points for the horocycle flow are un-
derstood thanks to the works of Furstenberg [F] (compact surfaces), and Dani &
Smillie [DS] (surfaces of finite area). Burger [Bu] characterized the symmetrically
generic points for a large class of hyperbolic surfaces of finite genus and infinite
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volume, where ‘symmetrically generic’ means that
∫ T

0
is replaced by

∫ T

−T
. Schapira

[Scha] characterized the symmetrically generic points for all hyperbolic surfaces of
finite genus.

These results can be summarized as saying that all non-periodic, non-wandering
horocycles are generic for the volume measure in case vol(T 1M) <∞, or symmet-
rically generic for a certain singular infinite Radon measure which is carried by the
non-wandering set of the horocycle flow in case vol(T 1M) = ∞ (see [Bu], [Scha]
for details).

Ratner [Ra2] generalized the part of these results pertaining to finite invariant
measures to all unipotent flows, whence to all horocycle flows on all hyperbolic
surfaces. One of her results is that the horocycle flow on a hyperbolic surface of
infinite volume (e.g. a surface with infinite genus) does not admit finite invariant
measures except possibly trivial measures on periodic horocycles encircling cusps.
But there could be globally supported infinite invariant Radon measures (Babillot &
Ledrappier [BL2]). The problem of describing the generic points for these measures
is completely open.

The purpose of this paper is to solve this problem for the simplest possible class
of hyperbolic surfaces of infinite genus: Zd–covers of compact hyperbolic surfaces.

Zd–Covers. All surfaces in this paper are assumed to be connected.
A hyperbolic surface M is called a regular Zd–cover of a compact hyperbolic

surface M0 (or just ‘Zd–cover’), if there is an onto map p : M → M0 such that
(1) every x ∈ M0 has a neighborhood Vx such that every connected component of
p−1(Vx) is mapped isometrically by p onto Vx, (2) the group

Deck(M,p) := {D : M →M : D is an isometry s.t. p ◦D = D}

is isomorphic to Zd (elements of Deck(M,p) are called deck transformations), and
(3) for every x ∈M , there is x̃ ∈M such that p−1(x) = {D(x̃) : D ∈ Deck(M,p)}.

The deck transformations act on T 1M by their differentials. We abuse notation
and use the same notation for D and its differential.

Choose some connected fundamental domain M̃0 for the action of the group of
deck transformations on T 1M . Then every ω ∈ T 1M can be associated with a
unique ξ(ω) ∈ Zd such that ω ∈ Dξ(ω)[M̃0]. We call ξ(ω) the Zd–coordinate of
ω. It is useful to think of T 1M as of a Zd–array of copies of M̃0, tagged by their
Zd–coordinates.

The asymptotic cycle of a vector ω ∈ T 1M is the following limit, if it exists:

Ξ(ω) := lim
T→∞

1
T
ξT (ω), where ξT (ω) := ξ(gTω)

(compare with [Schw]). Let

C := conv
(
{Ξ(ω) : ω ∈ T 1M s.t. Ξ(ω) exists}

)
⊂ Rd,

where conv denote the closure of the convex hull.

Babillot–Ledrappier Measures. The ergodic invariant Radon measures for horo-
cycle flows on Zd–covers are known. To list them, fix a parametrization Deck(M,p) =
{Dξ : ξ ∈ Zd} such that Dξ ◦Dη = Dξ+η. Then

(1) For every homomorphism ϕ : Zd → R, there exists a unique (infinite) horo-
cycle ergodic invariant Radon measure mϕ such that mϕ◦Dξ = eϕ(ξ)mϕ for
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all ξ ∈ Zd, and mϕ(M̃0) = 1 ([BL2], Theorem 1.2). We call these measures
the Babillot–Ledrappier measures.

(2) There is a vector Ξϕ ∈ Rd such that Ξ(ω) = Ξϕ mϕ–almost everywhere;
the vector Ξϕ determines ϕ; and the set of all possible Ξϕ is equal to the
interior of C, int(C) ([BL2], Corollary 6.1 and [BL1], Proposition 1.1).

(3) Every ergodic invariant Radon measure for the horocycle flow on a Zd–cover
of a compact hyperbolic surface is a constant times a Babillot–Ledrappier
measure [S].

The (normalized) volume measure corresponds to ϕ ≡ 0, and its almost sure as-
ymptotic cycle is Ξ0 = 0.

Main Result. SupposeM is a connected regular Zd–cover of a compact hyperbolic
surface M0. The purpose of the paper is to prove:

Theorem 1.1. A vector ω ∈ T 1M is generic for some horocycle ergodic invariant
Radon measure m iff Ξ(ω) ∈ int(C). In this case Ξ(ω) = Ξϕ and m = cmϕ for
some uniquely determined homomorphism ϕ : Zd → R and c > 0.

We comment on the variable negative curvature case at the end of the paper.
Using the hyperbolicity of the geodesic flow and a standard specification argu-

ment, it is easy to construct vectors ω without asymptotic cycles, and vectors ω
whose asymptotic cycle exist and belong to ∂C. It is no problem to arrange for ω
not to be almost minimizing (v is almost minimizing if there is a number C s.t.
dist(gtv, v) > t − C for all t ≥ 0). By [E] theorem 5.5, and the ergodicity of the
volume measure [BL2], the horocycle of ω is dense. By theorem 1.1 this horocycle
is not equidistributed for any ergodic invariant Radon measure. Thus there are
many dense horocycles which are not equidistributed with respect to any measure.
This should be contrasted with the finite genus case discussed above.

It is interesting that the mere existence of an asymptotic cycle is not enough for
genericity, but that the value is important as well.

The Proof. The proof that every ω with asymptotic cycle in int(C) is generic uses
harmonic analysis. It is a combination of methods from [LS1] for approximating
the Birkhoff integral of a function by a symbolic dynamical quantity, and techniques
from [BL1] (building on [L]) for finding the asymptotic behavior of this quantity.

The main contribution of the paper is the converse statement: every generic
vector has asymptotic cycle in int(C). We do not know how to do this using
harmonic analysis, because the harmonic analytic tools we have fail for ω ∈ T 1M s.t.
ξT (ω)/T → ∂C. We use a different method based on a certain built-in approximate
exchangeability structure for the Lebesgue measure on horocycles.

Notational Convention. a = b ± c means |a − b| < c or ‖a − b‖ < c depending
on the context. a = e±cb means e−c ≤ a

b ≤ ec. Our error bounds c are always very
generous, and rarely optimal.

2. Preparations: Symbolic Dynamics

Generalities. A subshift of finite type with set of states S and transition matrix
A = (tij)S×S (tij ∈ {0, 1}) is the set

Σ := {x = (xi) ∈ SZ : ∀i ∈ Z, txixi+1 = 1}
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together with the action of the left shift map σ : Σ → Σ, σ(x)k = xk+1, and the
metric d(x, y) =

∑
k∈Z

1
2|k|

(1 − δxkyk
). There is a one–sided version σ : Σ+ → Σ+

obtained by replacing Z by N ∪ {0}.
A cylinder in Σ is a set of the form [a−m, . . . , ȧ0, . . . , an] := {x ∈ Σ : xn

−m =
an
−m}, where the notation xn

−m means (x−m, . . . , xn), and the dot designates the
zeroth coordinate. Cylinders in Σ+ are defined similarly (with m = 0). A word
a is called admissible if [a] 6= ∅. The cylinders form a basis of clopen sets for the
topology of Σ (or Σ+). The length of a word a is denoted by |a|.

A subshift of finite type is topologically mixing iff ∃m s.t. all the entries of Am

are positive. Any topologically mixing subshift of finite type has a number Mbr ∈ N
and a collection of admissible words of length Mbr B := {wab : a, b ∈ S} such that

[a,wab, b] 6= ∅.

We fix such a collection, and refer to its elements as ‘Markovian bridges’.
Suppose F is a real valued function on Σ or Σ+. The Birkhoff sums of functions

F are denoted by Fn:

Fn := F + F ◦ σ + · · ·+ F ◦ σn−1.

A function F is said to depend only on non-negative coordinates if x∞0 = y∞0 implies
F (x) = F (y). The variation of such a function is

var(F ) :=
∞∑

n=1

sup{|F (x)− F (y)| : xn−1
0 = yn−1

0 }.

If F is Hölder continuous, then this number is finite.
Let T : X → X a map on some space X, and G a group, assumed for simplicity

to be abelian. The skew-product over T : X → X with the cocycle f : X → G is
the map Tf : X ×G→ X ×G, T (x, ξ) :=

(
T (x), ξ + f(x)

)
.

The suspension semi-flow over T : X → X and height function r∗ : X → [0,∞)
is the semi-flow ϕs : Xr∗ → Xr∗ , where

Xr∗ := {(x, t) : x ∈ X, 0 ≤ t < r∗(x)}

and ϕs(x, t) :=
(
Tnx, t + s − r∗n(x)

)
where n is chosen s.t. 0 ≤ t + s − r∗n(x) <

r∗(Tnx). If T is invertible, then this semi-flow has a unique extension to a flow.
The suspension (semi)-flow can be identified with the (semi)-flow (x, t) 7→ (x, t+ s)
on (X × R)/ ∼ (respectively X × R+/ ∼) where ∼ is the orbit relation of the
skew-product T−r∗ . Both descriptions shall be used below.

Symbolic Dynamics for the Geodesic Flow. Let p : M → M0 be a Zd–cover
of a compact connected orientable hyperbolic surface M0. We describe the geodesic
flow on gs : T 1M → T 1M as a suspension flow, whose base is a skew–product, whose
base is a subshift of finite type. This description is well–known [PS1],[Po],[BL1].
It can be obtained by a lifting argument from the Bowen–Series symbolic dynamics
of gs : T 1M0 → T 1M0 given by [BS], [Se1],[Se2], as in.

Lemma 2.1. Fix i : T 1M0 → T 1M 1-1 with image M̃0 and s.t. dp ◦ i = id.
There exist a topologically mixing two–sided subshift of finite type (Σ, T ), a Hölder
continuous function r : Σ → R which depends only on the non-negative coordinates,
a function f : Σ → Zd s.t. f(x) = f(x0, x1), a Hölder function h : Σ → R, and a
Hölder continuous map π : Σ× Zd × R → T 1M with the following properties:
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(1) r∗ := r+h−h ◦σ is non-negative, and there exists a constant n0 such that
inf r∗n0

> 0, where r∗n0
:=
∑n0−1

k=0 r∗ ◦ σk.
(2) π : (Σ× {0})r∗ → M̃0 is a surjective finite-to-one map, where

(Σ× {0})r∗ = {(x, 0, t) : 0 ≤ t < r∗(x)}.

