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ABSTRACT. We characterize the finiteness of Gibbs measures for geodesic flows on
negatively curved manifolds by several criteria, analogous to those proposed by Sarig
for symbolic dynamical systems over an infinite alphabet. As an application, we re-
cover Dal’bo-Otal-Peigné criterion of finiteness for the Bowen-Margulis measure on
geometrically finite hyperbolic manifolds, as well as Peigné’ examples of gemetrically
infinite manifolds having a finite Bowen-Margulis measure. These criteria should be
useful in the future to find more examples with finite Gibbs measures.
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INTRODUCTION

Hyperbolic dynamical systems are, heuristically, so chaotic that all behaviours that
one can imagine indeed happen for some orbits. From the point of view of ergodic
theory, this can be expressed by the existence of Gibbs measures. When the space is
compact, choosing any regular enough "weight function", called a potential, i.e. usually
a Hölder continuous map on the space, we can find an invariant ergodic probability
measure which gives, roughly speaking, large measure to the sets where the potential
is large, and small measure to those where the potential is small. This is a quantified
way of saying that all behaviours that one can imagine, represented by the choice of a
potential, indeed happen for a hyperbolic dynamical system.

Such measures are called Gibbs measures, and their existence for Hölder potentials
and uniformly hyperbolic flows has been proved by Bowen-Ruelle [BR75]. Thermo-
dynamical formalism, i.e. the study of the existence and properties of these measures,
has been extended to noncompact situations in two main cases. In symbolic dynamics,
Sarig ([Sar99], [Sar01]) studied thermodynamical formalism of shifts over a countable
alphabet. In the context of geodesic flows of noncompact negatively curved manifolds,
the measure of maximal entropy, which is associated with the constant potential, now
commonly called the Bowen-Margulis measure, has been extensively studied, first by
Sullivan on geometrically finite hyperbolic manifolds [Sul84], and later with his ideas
by many others. Among them, let us cite Otal-Peigné who obtained an optimal vari-
ational principle in [OP04], and Roblin [Rob03] who established an equidistribution
result of measures supported by periodic orbits towards the Bowen-Margulis measure.
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Generalizations of their results to Gibbs measures with general Hölder potentials have
been proved in [PPS15].

All these results hold if and only if the Gibbs measure associated with the potential
is finite. It is therefore very important to be able to characterize, or at least to give
sufficient conditions for the finiteness of Gibbs measures. Some partial results and ex-
amples have already been proved in the past. In [Sar99], [Sar01], in a symbolic context,
Sarig established two finiteness criteria for the measure associated with a Hölder poten-
tial F . Iommi and its collaborators extended this study to suspension flows over such
shifts, in [BI], [IJT15]. In the case of geodesic flows on the unit tangent bundle of
noncompact manifolds, the first criterion appeared in [DOP00]. In the particular case
of geometrically finite manifolds, Dal’bo-Otal-Peigné showed that the Bowen-Margulis
measure is finite if and only if a series involving the parabolic elements of the funda-
mental group converges. This criterion has been extended later by Coudène [Cou03]
to Gibbs measures of geometrically finite manifolds. Finally, Peigné constructed in
[Pei03] the first examples of geometrically infinite hyperbolic manifolds whose Bowen-
Margulis measure is finite. His proof, once again, involved the convergence of a certain
series. Ancona [Anc] also obtained such examples, but through harmonic analysis.

Our main motivation is to give a unified way to check whether a Gibbs measure is
finite, not specific to a certain class of manifolds, and allowing to recover all results men-
tioned above, the geometric ones as well as Sarig’ symbolic criteria. We will provide
three equivalent criteria for the finiteness of Gibbs measures, all involving the conver-
gence of some series, two of them being the geometric analogues of Sarig’ criteria in
terms of lengths of periodic orbits, the other one being a reformulation in terms of the
action of the fundamental group Γ ofM on its universal cover, which is more convenient
in our geometric context.

To this end, we will not rely on having a symbolic coding for the geodesic flow,
which cannot be ensured in the general case, but on geometrical estimates and Kac’s
recurrence lemma. Recall that this lemma asserts that if a measure µ is conservative and
A is a measurable set with positive finite measure, then the measure of the whole space
equals

∑
n≥1 nµ(An), where An denotes the subset of points of A that return in A after

exactly n iterations of the dynamics. Therefore, the finiteness of µ is equivalent to the
convergence of a certain series. However, Kac Lemma is in general more an abstract
result than an useful criterion, due to the difficulty to estimate the measure of the sets
An, but the geometry of negatively curved manfolds will allow us to convert it into an
explicit efficient criterion.