∃ωi ∈ T 1M , i ∈ N, s.t. every ω outside the union of the weak stable and
weak unstable leaves of ωi, i ∈ N, has exactly one preimage. See [Se1].

(3) If Qξ0,t0(x, ξ, t) = (x, ξ+ ξ0, t+ t0), then π ◦Q(ξ0,t0) = [gt0 ◦Dξ0 ] ◦ π for all
(ξ0, t0) ∈ Zd × R;

(4) π ◦ T(f,−r∗) = π where T(f,−r∗)(x, ξ, t) =
(
σx, ξ + f(x), t− r∗(x)

)
;

(5) Suppose ω = π(x, ξ, t), ω′ = π(x′, ξ′, t′). Then

∃p, q ≥ 0 s.t


x∞p = (x′)∞q
t− t′ = h(x)− h(x′) + rp(x)− rq(x′)
ξ − ξ′ = fq(x′)− fp(x)

⇒ ∃s s.t. ω′ = hs(ω).

(6) Suppose ω = π(x, ξ, t), 0 ≤ t < r∗(x). For every s, all but at most countably
many points ω′ ∈ gs Hor(ω) have a unique representation ω′ = π(x′, ξ′, t′)
such that 0 ≤ t′ < r∗(x′) and such that ∃p, q with (x′)∞p = x∞q .

(7) Nonarithmeticity [Sh]: 〈(−rn(x), fn(x)) : Tnx = x, n ∈ N〉 = R×Zd. (See
also [C].)

Symbolic Coordinates. Recall the definition of ωi from lemma 2.1 (2), and
choose once and for all representations ωi = π(xi, ξi, ti) such that 0 ≤ ti < r∗(xi).
We say that (x, ξ, t) ∈ Σ× Zd × R is a set of symbolic coordinates for ω ∈ T 1M , if

(1) ω 6∈
⋃∞

i=1

⋃
s∈R g

s Hor(ωi), ω = π(x, ξ, t), and 0 ≤ t < r∗(x);
(2) ω ∈ gs Hor(ωi), ω = π(x, ξ, t), 0 ≤ t < r∗(x), and x∞p = (xi)∞q for some

p, q.

Some vectors have more than one set of symbolic coordinates, but by lemma
2.1 parts 2 and 6 for every ω, the set of ω′ ∈ Hor(ω) with more than one set of
symbolic coordinates is at most countable. In particular, for every ω the Birkhoff
integral

∫ T

0
f(htω)dt is determined by the t’s for which ht(ω) has a unique symbolic

representation.
We may therefore safely ignore the vectors with more than one symbolic repre-

sentation, and call x = x(ω) the Σ–coordinate, ξ = ξ(ω) the Zd–coordinate, and
t = t(ω) the R–coordinate (of ω). This definition of ξ(·) agrees with the definition
of the Zd–coordinate from the introduction.

The Symbolic Description of the Babillot-Ledrappier Measures. Suppose
a flow φt : X → X has a Poincaré section K with section map TK : K → K. If we
represent the flow as a suspension over the section, then any φ–invariant measure
can be identified with the product of a TK–invariant measure µK and the Lebesgue
measure on R, restricted to the suspension space. Thus any φ–invariant measure is
determined by the measure it induces on a Poincaré section.

The horocycle flow has a Poincaré section which can be naturally coded as Σ+×
Zd × R. We describe the Babillot–Ledrappier measures in terms of the measures
they induce on this section.
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Let S be the set of states of Σ, and fix some P : S → S such that (P (a), a) is
admissible. Define ρ′ : Σ+ ×Zd ×R → Σ×Zd ×R by ρ′(x+, ξ, s) = (x, ξ, s+ h(x))
where x∞0 = (x+)∞0 , and xk = P (xk+1) for k < 0. By [BM] (see also [S])

(1) ρ := π ◦ρ′ maps Σ+×Zd×R onto a Poincaré section for the horocycle flow
on T 1M ;

(2) if ∃p, q s.t. (x+)∞p = (y+)∞q , ξ−ξ′ = fq(x+)−fp(y+), s−s′ = rp(x)−rq(x′),
then ρ(x+, ξ, s) and ρ(y+, ξ′, s′) lie on the same horocycle.

There is a slight inconvenience in that ρ is countably-to-one (because of lemma 2.1
part (4)). We shall deal with this problem by working with restrictions of ρ to sets
where it is one-to-one.

By (1), any measure m on T 1M can be identified (locally, on subsets of the
suspension space on which ρ is one-to-one) with µ × dt, where µ is some measure
on Σ+ × Zd × R. By (2), if µ is invariant for the equivalence relation

(x+, ξ, s) ∼ (y+, ξ′, s′) ⇐⇒


(x+)∞p = (y+)∞q
ξ − ξ′ = fq(x+)− fp(y+)
s− s′ = rp(x)− rq(x′),

(2.1)

then µ is invariant for the Poincaré map of the horocycle flow1, and therefore gives
rise to a flow invariant measure on T 1M (see [BL2] for details).

This was the way Babillot and Ledrappier constructed their family of infinite
invariant measures for the horocycle flow: they constructed an infinite family of
measures µϕ which are invariant under the equivalence relation (2.1).

The construction uses the thermodynamic formalism. We review some necessary
facts (see e.g. [PP]). Let σ : Σ+ → Σ+ denote the one–sided version of Σ. The
topological pressure of a continuous function ϕ : Σ+ → R is the number Ptop(ϕ) :=
sup{hµ(σ)+

∫
ϕdµ} where the supremum ranges over all shift invariant probability

measures on Σ+. Define P : Rd → R implicitly by u 7→ P (u) where P (u) = P is
the root of

Ptop(−Pr + 〈u, f〉) = 1.

This defines a C∞–diffeomorphism from Rd onto int(C) [BL2]. This diffeomor-
phism can be defined canonically, and does not depend on the particular choice of
the coding, see [BL2].

Any homomorphism ϕ : Zd → R can be identified with a vector uϕ ∈ Rd by
ϕ(·) = 〈uϕ, · 〉. Define the operator L−P (uϕ),uϕ

: C(Σ+) → C(Σ+) by

(L−P (uϕ),uϕ
F )(x) =

∑
σy=x

e−P (uϕ)r(y)+〈uϕ,f(y)〉F (y).

Ruelle’s Perron-Frobenius Theorem says that there exists a probability measure νϕ

and a positive Hölder continuous function Ψϕ on Σ+ such that

L−P (uϕ),uϕ
Ψϕ = Ψϕ , L∗−P (uϕ),uϕ

νϕ = νϕ , and
∫

Ψϕdνϕ = 1.

1Here we use the general fact that a measure is invariant for a transformation if and only
if it is invariant for the corresponding orbit relation. (A Borel measure m is invariant for a

Borel equivalence relation ∼, if m ◦ κ|dom(κ) = m|image(κ) for all partial Borel isomorphisms

κ : dom(κ) → image(κ) such that κ(x) ∼ x for all x ∈ dom(κ).)
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The Babillot–Ledrappier measure mϕ (on T 1M) is given locally by µϕ × dt, where
µϕ (a measure on the Poincaré section) is given in symbolic coordinates by

dµϕ(x, ξ, s) := const e−P (uϕ)s+〈uϕ,ξ〉dνϕdξds. (2.2)

This formula can be used to deduce the following important consequences:
(1) mϕ is quasi–invariant under the geodesic flow, and mϕ ◦ gs = e−P (uϕ)smϕ;
(2) Ξϕ = (∇P )(uϕ) (corollary 6.1 in [BL2]);
(3) uϕ = −(∇H)(Ξϕ), where H(·) is minus the Legendre transform of P (·).

(The double minus sign in (3) is a convention from [BL2].)

Symbolic Local Manifolds. Suppose ω has symbolic coordinates (x, ξ, t) (i.e.
0 ≤ s + h(x) < r∗(x)), and write t = s + h(x). The symbolic local stable manifold
of ω = π(x, ξ, s+ h(x)) is defined by

W ss
loc(ω) := π{(y, ξ, s+ h(y)) : y∞0 = x∞0 }.

This is a subset of Hor(ω), because of lemma 2.1 part (5).
If W ss

loc(ω1),W ss
loc(ω2) intersect with positive measure, then they are equal up to

sets of length zero. Indeed, for almost every ω in the intersection ∃p s.t. ω =
π(x, ξ(ω1), s(ω1) + h(x)), x∞0 = x(ω1)∞0 and ω = π(σpx, ξ(ω2), s(ω2) + h(σpx)) ,
x∞p = x(ω2)∞0 . This forces x(ω1)∞p = x(ω2)∞0 , ξ(ω2) = ξ(ω1) + fp(x(ω1)), s(ω2) =
s(ω1) − rp(x(ω1)) (lemma 2.1 part (1)). It follows from lemma 2.1 parts (4) and
(1) that W ss

loc(ω1) = W ss
loc(ω2) up to sets of measure zero.

Lemma 2.2. [BL2, prop. 4.5] Let `ω denote the hyperbolic length measure on the
horocycle of ω. If ω = π(x, ξ, s+ h(x)), then `ω[W ss

loc(ω)] = e−sψ(x0, x1, . . .) where
ψ : Σ+ → R is Hölder continuous and positive. (In fact ψ = Ψ0.)

3. Proof that a Generic Vector has Asymptotic Cycle in int(C)

In this section we prove

Proposition 3.1. Let M be a Zd–cover of a compact hyperbolic surface. If ω0 is
generic for some horocycle ergodic invariant Radon measure m, then there exists a
homomorphism ϕ : Zd → R and c > 0 such that m = cmϕ and Ξ(ω) = Ξϕ.

The proof is as follows. Suppose ω0 is generic for some horocycle ergodic invariant
Radon measure m. By [S], there is a homomorphism ϕ : Zd → R and c > 0 such
thatm = cmϕ. Of course if ω0 is generic for cmϕ, then it is generic formϕ, therefore
we may assume w.l.o.g. that m = mϕ. We saw above that Ξ(ω) = Ξϕ mϕ–a.e., for
some Ξϕ ∈ int(C). We aim at showing that Ξ(ω0) = Ξϕ.

Recall that M̃0 ⊂ T 1M is the set of vectors whose Zd–coordinate is equal to
zero, and define the following objects:

AT := {ht(ω0) : 0 ≤ t ≤ T},
λT := the normalized length measure on AT ∩ M̃0 (3.1)

=
1∫ T

0
1fM0

(ht(ω0))dt

∫ T

0

1fM0
(htω0)δht(ω0)dt (δx := Dirac at x),

Λn(N, ε0) :=
{
ω ∈ M̃0 : ω = π(x, ξ, s) and

∥∥∥∥fN (σnNx)
r∗N (σnNx)

− Ξϕ

∥∥∥∥ < ε0

}
. (3.2)
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Recall that n0 is a constant such that min r∗n0
> 0 (lemma 2.1 part (1)). The key

to the proof of proposition 3.1 is the following lemma:

Lemma 3.2 (Key Lemma). There are C0, T0 > 0 such that for every ε0 > 0 there
are constants N(ε0) > n0, K(ε0) > 0, and τ(ε0) such that for all T > τ(ε0)

sup
n
λT

{
ω : r∗nN(ε0)

(x(ω)) < ln T
T0
−K(ε0) and ω 6∈ Λn(N(ε0), ε0)

}
≤ C0ε0. (3.3)

The proof is somewhat technical, so we postpone it, and first explain how to use
the lemma to prove proposition 3.1.

Fix ε0 and set N = N(ε0), K = K(ε0), Λn := Λn(N(ε0), ε0), and T ∗ :=
ln(T/T0). Abbreviate {r∗nN < T ∗ −K} := {ω ∈ T 1M : r∗nN (x(ω)) < T ∗ −K}.

Working in the symbolic model for T 1M , define the following functions, which
we view as random variables on AT : Ak := fN ◦ σkN 1{r∗kN <T∗−K} and Bk :=
r∗N ◦ σkN1{r∗kN <T∗−K}. Then for all T large enough

EλT

(∑
iAi∑
iBi

)
= EλT

(∑
i

Bi∑
j Bj

[(
Ai

Bi
− Ξϕ

)
1{r∗iN <T∗−K}

])
+ Ξϕ

= Ξϕ ±
∑

i

∥∥∥∥∥ Bi∑
j Bj

∥∥∥∥∥
∞

∥∥∥∥(Ai

Bi
− Ξϕ

)
1{r∗iN <T∗−K}

∥∥∥∥
1

= Ξϕ ±
[(T∗/ min r∗n0

)+n0]/N∑
i=1

(
N max r∗

T ∗ −K −N max r∗

)∥∥∥∥(Ai

Bi
− Ξϕ

)
1{r∗iN <T∗−K}

∥∥∥∥
1

.

We estimate the L1-norm by breaking the support of λT into M̃0∩Λi and M̃0\Λi:∥∥∥∥(Ai

Bi
− Ξϕ

)
1{r∗iN <T∗−K}

∥∥∥∥
1

≤ ε0λT (M̃0 ∩ Λi) +
(

N max ‖f‖∞
bN/n0cmin r∗n0

+ ‖Ξϕ‖
)
λT (M̃0 ∩ {r∗iN < T ∗ −K} \ Λi)

≤ ε0 +
(

N max ‖f‖∞
bN/n0cmin r∗n0

+ ‖Ξϕ‖
)

sup
i
λT (M̃0 ∩ {r∗iN < T ∗ −K} \ Λi).

Thus, the key lemma implies that for all T large enough∥∥∥∥EλT

(∑
iAi∑
iBi

)
− Ξϕ

∥∥∥∥ ≤ const ε0 (3.4)

with the constant independent of T and ε0.
But the quotient whose expectation we are calculating is nearly constant! For

every ω ∈ {ht(ω0) : 0 < t < T},
∑

iBi = T ∗ ± (K +N max r∗), and∑
i

Ai = ξ(gT∗ω)± (K +N)n0
max ‖f‖
min r∗n0

= ξ(gT∗ω0)±
[
(K +N)n0

max ‖f‖
min r∗n0

+ ‖ξ(gT∗ω)− ξ(gT∗ω0)‖
]
.

Now dist(gT∗(ω), gT∗(ω0)) ≤ e−T∗T = T0, so ‖ξ(gT∗ω) − ξ(gT∗ω0)‖ is bounded
by some constant independent of T ∗. Thus we obtain

∑
iAi = ξ(gT∗ω0) ± const,

where the constant is independent of T ∗.
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We see that

EλT

(∑
iAi∑
iBi

)
=
ξ(gT∗ω0)± const

T ∗ ± const
= [1 + o(1)]

1
T ∗

ξ(gT∗ω0) + o(1).

Comparing this with (3.4), we see that for T large, ‖ 1
T∗ ξ(g

T∗ω0)−Ξϕ‖ < const ε0,
with the constant independent of ε0. Since ε0 was arbitrary, ω0 has asymptotic
cycle Ξϕ, and proposition 3.1 is proved (assuming lemma 3.2).

The remainder of the section contains the proof of lemma 3.2. The proof requires
the construction of certain self maps of horocycles. These are constructed and
studied in the next subsections.

Preparations I: Distortion Estimates. We find uniform bounds on the Radon-
Nikodym derivative of certain maps between local symbolic stable manifolds, equi-
pped with the hyperbolic length measure.

Define an equivalence relation on Σ via

x ∼ y ⇔ ∃p, q s.t. x∞p = y∞q

(the equivalence class of x can be viewed as the weak stable “manifold” of x for
the action of the shift). If x, y are non-eventually periodic, then the following are
independent of the choice of p, q:

R+(x, y) := rq(y)− rp(x),
R(x, y) := rq(y)− rp(x) + h(y)− h(x) = lim

n→∞
[r∗q+n(y)− r∗p+n(x)],

F (x, y) := fp(x)− fq(y) = lim
n→∞

[fp+n(x)− fq+n(y)].
(3.5)

These are minus the functions appearing in lemma 2.1, part 5. Note that R+(x, y)
and F (x, y) only depend on x∞0 , y

∞
0 .

Fix some admissible sequence x∞0 and two words a, b (not necessarily of the same
length) such that (a, x0), (b, x0) are admissible and such that a0 = b0. Define

κ∗ : {w ∈ Σ : w∞−|a| = ax∞0 } → {w ∈ Σ : w∞−|b| = bx∞0 }

by

κ∗(w) =


(w−|a|−1

−∞ , b, ẋ∞0 ) w = (w−|a|−1
−∞ , a, ẋ∞0 )

(w−|b|−1
−∞ , a, ẋ∞0 ) w = (w−|b|−1

−∞ , b, ẋ∞0 )
w otherwise,

where the zero coordinate is at the beginning of the dotted word. This induces the
following self–map of W ss(π(x, ξ, s+ h(x)):

κ[π(w, ξ, s+ h(w))] = π(κ∗(w), ξ, s+ h(κ∗(w))).

This map is well–defined and one–to–one on W ss
loc(π(x, ξ, s+ h(x))) minus a count-

able set (Lemma 2.1, part 6).

Lemma 3.3. κ : W ss
loc(π(x, ξ, s+h(x))) →W ss

loc(π(x, ξ, s+h(x))) is absolutely con-
tinuous with respect to the hyperbolic length measure `, and there is some constant
D′ > 1, independent of x∞0 , a, and b such that

(D′)−1 exp[−|R+(ax∞0 , bx
∞
0 )|] ≤ d` ◦ κ

d`
≤ D′ exp[|R+(ax∞0 , bx

∞
0 )|].
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Proof. Split the domain of κ into three parts: A, where it flips a to b, B where it
flips b to a, and C, where κ = id.

We estimate the derivative on A. Fix n and a word (x′−n, . . . , x
′
−1) such that

(x′−|a|, . . . , x
′
−1) = a. We study the distortion in the length of the horocycle piece

Kx′−n,...,x′−1
:= {π(w, ξ, s+ h(w)) : w∞−n = ((x′)−1

−n, x
∞
0 )}:

`[Kx′−n,...,x′−1
] = `[{π(w, ξ, s+ h(w)) : w∞−n = ((x′)−1

−n, x
∞
0 )}]

= `[{π(σ−nw, ξ − fn(σ−nw), s+ h(w) + r∗n(σ−nw)) : w∞−n = ((x′)−1
−n, x

∞
0 )}]

= `[{π(w′, ξ, s+ h(σnw′) + r∗n(w′)) : (w′)∞0 = ((x′)−1
−n, x

∞
0 )}] (∵ ` ◦Dfn

= `)

= `[{π(w′, ξ, s+ h(w′) + rn(w′)) : (w′)∞0 = ((x′)−1
−n, x

∞
0 )}]

= e−rn(x′−n,...x′−1,x∞0 )ψ(x′−n, . . . x
′
−1, x

∞
0 ) (∵ ` ◦ gs = e−s`).

A similar calculation shows that

(` ◦ κ)[Kx′−n,...,x′−1
] = e−rn+|b|−|a|(x

′
−n,...x′−|a|−1,b,x∞0 )ψ(x′−n, . . . x

′
−|a|−1, b, x

∞
0 ).

Dividing, we see that
(` ◦ κ)[Kx′−n,...,x′−1

]

`[Kx′−n,...,x′−1
]

=
exp[rn(x′−n, . . . x

′
−1, x

∞
0 )]

exp[rn+|b|−|a|(x′−n, . . . x
′
−|a|−1, b, x

∞
0 )]

×
ψ(x′−n, . . . x

′
−|a|−1, b, x

∞
0 )

ψ(x′−n, . . . , x
′
−1x

∞
0 )

≤
(

maxψ
minψ

)
e|R

+(ax∞0 ,bx∞0 )|+var(r).

Thus, for a global constant D′ independent of x, a, and b,
(` ◦ κ)[Kx′−n,...,x′−1

]

`[Kx′−n,...,x′−1
]

≤ D′ exp[|R(ax∞0 , bx
∞
0 )|].

Since this estimate holds for all n > |a|, and since {Kx′−n,...,x′−1
} generate the Borel

sigma–algebra of A, we get that `◦κ|A � `, and d`◦κ/d` ≤ D′ exp[|R(ax∞0 , bx
∞
0 )|].

The lower bound on the derivative is obtained in exactly the same manner, as do
the estimates for the distortion of κ on B. �

We turn to discuss a different class of maps between local symbolic manifolds.
Fix two admissible sequences x∞0 , y∞0 and define

ϑ∗ : {w ∈ Σ : w∞0 = x∞0 } → {w ∈ Σ : w∞0 = y∞0 }
by ϑ∗(w) = (w−1

−∞, ww−1y0
, ẏ∞0 ), where ww−1y0

is a bridge word out of the (fixed)
collection B, and where the zero coordinate is the first symbol of the dotted word.

This induces the map from W ss
loc(π(x, ξ, s+ h(x)) into W ss

loc(π(y, ξ, s+ h(y))

ϑ[π(w, ξ, s+ h(w))] = π(ϑ∗(w), ξ, s+ h(ϑ∗(w))).

As before, ϑ is well–defined and one–to–one on W ss
loc(π(x, ξ, s + h(x))) minus a

countable set. But we can not claim it is surjective (because of the insertion of a
fixed bridge word).

Lemma 3.4. ϑ : W ss
loc(π(x, ξ, s+h(x))) →W ss

loc(π(y, ξ, s+h(y))) is absolutely con-
tinuous with respect to the hyperbolic length measure `, and there is some constant
D′′ > 1, independent of x∞0 and y∞0 such that D′′−1 ≤ d` ◦ ϑ/d` ≤ D′′.
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Proof. Fix n and a word (w−n, . . . , w−1) such that [w−1, x0] 6= ∅, and set

Kw−n,...,w−1 := {π(w′, ξ, s+ h(w′)) : (w′)∞−n = (w−1
−n, x

∞
0 )}.

The same calculation as in the previous lemma shows that
(` ◦ ϑ)[Kw−n,...,w−1 ]
`[Kw−n,...,w−1 ]

=
exp[rn(w−n, . . . w−1, x

∞
0 )]

exp[rn+|ww−1y0
|(w−n, . . . w−1, ww−1y0

, y∞0 )]

×
ψ(w−n, . . . w−1, ww−1y0

, y∞0 )
ψ(w−n, . . . , w−1x∞0 )

≤
(

maxψ
minψ

)
× exp[var(r)]×max

w∈B

[
exp max

x∈[w]
|rMbr

(x)|
]
.

As in the proof of the previous lemma, this implies that for some constant D′′
1 > 1,

independent of x and y, d`◦ϑ/d` ≤ D′′
1 . A uniform lower bound D′′

2 can be obtained
in exactly the same manner. �

Preparations II: Permuting Points on a Horocycle. We use the transfor-
mations discussed above to construct certain maps which ‘permute’ points on a
given horocycle. These bijections are defined symbolically in terms of the coding
π(x, ξ, s). They take the form

θ[π(x, ξ, s+ h(x))] = π
(
θ∗(x), ξ + F (x, θ∗(x)), s+ h(x) +R(x, θ∗(x))

)
= π

(
θ∗(x), ξ + F (x, θ∗(x)), s+ h(θ∗x) +R+(x, θ∗(x))

)
where θ∗ will be defined below, and F (·, ·), R(·, ·), R+(·, ·), given by (3.5), are de-
signed to ensure that θ[π(x, ξ, s)] stays on the horocycle of π(x, ξ, s). Definitions
of this form make sense everywhere on the horocycle where π is injective, therefore
everywhere except a countable set.

The maps θ∗(x) we need fall into two groups (precise definitions and explanation
of notation follow):

(1) maps θ∗ = κ∗n,N which exchange the positions of two N–blocks in x,
(2) maps θ∗ = ϑ∗T∗,ω1,ω2

which exchange some suffix of x by another suffix.

Exchanging blocks: κn,N . Fix n,N ∈ N. Define κ∗n,N on Σ by exchanging the places
of the N–blocks (x)N−1

0 , (x)nN+N−1
nN , and then inserting bridge words (see §2) at

the right places to ensure admissibility:

κ∗n,N (x) := (x−1
−∞, wx−1xnN

, ẋnN+N−1
nN , wxnN+N−1,xN

,

xnN−1
N , wxnN−1,x0 , x

N−1
0 , wxN−1,x(n+1)N

, x∞(n+1)N ).

The zero coordinate is at the first symbol of the dotted word, and the boxed blocks
are those that were switched. This gives rise to the following self–map of the
horocycle Hor(π(x, s, h(x)):

κn,N

(
π(x, ξ, s+h(x))

)
:= π

(
κ∗n,Nx, ξ+F (x, κ∗n,Nx), s+h(κ∗n,Nx)+R+(x, κ∗n,Nx)

)
.

Lemma 3.5. The map κn,N is absolutely continuous and injective on a subset of
full `–measure of Hor(π(x, ξ, s+ h(x))), and there exist constants C ′

r ≥ 1, E′, and
L′ independent of n,N and x such that

(1) (C ′
r)
−1 ≤ d` ◦ κn,N/d` ≤ C ′

r,
(2) the Σ–coordinate of κn,N (π(x, ξ, t)) is σl(κ∗n,N (x)) for some |l| ≤ L′,
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(3) dist(ω, κn,N (ω)) ≤ E′ (dist = distT 1M ).

Proof. The map κ∗n,N can be thought of locally as the map which exchanges the
word a by b, where

a = (x0, . . . , x(n+1)N−1)

b = (wx−1xNn
, x

(n+1)N−1
Nn , wxN(n+1)−1,xN

, xNn−1
N , wxNn−1,x0 , x

N−1
0 , wxN−1,x(n+1)N

).

Note that |a| = (n + 1)N , and |b| = (n + 1)N + 4Mbr, where Mbr is the length of
the bridge words in B.

The distortion of such maps was found in Lemma 3.3. A direct calculation
using the boundedness and Hölder continuity of r shows that there exist a constant
E′

R, which only depends on max r, Mbr and var(r) (but not on N,n), such that
|R+(ax∞(n+1)N , bx

∞
(n+1)N )| < E′

R. Part (1) follows from lemma 3.3.
Next we study the Σ–coordinate of κn,N (π(x, ξ, s+h(x))). This must be σl(κ∗n,Nx)

with l such that either l ≥ 0 and

0 ≤ s+ h(κ∗n,Nx) +R+(x, κ∗n,Nx)− r∗l (σlκ∗n,Nx) < r∗(σlκ∗n,Nx).

or l < 0 and 0 ≤ s+ h(κ∗n,Nx) +R+(x, κ∗n,Nx) + r∗−l(σ
lκ∗n,Nx) < r∗(σlκ∗n,Nx). We

have seen that |R+(x, κ∗n,Nx)| ≤ E′
R. Since h is bounded and inf r∗n0

> 0, l must
be bounded by some constant L′ = L′(max |h|, E′

r,min r∗n0
). Part (2) follows.

Finally we study the Zd–coordinate of ω′ := κn,N (π(x, ξ, s + h(x))). If l is as
above, then the symbolic coordinates of ω′ are (assuming for simplicity that l > 0)

(σl(κ∗n,N (x)), ξ + F (ax∞(n+1)N , bx
∞
(n+1)N ) + fl(κ∗n,N (x)), something).

It is routine to check that ‖F (ax, bx)‖ is uniformly bounded by some constant
E′

F which only depends on max ‖f‖ and Mbr. This means that the difference in
Zd–coordinates is no more than ‖F (ax∞(n+1)N , bx

∞
(n+1)N ) + fl(κ∗n,N (x))‖ ≤ E′

F +
L′ max ‖f‖.

Thus ω, ω′ lie in two copies of M̃0 ⊂ T 1M which differ by a deck transformation
whose Zd–index is bounded. Since the diameter of M̃0 is finite, this implies that
dist(ω, ω′) is uniformly bounded, whence part (3). �

Changing suffices: ϑT∗,ω1,ω2 . Fix T ∗ > 0 and two vectors ω1,ω2 on the same horo-
cycle Hor(ω). We define a map ϑT∗,ω1,ω2 : g−T∗ [W ss

loc(g
T∗ω1)] → g−T∗ [W ss

loc(g
T∗ω2)]

as follows: write ω∗i := gT∗(ωi) = π(x∗i , ξ
∗
i , s

∗
i + h(x∗i )) (i = 1, 2), and define

(1) ϑ∗x∗1 ,x∗2
: {z∗ ∈ Σ : (z∗)∞0 = (x∗1)

∞
0 } → {x∗ ∈ Σ : (x∗)∞0 = (x∗2)

∞
0 } by

ϑ∗x∗1 ,x∗2
(z) =

(
z−1
−∞, wz−1,(x∗2)0 , (ẋ

∗
2)
∞
0

)
;

(2) ϑ̃ω1,ω2 : W ss
loc(g

T∗ω1) →W ss
loc(g

T∗ω2) by

ϑ̃ω1,ω2(π(z, ξ∗1 , s
∗
1 + h(z))) = π(ϑ∗x∗1 ,x∗2

z, ξ∗2 , s
∗
2 + h(ϑ∗x∗1 ,x∗2

z));

(3) The map ϑT∗,ω1,ω2 : g−T∗ [W ss
loc(g

T∗ω1)] → g−T∗ [W ss
loc(g

T∗ω2)] is

ϑT∗,ω1,ω2 := g−T∗ ◦ ϑ̃ω1,ω2 ◦ gT∗ .

Lemma 3.6. Suppose dist(gT∗ω1, g
T∗ω2) ≤ T0. The map ϑT∗,ω1,ω2 is an absolutely

continuous injective map from a subset of full `–measure of g−T∗ [W ss
loc(g

T∗ω1)] into
g−T∗ [W ss

loc(g
T∗ω2)], and there exist constants C ′′

r ≥ 1, E′′ and L′′ which only depend
on T0 such that
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(1) (C ′′
r )−1 ≤ d` ◦ ϑT∗,ω1,ω2/d` ≤ C ′′

r ,
(2) the Σ–coordinate of ϑT∗,ω1,ω2(π(x, ξ, T )) is σ−m(ϑ∗x∗1 ,x∗2

σnx) with n ≥ 0
such that |r∗n(x)− T ∗| ≤ 5(max r∗ + max |h|) and |m− n| ≤ L′′,

(3) dist(ω, ϑT∗,ω1,ω2ω) ≤ E′′ (dist = distT 1M ).

Proof. Lemma 3.4 implies that ϑ̃ω1,ω2 is absolutely continuous and that

1
D′′ ≤

d` ◦ ϑ̃ω1,ω2

d`
≤ D′′

with D′′ independent of ωi. Since the geodesic flow contracts the length of horocy-
cles uniformly, part (1) follows with C ′′

r := D′′.
To compare the symbolic coordinates of ω and ϑT∗,ω1,ω2(ω), write ω = π(x, ξ, t)

with 0 ≤ t < r∗(x). Since ω ∈ g−T∗W ss
loc(ω

∗
1), there is some n s.t.

gT∗(ω) = π(σn(x), ξ + fn(x), t+ T ∗ − r∗n(x))

where σn(x)∞0 = (x∗1)
∞
0 , ξ + fn(x) = ξ∗1 , t+ T ∗ − r∗n(x) = s∗1 + h(σn(x)). Thus

ϑT∗,ω1,ω2(ω) = g−T∗π

(
ϑ∗x∗1 ,x∗2

(σnx), ξ∗2 , s
∗
2 + h

(
ϑ∗x∗1 ,x∗2

(σnx)
))

= π

 σ−mϑ∗x∗1 ,x∗2
(σnx)

ξ∗2 − fm(σ−mϑ∗x∗1 ,x∗2
(σnx))

s∗2 + h(ϑ∗x∗1 ,x∗2
(σnx))− T ∗ + r∗m(σ−mϑ∗x∗1 ,x∗2

(σnx))


with m s.t.

0 ≤ s∗2 + h(ϑ∗x∗1 ,x∗2
(σnx))− T ∗ + r∗m(σ−mϑ∗x∗1 ,x∗2

(σnx)) < r∗(σ−mϑ∗x∗1 ,x∗2
(σnx)).

The obvious bounds |s∗2| ≤ max r∗ + max |h|, |r∗m − rm| ≤ 2 max |h|, and the
double inequality above imply that

|rm(σ−mϑ∗x∗1 ,x∗2
(σnx))− T ∗| ≤ 5(max r∗ + max |h|).

The identity t+ T ∗ − r∗n(x) = s∗1 + h(σn(x)) means that

|r∗n(x)− T ∗|, |rn(x)− T ∗| ≤ 5(max r∗ + max |h|).

We see that |rn(x)−rm(σ−mϑ∗x∗1 ,x∗2
(σnx))| ≤ 10(max r∗+max |h|). By construction,

(σ−mϑ∗x∗1 ,x∗2
(σnx))∞0 = (xn−m+Mbr

, . . . , xn−1, wxn−1(x∗2)0 , (x
∗
2)
∞
0 ) (3.6)

This allows us to estimate |m− n|:

10(max r∗ + max |h|) ≥ |rn(x)− rm(σ−mϑ∗x∗1 ,x∗2
(σnx))|

≥ inf |r|n−m+Mbr|| − 2Mbr max |r| − 2var(r)
≥ inf r∗|n−m+Mbr| − 2 max |h| − 2Mbr max |r| − 2var(r)

≥
⌊
|n−m|
n0

⌋
inf r∗n0

− 2 max |h| − 3Mbr max |r| − 2var(r).

Since inf r∗n0
> 0, we see that |m − n| ≤ L′′, with L′′ = L′′(r, r∗,Mbr, h, n0) with

L′′ independent of ω1, ω2 and T ∗.
We can now estimate the difference between the Zd and R coordinates of ω =

π(x, ξ, t) and ω′ := ϑT∗,ω1,ω2(ω) which we write as ω′ = π(x′, ξ′, t′).
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We saw above that ξ = ξ∗1 − fn(x). Comparing this to the symbolic coordinates
of ω′ found above, and recalling that f(x) = f(x0, x1), we see that

‖ξ′ − ξ‖ ≤ ‖ξ∗1 − ξ∗2‖+ ‖fm(x′)− fn(x)‖
≤ ‖ξ∗1 − ξ∗2‖+ (L′′ +Mbr)max ‖f‖ (∵ (3.6)).

Since by assumption dist(ω∗1 , ω
∗
2) ≤ T0, ‖ξ∗1 − ξ∗2‖ is bounded by a constant which

only depends on T0 and the geometry of M̃0. This implies that ‖ξ′− ξ‖ is bounded
above by some constant which only depends on T0, L

′′ and max ‖f‖.
The upper bound on the difference between Zd–coordinates implies a uniform

upper bound E′′ on the distance between ω and ω′ in T 1M , whence part (3). �

Proof of the Key Lemma. Define once and for all the following constants:
• `min := inf

ω′∈T 1M
`(W ss

loc(ω
′)) = minψ, dmax := sup

ω′∈T 1M

diam[W ss
loc(ω

′)] (with

the diameter measured using the intrinsic horocycle metric);
• T0 := 100dmax;
• Cr := max{C ′

r, C
′′
r }, where C ′

r, C
′′
r are as in lemmas 3.5 and 3.6 (with T0

as above);
• L := max{L′, L′′} where L′, L′′ are as in lemmas 3.5 and 3.6 (with T0 as

above);
• E := max{E′, E′′} where E′, E′′ are as in lemmas 3.5 and 3.6 (with T0 as

above);
• K∗ := 100L(max r∗ + max |h|+ max |r|+ max ‖f‖+ var(r)), where r, r∗, f

are as in lemma 2.1, L as in lemma 3.3;
• Recall that M̃0 ⊂ T 1M is a fundamental domain for the action of the

covering group on T 1M . Fix C = C(M̃0, E) so large that

dist(ω, M̃0) < 10E =⇒ ω ∈
⋃

‖a‖<C

Da(M̃0) =: M̃0(C),

where {Dξ : ξ ∈ Zd} are the deck transformations of the cover.
Finally, fix some arbitrarily small ε0 > 0.

Step 1. Application of Egoroff’s theorem, and choice of N(ε0).

Recall that 1
T ξ(g

Tω) → Ξϕ as T → ∞ mϕ–almost everywhere. Symbolically, this
means that

fn(x)
r∗n(x)

−−−−→
n→∞

Ξϕ for mϕ–a.e. ω = π(x, ξ, t).

The reason is that this fraction is asymptotic to 1
Tn

[ξ(gTnω)− ξ(ω)], where Tn = is
the n-th hitting time to the Poincaré section.

We construct a large set Λ where the limit is nearly achieved in finite time. There
exists anN = N(ε0) s.t. mϕ{ω ∈ M̃0(C) : ω = π(x, ξ, s) ,

∥∥ fN (x)
r∗N (x)−Ξϕ

∥∥ ≥ ε0} < ε0.
Better yet, since r∗n ≥ bn/n0c inf r∗n0

tends to infinity uniformly and f is bounded,
we can take N = N(ε0,K∗) so large that the set

Λ(ε0) :=
{
ω=π(x, ξ, s)∈T 1M :

∥∥∥∥fN (x) + ef

r∗N (x) + er
− Ξϕ

∥∥∥∥<ε0 for all |er|, ‖ef‖<K∗
}

satisfies mϕ[Λ(ε0) ∩ M̃0(C)] > (1 − ε0)mϕ[M̃0(C)] and mϕ(Λ(ε0) ∩ M̃0) > 1 − ε0.
This completes step 1.
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We know that Λ(ε0) is large with respect to mϕ. The next step is to study the
size of the intersection of Λ(ε0) with the horocycle of ω0. Recall from (3.1) the
definition of AT and λT , and define λC

T to be the length measure on AT ∩ M̃0(C),
normalized s.t. λC

T [M̃0] = 1:

λC
T :=

1∫ T

0
1fM0

(ht(ω0))dt

∫ T

0

1fM0(C)
(htω0)δht(ω0)dt.

Note that λT is a probability measure, but λC
T is not.

Step 2. If ω0 is generic for mϕ, then there exists τ = τ(ε0) such that for all T ≥ τ ,
λT (M̃0 \ Λ(ε0)) ≤ λC

T (M̃0(C) \ Λ(ε0)) < 2ε0.

Proof. Set Λ = Λ(ε0), N = N(ε0). The discontinuities of the map ω 7→ fN (x(ω))
r∗N (x(ω))

are contained in the union of the boundaries of all sets of the form π{(x, ξ, t) : x ∈
[a0, . . . , aN−1], ξ ∈ Zd, 0 ≤ t < r∗(x)}. The Bowen–Series coding of [Se1, Se2] has
the property that these boundaries are geodesics arcs. Therefore, mϕ assigns to
this set measure zero.

Thus for every ε > 0, we can construct sets Fε ⊂ Uε ⊂ Λ ∩ M̃0(C) such that Fε

is compact, Uε is open, and mϕ[Λ ∩ M̃0(C) \ Fε] < ε. Urysohn’s lemma provides a
continuous function 0 ≤ ρε(·) ≤ 1 such that ρε = 1 on Fε and ρε = 0 outside Uε

(whence outside Λ). This function has compact support, and∫
ρεdmϕ > mϕ(Λ ∩ M̃0(C))− ε > 1− (ε0 + ε).

Next construct a continuous function with compact support θε(·) which approx-
imates the indicator function of M̃0 from above in the sense that 0 ≤ θε ≤ 1, θε = 1
on the closure of M̃0, and 1 <

∫
θεdmϕ < 1 + ε.

By construction, and since ω0 is assumed to be mϕ–generic,

λC
T (Λ) =

∫ T

0
1
Λ∩fM0(C)

(htω0)dt∫ T

0
1fM0

(htω0)dt
≥
∫ T

0
ρε(htω0)dt∫ T

0
θε(htω0)dt

−−−−→
T→∞

∫
ρεdmϕ∫
θεdmϕ

>
1− (ε0 + ε)

1 + ε
.

Thus there exists τε such that for all T > τε, λC
T (Λ) > [1−(ε0+ε)]/(1+ε). Choosing

ε sufficiently small, we get that λC
T (Λ) > 1 − 2ε0 for all T > τε sufficiently large.

Equivalently, λC
T (M̃0(C) \Λ) < 2ε0 for all T > τε. Note that τε is a function of ε0.

This finishes the proof of the second step.

The key lemma calls for the estimation of λT (M̃0 ∩ {r∗nN < lnT ∗ −K} \Λn) for
suitable choice of K = K(ε0), where here and throughout N = N(ε0),Λ = Λ(ε0),
Λn = Λn(N(ε0), ε0), T ∗ := ln(T/T0) (with T0 as above), and

{r∗nN < T ∗ −K} := {ω ∈ T 1M : r∗nN (x(ω)) < T ∗ −K}.
Our choice for K is K = K(ε0) := 10(N + L) max r∗. We estimate the λT –

measure of M̃0∩{r∗nN < T ∗−K}\Λn by partitioning M̃0∩{r∗nN < T ∗−K}\Λn(ε0)
into two pieces, which we then treat separately. Define for this purpose

W(I) :=
⋃
W ss

loc(ω
′), where the union is over all ω′ s.t. W ss

loc(ω
′) ⊆ gT∗ [AT ],

W(II) :=
⋃
W ss

loc(ω
′), where the union is over all ω′ s.t. W ss

loc(ω
′) 6⊆ gT∗ [AT ],

but Wss
loc(ω

′) ∩ gT∗ [AT ] has positive length.
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Note that W(I) and W(II) are unions of local stable manifolds. Let N (I),N (II) be
the minimal number of local stable manifolds needed to cover these sets, up to sets
of length zero. Next define

AT (I) := AT ∩ M̃0 ∩ {r∗nN < T ∗ −K} ∩ g−T∗ [W(I)] ,

AT (II) := AT ∩ M̃0 ∩ {r∗nN < T ∗ −K} ∩ g−T∗ [W(II)] .

Clearly AT \ Λn = [AT (I) ∪ AT (II)] \ Λn. The plan is to fix n, and estimate
λT [AT (I) \ Λn] and λT [AT (II) \ Λn].

Step 3. supn λT [AT (I) \ Λn] ≤ 2Crε0 for all T > τ(ε0).

Proof. We use the holonomy κn,N which exchanges the first and n-th blocks of N
symbols in x, see lemma 3.5 above. The idea is to show that

κn,N (AT (I) \ Λn) ⊂ AT ∩ (M̃0(C) \ Λ), (3.7)

which implies by Lemma 3.5 and the definition of Cr that

λT [AT (I) \ Λn] =
`[AT (I) \ Λn]

`[AT ∩ M̃0]
≤ Cr

` ◦ κn,N [AT (I) \ Λn]

`[AT ∩ M̃0]

≤ Cr
`[AT ∩ M̃0(C) \ Λ]

`[AT ∩ M̃0]
∵ (3.7)

= Crλ
C
T (M̃0(C) \ Λ) < 2Crε0 (step 2),

which proves the step.
We prove (3.7). Suppose ω = π(x, ξ, s+h(x)) ∈ AT (I)\Λn, and let ω′ := κn,N (ω).
(1) ω′ ∈ AT : The choice of K is such that ω ∈ {r∗nN < T ∗ −K} forces

r∗(n+1)N+L(ω) ≤ r∗nN (ω) + (N + L) max r∗ < T ∗.

This implies that x(gT∗ω)∞0 = x∞p for p > (n+ 1)N + L.
There exists some m > 0 such that (κ∗n,N (x))∞m = x∞(n+1)N . By lemma

3.5, x(ω′) = σl(κ∗n,N (x)) with |l| < L, so there must exist some k ≥ 0
such that x(ω′)∞k = x∞(n+1)N+L, whence ∃q > 0 such that x(ω′)∞q = x∞p =
x(gT∗ω)∞0 . It is not difficult to see that this entails the existence of T# > 0
s.t.

gT#
(ω′) ∈W ss

loc(g
T∗ω) ⊂ W(I) ⊂ gT∗ [AT ].

Thus ω′ ∈ gT∗−T#
(AT ). But image of κn,N is always in Hor(ω0), so we

must have T# = T ∗, and ω′ ∈ AT .
(2) ω′ ∈ M̃0(C): See lemma 3.5 part 3, and the choice of E and C.
(3) ω′ 6∈ Λ: By construction, the first N -block of x(ω′) differs from the n-th

N–block of x(ω) by at most 2|l| < 2L symbols. This means that

‖fN (x(ω′))− fN (σNnx(ω))‖ ≤ 2Lmax ‖f‖ < K∗

|r∗N (x(ω′))− r∗N (σNnx(ω))| ≤ |rN (x(ω′))− rN (x(ω))|+ 4 max |h|
≤ 2Lmax |r|+ var(r) + 4 max |h| < K∗.

Had ω′ been in Λ, then it would have followed from these estimates that
‖ fN (σNnx(ω))

r∗N (σNnx(ω))
− Ξϕ‖ < ε0, contrary to the assumption that ω 6∈ Λn.
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This finishes the proof of (3.7), and completes the step.

Step 4. supn λT [AT (II) \ Λn] ≤ 4C2
r dmax
`min

ε0 for all T > τ(ε0).

Proof. Fix W ss
loc(g

T∗ω1) ⊂ W(II) and W ss
loc(g

T∗ω2) ⊂ W(I). We use ϑT∗,ω1,ω2 to
map g−T∗W ss

loc(g
T∗ω1) into g−T∗W ss

loc(g
T∗ω2) ∈ g−T∗ [W(I)] ⊂ AT , and then apply

κN,n to claim that

κn,N ◦ ϑT∗,ω1,ω2

(
g−T∗W ss

loc(g
T∗ω1) ∩ M̃0 ∩ {r∗nN < T ∗ −K} \ Λn

)
⊂ AT ∩ M̃0(C) \ Λ. (3.8)

Suppose this were proved. Using the bounds on the Radon-Nikodym derivatives
of κn,N and ϑT∗,ω1,ω2 , we can then deduce that

λT

(
g−T∗W ss

loc(g
T∗ω1) ∩ M̃0 ∩ {r∗nN < T ∗−K} \ Λn

)
≤ C2

rλ
C
T (M̃0(C)\Λ) < 2C2

r ε0.

Fixing W ss
loc(ω2), and summing over all W ss

loc(g
T∗ω1) needed to cover W(II) up to

sets of length zero, we get λT (AT (II) \ Λn) ≤ 2C2
rN (II)ε0.

We claim that N (II) ≤ 2dmax/`min. To see this note that every local stable
manifold in W(II) has length at least minψ, and is located at most dmax units of
distance away from the endpoints of gT∗(AT ) (otherwise it would be contained in
gT∗(AT ), which it is not). Since local stable manifolds are either equal or disjoint
up to sets of length zero, this means that N (II) ≤ 2dmax/`min.

The step follows from this. Thus it is enough to prove (3.8).
The argument is similar to the one we used in step 3. Fix ω ∈ g−T∗W ss

loc(g
T∗ω1)∩

M̃0 ∩ {r∗nN < T ∗ −K} \ Λn and set ω′ := (κn,N ◦ ϑT∗,ω1,ω2)(ω).

(1) ω′ ∈ AT : Set ω′′ := ϑT∗,ω1,ω2(ω). Then ω′′ ∈ g−T∗W ss
loc(g

T∗ω2), and
∃k > 0, l ∈ [−L,L] such that |r∗k(x(ω)) − T ∗| < 5(max r∗ + max |h|),
x(ω′′)∞k+Mbr+l = x(ω2)∞k , and x(ω′′)k+l

l = x(ω)k
0 (lemma 3.6). This k is

larger than (n+ 1)N + 2L, because by choice of K,

r∗(n+1)N+2L(x(ω)) ≤ r∗nN (x(ω)) + (N + 2L) max r∗

< T ∗ − 5(max r∗ + max |h|),

and r∗k(x(ω)) > T ∗ − 5(max r∗ + max |h|). Thus the tail x(ω2)∞k survives
κn,N , which means that x(ω2)∞k appears as some tail of x(ω′). This means
that there exists T# > 0 such that gT#

(ω′) ∈W ss
loc(g

T∗ω2) ⊂ gT∗(AT ). As
before T# must be equal to T ∗, whence ω′ ∈ AT .

(2) ω′ ∈ M̃0: ϑT∗,ω1,ω2 moves points at most E′′ units of distance. κn,N moves
points at most E′ units of distance. In total we move at most 2E units of
distance from M̃0, which still leaves us well inside M̃0(C).

(3) ω′ 6∈ Λ: By construction, the first N–block of x(ω′) differs from the n-th
N -block of x by at most 4L coordinates (the edge effects of two shifts by at
most L units). Similar considerations to those used above show that had
ω′ belonged to Λ, then ω would have had to belong to Λn, a contradiction.

(3.8) is proved and step 4 is done.

Steps 3 and 4 imply the key lemma, with C0 := 2Cr + 4C2
rdmax/`min, and

K(ε0), T0, N(ε0), τ(ε0) as above. �
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4. Proof that a vector with asymptotic cycle in int(C) is generic

The purpose of this section is to prove

Proposition 4.1. For every ε > 0 and all non-negative, non-identically zero con-
tinuous functions f, g, there is a neighborhood Kϕ 3 Ξϕ in Rd s.t. if T is large
enough then

ξln T (ω)
lnT

∈ Kϕ =⇒ e−ε

∫
fdmϕ∫
gdmϕ

≤
∫ T

0
f(htω)dt∫ T

0
g(htω)dt

≤ eε

∫
fdmϕ∫
gdmϕ

. (4.1)

Thus every vector with asymptotic cycle Ξϕ is generic formϕ. Indeed we have the
stronger statement that if there is a sequence Tn →∞ such that ξTn(ω)/Tn → Ξϕ,

then
∫ eTn

0
f(htω)dt/

∫ eTn

0
g(htω)dt→

∫
fdmϕ/

∫
gdmϕ for all f, g as above.

Another way of looking at this is to say that if ξT (ω)/T has more than one accu-
mulation point in int(C) then

∫ T

0
f(htω)dt/

∫ T

0
g(htω)dt oscillates without converg-

ing, and therefore cannot be generic for any measure. This agrees with proposition
3.1, but it does not prove it, because of the lack of information on ω’s such that
ξT (ω)/T → ∂C.

In what follows, we fix ε > 0 and look for Kϕ = Kϕ(f, g, ε) as above.

Modification of the Coding. Fix some small ε∗ = ε∗(ε) > 0, to be determined
later. Recall the symbolic coding of section 2, in particular the definitions of ψ and
Ψϕ. Let dmax denote the maximal diameter of a symbolic local stable manifold,
measured in the intrinsic metric of the horocycle which contains it.

We claim that we can change the coding to ensure that the new roof function
and symbolic strong stable manifolds satisfy

max r∗new < ε∗,

max |hnew| < ε∗

(dmax)new < ε∗,

maxψnew < ε∗,

diam
(
πnew{(x, ξ, s) : x0 = a0, ξ = ξ0, 0 ≤ s < r∗new(x)}

)
< ε∗ for all a0, ξ0.

Moreover, we claim that this modification can be done in such a way that

maxψnew

minψnew
,
max(Ψϕ)new

min(Ψϕ)new
< Cϕ

where Cϕ does not depend on ε∗ or ε.
Here is how to do this.
The coding in lemma 2.1 is based on finding a Poincaré section for the geodesic

flow, with a Markov section map T . Take a power αL :=
∨L

i=−L T
−iα of the Markov

partition α of this section, with L so large that

V (L) :=
∞∑

k=L

sup{|r(x)− r(y)| : xk
−k = yk

−k} < 1
2ε

∗.

Such L exist because r is Hölder continuous.
Increase the Poincaré section by adding to it the sets

gkε∗/2(A), for A ∈ αL and all k = 1, . . . , b2 min
A
r/ε∗c.
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This is again a Poincaré section for the geodesic flow. It can be used to code the
geodesic flow as a special flow over a (new) subshift of finite type with roof function
r∗new such that max r∗new ≤ ε∗/2 < ε∗ and var(r∗new) ≤ V (L) < ε∗.

Recall that hnew is (any) Hölder continuous function such that rnew := r∗new +
hnew ◦ σnew − hnew only depends on the non-negative coordinates (w.r.t Σnew).
There are explicit constructions of such functions which lead to functions hnew

such that |hnew| ≤ var(r∗new), see for example the proof of lemma 1.6 in [Bo2].
Since var(r∗) < ε∗, this gives hnew with |hnew| < ε∗.

We claim that if L is large enough, then the diameter and length of all symbolic
manifolds in the new coding are less than ε∗/2, whence (dmax)new,max(ψnew) < ε∗.

To see this observe that for every x, the sets π{(y, ξ, s + h(y)) : yL
−L = xL

−L}
decrease to {π(x, ξ, s+ h(x))} as L→∞. Thus for every x there exists L(x) such
that the length and diameter of

π
(
{(y, ξ, s) : yL(x)

−L(x) = x
L(x)
−L(x), ξ = ξ0, 0 < s < ε∗/2}

)
are less than ε∗. (This L(x) does not depend on ξ0, because the deck transforma-
tions are isometries.) A compactness argument shows that L(x) can be chosen to
be uniform in x.

We check that the ratio of the maxima and minima of ψnew and (Ψϕ)new remains
bounded by a constant independent of L, ε∗ and ε.

First note that our modification of the coding does not change the value of
P (uϕ), because as mentioned above the diffeomorphism P (·) does not depend on
the coding (it can be described by a ‘section–free’ formula, see [BL2]).

Unfortunately (Ψϕ)new : Σ+
new → R is affected by the coding, because it is

defined to be the normalized eigenfunction of Lnew
−P (uϕ),uϕ

: C(Σ+
new) → C(Σ+

new)
and rnew, fnew and Σ+

new are different from r, f and Σ+.
The first observation is that any change which is solely due to refining the Markov

partition does not affect the minimum of maximum of Ψϕ, because the subshift of
finite type it generates is conjugate to the original subshift. It is therefore enough
to focus on changes in the roof function r and the Poincaré section.

The modified Poincaré section can be coded using a subshift of finite type Σ+
new

with two types of states: the old set of states S of Σ+, and a new set of states S′

each of which has a unique predecessor (i.e. a state which can lead to it). It is easy
to see that max rnew ≤ max r, and max ‖fnew‖ ≤ max ‖f‖ (in fact fnew = 0 except
perhaps on states which lead to S).

One can recover Σ+ from Σ+
new by inducing: If one induces the shift σnew :

Σ+
new → Σ+

new on the union of the states in S, then one gets a dynamical system
isomorphic to σ : Σ+ → Σ+. The same induction procedure can be used to recover
L−P (uϕ),uϕ

from Lnew
−P (uϕ),uϕ

: If τ is the first return time to the states in S, then
L−P (uϕ),uϕ

is conjugate to the operator F 7→ [(Lnew
−P (uϕ),uϕ

)τ(x)F ](x) on C(Σ+
new).

Standard results on inducing Ruelle operators imply that this conjugacy maps
(Ψϕ)new|S S to Ψϕ. It follows that

max(Ψϕ)new|S = maxΨϕ and min(Ψϕ)new|S S = minΨϕ.

Consider now points x ∈ [a] ⊂
⋃
S′. Let k be the minimal natural number such

that x = σk(y) and y ∈
⋃
S. Since every state in S′ has exactly one predecessor,
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and since Ψϕ = L−P (uϕ),uϕ
Ψϕ,

Ψϕ(x) = e−P (uϕ)(rnew)k(y)+〈uϕ,(fnew)k(y)〉Ψϕ(y).

It is easy to verify that |(rnew)k(y)| ≤ |r∗(y)| + 2 max |h| and that (fnew)k(y) is
either equal to zero or to f(y). We conclude that

Ψϕ(x) ≤ e|P (uϕ)|(max r∗+2 max |h|)+‖uϕ‖max ‖f‖ max(Ψϕ)new|S S

Ψϕ(x) ≥ e−|P (uϕ)|(max r∗+2 max |h|)−‖uϕ‖max ‖f‖ min(Ψϕ)new|S S .

It follows that
max(Ψϕ)new

min(Ψϕ)new
≤ const×max Ψϕ

minΨϕ

where the constant is independent of ε∗, ε. The constant can be taken to be a
continuous function of ϕ. In particular, if ϕ ranges in a given compact set, then it
is bounded.

The bound on maxψnew/minψnew can be obtained in exactly the same way.
Indeed, ψnew = (Ψ0)new where 0 is the trivial homomorphism, see proposition 4.5
in [BL2].

This shows that the new coding is as required. Henceforth we work with this
coding, and drop the decorations by ‘new’.

Simple Sets. Working with ε, ε∗ and the symbolic coding of the previous section,
we consider the following sets, which we call ε∗–simple sets:

E = π{(x, ξ, s+ h(x)) : x ∈ [a] := [ȧ0, . . . , an−1], α ≤ s < β} ⊂ Σ× Zd × R, (4.2)

where 0 ≤ α ≤ β ≤ inf [a] r
∗. We call β − α the width of E, and n its depth.

Note that diam(E) < ε∗, and that

mϕ(E) = const e〈uϕ,ξ〉
∫ β

α

e−P (uϕ)sds

∫
[a]

ψdνϕ

with the constant independent of ε∗, ε.

Lemma 4.2. If ε∗ is sufficiently small, then for any two ε∗–simple sets E1, E2,
there is a compact neighborhood Kϕ 3 Ξϕ in Rd s.t. if T is large enough, then

ξln T (ω)
lnT

∈ Kϕ =⇒ e−εmϕ(E1)
mϕ(E2)

≤
∫ T

0
1E1(h

tω)dt∫ T

0
1E2(htω)dt

≤ eεmϕ(E1)
mϕ(E2)

.

Proof. Lemma 4.2 is proved by finding the asymptotic behavior of IT (ω,E) :=∫ T

0
1E(htω)dt as T →∞. Such asymptotics can be derived for almost every ω when

ϕ ≡ 0 from the main lemma of [LS1]. Here we describe the necessary modifications
to cover ϕ 6≡ 0, and to replace the quantification ‘mϕ–almost everywhere’ by a
condition on ξ(gln Tω)/ lnT .

In what follows we assume without loss of generality that ω ∈ M̃0, and denote
AT (ω) := {ht(ω) : 0 ≤ t ≤ T} and T ∗ := lnT .

Step 1. For all ω and T > 1, ∃N+, N− ∈ N and ∃ω∗i ∈ gT∗(AT (ω)) = A1(gT∗ω)
(i = 0, . . . , N+) s.t. if JT∗(ω∗i , E) := `[E ∩ g−T∗W ss

loc(ω
∗
i )], then

N−∑
i=0

JT∗(ω∗i , E) ≤ IT (ω,E) ≤
N+∑
i=0

JT∗(ω∗i , E) and 0 <
N+ −N−

N− <
4Cϕε

∗

1− 2ε∗
.
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Proof. We view IT (ω,E) as an integral on the horocyclic arc AT (ω) with respect
to its hyperbolic length measure ` = `ω:

IT (ω,E) =
∫ T

0

1E(htω)dt = `ω[E ∩AT (ω)] = `ω[E ∩ g−T∗A1(gT∗ω)],

where the last equality is because of the commutation relation between the geodesic
and horocycle flows.

Let W ss
loc(ω

∗
i ) (i = 1, . . . , N−) be the symbolic local stable manifolds contained

in A1(gT∗ω). Add to the list the W ss
loc(ω

∗
i ) (i = N− + 1, . . . , N+) which intersect

A1(gT∗(ω)) with positive measure without being contained in it.
Lemma 2.1 part 6 allows us to say that for every ω, any two symbolic local stable

manifolds are either equal or disjoint up to sets of length zero . Therefore, IT (ω,E)
can be sandwiched between

∑N±

i=0 JT∗(ω∗i , E) as above.
The N+−N− symbolic local stable manifolds which intersect A1(gTω) without

being contained in it must be contained in a dmax–neighborhood of the endpoints
of A1(gTω), thus N+ −N− < 4dmax/minψ and N− > (1− 2dmax)/maxψ. Since
maxψ/minψ < Cϕ, 0 < N+−N−

N− <
4Cϕdmax
1−2dmax

<
4Cϕε∗

1−2ε∗ .

Step 2. Suppose ω, ω∗i have symbolic coordinates (x, 0, t+h(x)), (x∗i , ξ
∗
i , t

∗
i +h(x∗i )),

and assume T > eε∗ . Set T#
i := T ∗ − t∗i . Then for every ε∗–simple set E,

JT∗(ω∗i , E) = e±|β−α|
∞∑

k=0

∑
σk(y)=(x∗i )∞0

1[α,β](rk(y)− T#
i )δξ∗i ,ξ+fk(y)1[a](y)ψ(y), (4.3)

where the sum ranges over the one–sided subshift of finite type Σ+.

Proof. See step 2 in lemma 1 of [LS1].

We note for future reference that |T#
i − T ∗| = |t∗i | < max r∗ + max |h| < 2ε∗, and

that |β − α| ≤ max r∗ < ε∗.

Step 3 [BL2]. For every ε∗–simple set E, there exists a compact neighborhood K0
ϕ

of Ξϕ and T0 > 0 such that for all T ≥ T0 and i,

ξ∗i
T ∗

∈ K0
ϕ ⇒ JT∗(ω∗i , E) = const e±Cϕε∗mϕ(E)e±ε e

T#
i H(

ξ∗i
T

#
i

)

(lnT )d/2
Ψϕ(x∗i ),

where H(·) is the minus the Legendre transform of P (·), and H(·), the constant in
front of the expression, and Cϕ do not depend on ε, ε∗, E or ω.

Proof. This is done by estimating the sum (4.3) using an elaboration of Lalley’s
method [L], as in Babillot & Ledrappier [BL1] or [BL2].2

Step 4. There is a function Fϕ(ε, ε∗) −−−−−−→
ε,ε∗→0+

1, s.t. for all ε∗–simple sets E1,

E2, there is a compact neighborhood Kϕ ⊂ K0
ϕ of Ξϕ and T1 > 0 such that for all

ω ∈ T 1M and T ≥ T1 with ξT∗ (ω)
T∗ ∈ Kϕ,

1
Fϕ(ε, ε∗)

mϕ(E1)
mϕ(E2)

≤ IT (ω,E1)
IT (ω,E2)

≤ Fϕ(ε, ε∗)
mϕ(E1)
mϕ(E2)

.

2For a detailed account of the calculation in the particular case ϕ ≡ 0, see the appendix of
[LS1]. The modifications needed to treat general ϕ’s are routine.
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Proof. Let K0
ϕ be an open neighborhood of Ξϕ so small that the conclusion of step

3 holds for E1 and E2. Fix some smaller compact neighborhood Kϕ ⊂ K0
ϕ of Ξϕ

(we shall see later how small), and assume ξT∗ (ω)
T∗ ∈ Kϕ.

By construction all the ω∗i belong to a dmax–neighborhood of A1(gT∗ω), a horo-
cyclic arc of length 1. Their Zd–coordinates ξ∗i must therefore be within a bounded
distance D from each other and from gT∗(ω).

As a result, if T is large enough, then ξT∗(ω)/T ∗ ∈ Kϕ implies that ξ∗i /T
∗ ∈ K0

ϕ

for all i, and so by step 3

IT (ω,E1)
IT (ω,E2)

≤ e2Cϕε∗e2εmϕ(E1)
mϕ(E2)

1 +

N+∑
i=N−+1

e
T#

i H(
ξ∗i

T
#
i

)
Ψϕ(x∗i )

N−∑
i=1

e
T#

i H(
ξ∗

i

T
#
i

)
Ψϕ(x∗i )

 . (4.4)

To analyze the exponents, we compare T#
i H( ξ∗i

T#
i

) to T ∗H( ξT∗ (ω)
T∗ ). Using the

inequality |T#
i −T ∗| < 2ε∗ and the estimate ξ∗i

T#
i

= ξT∗ (ω)
T∗ + o(1), we see that if Kϕ

is sufficiently small and T is sufficiently large, then

|T#
i H( ξ∗i

T#
i

)− T ∗H( ξT∗ (ω)
T∗ )| ≤

≤ |T#
i − T ∗| · |H( ξ∗i

T#
i

)|+ T ∗|H( ξ∗i
T#

i

)−H( ξT∗ (ω)
T∗ )

∣∣
≤ 2ε∗[H(Ξϕ) + ε∗] + (‖(∇H)(Ξϕ)‖+ ε∗)T ∗

∥∥∥∥∥ ξ∗iT#
i

− ξT∗(ω)
T ∗

∥∥∥∥∥ .
Now, for T large enough so that ‖ ξ∗i

T#
i

‖ < 2 diamKϕ + ‖Ξϕ‖, we have

T ∗

∥∥∥∥∥ ξ∗iT#
i

− ξT∗(ω)
T ∗

∥∥∥∥∥ ≤ T ∗

∥∥∥∥∥ ξ∗iT#
i

− ξ∗i
T ∗

∥∥∥∥∥+ T ∗
∥∥∥∥ ξ∗iT ∗ − ξT∗(ω)

T ∗

∥∥∥∥
≤ T ∗

∥∥∥∥∥ ξ∗iT#
i

∥∥∥∥∥
∣∣∣∣∣1− T#

i

T ∗

∣∣∣∣∣+D

≤ (2 diamKϕ + ‖Ξϕ‖) · 2ε∗ +D.

Consequently, there is a constant k′ϕ which only depends on ϕ such that for all T

large enough, if ξ(gT∗ω)
T∗ ∈ Kϕ, then

exp
(
|T#

i H( ξ∗i
T#

i

)− T ∗H( ξT∗ (ω)
T∗ )|

)
≤ exp

(
k′ϕε

∗ +D‖∇H(Ξϕ)‖
)

=: kϕ(ε∗).

Thus the term in the brackets in (4.4) can be estimated by

1 + kϕ(ε∗)2
max Ψϕ

minΨϕ

(
N+ −N−

N−

)
≤ 1 +

4ε∗C2
ϕkϕ(ε∗)2

1− 2ε∗
,

and so IT (ω,E1)/IT (ω,E2) ≤ e2Cϕε∗e2ε mϕ(E1)
mϕ(E2)

Fϕ(ε, ε∗) where

Fϕ(ε, ε∗) := e2Cϕε∗+2ε

(
1 +

4ε∗Cϕkϕ(ε∗)2

1− 2ε∗

)
.
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The lower bound is obtained in the same way, and the step is proved.

We can now prove the lemma. Fix ε̃. Choose ε, ε∗ so small that e−eε < F (ε, ε∗) <
eeε. Then the lemma follows with ε̃ instead of ε. �

Proof of Proposition 4.1. Take ε and ε∗ as in lemma 4.2. Call a function an
ε∗–step function if it is a finite linear combination of indicators of ε∗–simple sets.

It is easy to see that lemma 4.2 implies the proposition for every pair of ε∗–step
functions f, g with non-zero integrals.

The proposition also holds for all non-negative non-identically zero continuous
functions f, g with compact supports which do not intersect the section: Such func-
tions can be sandwiched between ε∗–step functions with almost the same integrals,
and ε∗ and the width of the simple sets can be chosen arbitrarily small.

We claim that there is an open neighborhood V of the section such that for all
non-negative, non-identically zero, continuous functions f, g supported inside V , if
T is large enough and ‖ξln T (ω)/ lnT − Ξϕ‖ is sufficiently small, then

e−3ε

∫
fdmϕ∫
gdmϕ

≤
∫ T

0
f(htω)dt∫ T

0
g(htω)dt

≤ e3ε

∫
fdmϕ∫
gdmϕ

.

Every point ω̃ in the section has a precompact open neighborhood Veω and a
constant 0 < s(ω̃) < min{ε∗, ε} such that the closure of gs(eω)[Veω] does not intersect
the section. Suppose f1, f2 are non-negative, non-identically zero, continuous func-
tions with compact support in Veω; then f̃i := fi ◦ g−s(eω) are uniformly continuous
functions with compact supports which do not intersect the section. Thus they
satisfy (4.1) for all T large enough with some compact neighborhood Kϕ of Ξϕ.

The commutation relation between the geodesic flow and the horocycle flow im-

plies
∫ T

0
fi(htω)dt = es(eω)

∫ Te−s(eω)

0
f̃i(hτg−s(eω)ω)dτ . If ξln T (ω)

ln T ∈ int(Kϕ), then for

T large enough ξln T (gs(eω)ω)
ln T ∈ int(Kϕ). For such T ,

∫ T

0
f1(htω)dt/

∫ T

0
f2(htω)dt =∫ Te−s(eω)

0
f̃1(hτg−s(eω)ω)dτ/

∫ Te−s(eω)

0
f̃2(hτg−s(eω)ω)dτ = e±ε

∫
f̃1/

∫
f̃2. The integral

ratio is equal to
∫
f1/

∫
f2, because mϕ ◦ gτ = e−P (uϕ)τmϕ.

Thus (4.1) holds for all f1, f2 supported inside Veω.
Now suppose supp f1 ⊂ Veω1 and supp f2 ⊂ Veω2 where ω̃1 6= ω̃2. Choose non-

negative non-identically zero continuous gi with compact support in Veωi
\section.

Writing ∫ T

0
f1 ◦ htdt∫ T

0
f2 ◦ htdt

=

∫ T

0
f1 ◦ htdt∫ T

0
g1 ◦ htdt

·
∫ T

0
g1 ◦ htdt∫ T

0
g2 ◦ htdt

·
∫ T

0
g2 ◦ htdt∫ T

0
f2 ◦ htdt

,

we see that for all T large enough, if ‖ξln T (ω)/ lnT −Ξϕ‖ is sufficiently small, then

e−3ε

∫
f1dmϕ∫
f2dmϕ

≤
∫ T

0
f1(htω)dt∫ T

0
f2(htω)dt

≤ e3ε

∫
f1dmϕ∫
f2dmϕ

.

Let V be the union of Veω with ω̃ in the section. Every non-negative continuous
function with compact support in V is the sum of finitely many non-negative con-
tinuous functions supported inside some Veω. Thus proposition 4.1 holds for all f, g
non-negative, non-identically zero, continuous functions supported inside V .
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Now set U to be the family of all non-negative non-identically zero continuous
functions with compact support, whose support does not intersect the section. De-
fine V to be the family of all non-negative non-identically zero continuous functions
supported inside V .

We saw that proposition 4.1 holds for all pairs of functions in U , and for all pairs
of functions in V. Since U ∩V 6= ∅, proposition 4.1 holds for all pairs of functions in
U∪V. Since any non-negative continuous function of compact support is the sum of
a function from U and a function from V, proposition 4.1 holds for all non-negative
continuous functions of compact support. �

5. A Question

The obvious question is what happens for other hyperbolic surfaces of infinite
genus. Theorem 1.1 does not make sense for such surfaces, because the notion of
asymptotic cycle is specific to Zd–covers.

It is desirable to find another criterion which does make sense in general.
The following observation is perhaps a step in this direction. Let ∆ denote the

Laplace–Beltrami operator on the hyperbolic surface M . A positive eigenfunction
F : M → R is called minimal, if it defines an extremal ray in the cone of posi-
tive eigenfunctions with the same eigenvalue. The minimal positive eigenfunctions
are known for Zd–covers [CG], [LP]: they form a list {cFϕ : c > 0, ϕ : Zd →
R a homomorphism}, where Fϕ satisfies Fϕ ◦ Dξ = eϕ(ξ)Fϕ for all deck transfor-
mations Dξ, ξ ∈ Zd. The similarity with the collection of Babillot–Ledrappier
measures is not a coincidence, see [LS2].

Extend Fϕ : M → R to Fϕ : T 1M → R by setting Fϕ(ω) = Fϕ(base point of ω).
It is easy to see using the precompactness of M̃0 and the continuity of Fϕ that for
all homomorphisms ϕ,

ϕ(Ξ(ω)) = lim
T→∞

1
T

lnFϕ(gTω).

Thus Ξ(ω) is completely determined by the logarithmic growth of the minimal
positive eigenfunctions of ∆ along the forward geodesic ray of ω.

In particular, we get the following corollary of theorem 1.1: Suppose M is a
Zd–cover of a compact hyperbolic surface, then ω is generic for the horocycle flow
with respect to the volume measure iff

lim
T→∞

1
T

lnF (gTω) = 0

for every positive minimal eigenfunction F of the Laplace–Beltrami operator of M .

Question: Does the above extend to other, perhaps all, hyperbolic surfaces with
the Liouville property?

We remind the reader that a hyperbolic surface is called Liouville if all its bounded
harmonic functions are constant. We need to assume the Liouville property, because
of Kaimanovich’s theorem [K], which says that the volume measure is ergodic for
the horocycle flow on a hyperbolic surface, iff this surface is Liouville.

Note added in proof: F. Ledrappier and M. Pollicott have suggested to us ways to
extend the results of this paper to the case when M0 has variable negative curvature
(the “horocycle flow” being replaced by the Margulis parametrization [Mrg] of the
strong stable foliation, see [Mrc]). To do this, replace the Bowen–Series coding
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of the geodesic flow we used for lemma 2.1 by either Ratner’s symbolic coding of
the geodesic flow [Ra1], or by the coding obtained by making a time change to
conjugate the geodesic flow to the geodesic flow of a conformally equivalent metric
of constant curvature, as in [G] or [Ka], section 3. See [PS2].

Acknowledgments: We would like to thank Mark Pollicott and François Ledrap-
pier for useful discussions, and the referee for the careful reading of the manuscript.
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