Let us first give some notations in order to state our results. We are interested in the
geodesic flow (gt) on the unit tangent bundle T 1M of a complete manifold with pinched
negative curvature. Our results also hold when M is a negatively curved orbifold, that
is the quotient of a complete simply connected negatively curved manifold by a discrete
nonelementary group Γ which can contain torsion elements. We study this flow in
restriction to its nonwandering set Ω. We denote by P the set of periodic orbits, by
PW the set of periodic orbits which intersect some setW ⊂ T 1M , and by P ′W the set
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of primitive periodic orbits. For a given periodic orbit p ∈ PW , we denote by l(p) its
length, and by nW(p) the "number of times that the geodesic p crossesW" (see section
2 for a more precise definition). We consider a potential F : T 1M → R, i.e. a Hölder
continuous map, and denote by P (F ) its pressure. It is shown in [PPS15] how one can
build a Gibbs measure mF associated with the potential F .

The Hopf-Tsuji-Sullivan theorem (see [PPS15, Theorem 5.4]) asserts that a Gibbs
measure mF is either ergodic and conservative (possibly finite or infinite) or totally
dissipative, depending on whether the Poincaré series of (Γ, F ) is respectively divergent
or convergent. Therefore, before investigating the finiteness of a Gibbs measure, we
investigate when it is ergodic and conservative.

Definition 1 (Recurrence). A potential F : T 1M → R is said to be recurrent when there
exists an open relatively compact subsetW of T 1M , which intersects the nonwandering
set Ω, such that ∑

p∈P

nW(p)e
∫
p(F−P (F )) = +∞ .

By analogy with the recurrence property for potentials on infinite subshifts developed
in [Sar01], where a periodic orbit may be made of several periodic points beginning with
the same letter, this integer nW(p) can be interpreted as how many changes of origins
are possible along the geodesic orbit p so that the parameterization starts inW .

Our first result is a reformulation of the divergence of the Poincaré series in terms of
periodic orbits.

Theorem 1 (Ergodicity criterion). Let M be a negatively curved orbifold, and F :
T 1M → R a Hölder continuous potential with P (F ) < +∞. Then the Gibbs measure
mF is ergodic and conservative if and only if F is recurrent.

Unfortunately, this equivalence is unlikely to be very useful in practice. The main
interest of Theorem 1 is to enlighten the very strong analogy between our results on
geodesic flows on noncompact manifolds and Sarig’s work in symbolic dynamics over
a countable alphabet, despite the fact that no general coding result of the geodesic flow
by a symbolic dynamical system is known in this context.

Definition 2 (Positive recurrence for the geodesic flow). Let M be a negatively curved
orbifold with pinched negative curvature. A Hölder continuous potential F : T 1M → R
with P (F ) < +∞ is said positive recurrent relatively to a setW ⊂ T 1M intersecting
Ω and the integer N ≥ 1 if it is recurrent and∑

p∈P ′W
nW (p)≤N

l(p)e
∫
p(F−P (F )) < +∞ .

Our main finiteness criterion is the following result, which is the geometric analogue
of the symbolic criterion of Sarig [Sar01].
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Theorem 2 (First finiteness criterion). Let M be a negatively curved orbifold, and
F : T 1M → R a Hölder continuous potential with P (F ) < +∞. Denote by mF

its associated Gibbs measure.
(i) If F is recurrent, and there exist an open relatively compact setW ⊂M meeting

π(Ω) such that F is positive recurrent with respect to W = T 1W and some
N ≥ KW (where KW depends only on diamW and on the geometry of M ),
then mF is finite.

(ii) If mF is finite, then F is recurrent, and positive recurrent with respect toW =
T 1W and any N ≥ 1 for every open relatively compact set W ⊂ M meeting
π(Ω).

In particular, when F is recurrent, then F is positive recurrent with respect toW =

T 1W for some open relatively compact set W̃ which intersects π(Ω̃) and for some
N ≥ KW if and only if it is positive recurrent relatively to any such set.

The proof of Theorem 2 follows from Theorem 3 below, which expresses the finite-
ness of mF in terms of the action of Γ on M̃ instead of periodic orbits on T 1M . This
criterion does not appear in Sarig’s work because it has no meaning in a purely symbolic
setting. However, it is very useful in our geometrical context.

We start by introducing a notation. Given a subset W̃ ⊂ M̃ , denote by

ΓW̃ =
{
γ ∈ Γ

∣∣∣∃y, y′ ∈ W̃ , [y; γy′] ∩ gW̃ 6= ∅ ⇒ W̃ ∩ gW̃ 6= ∅ or γW̃ ∩ gW̃ 6= ∅
}

the set of elements γ such that there exists a geodesic starting from W̃ and finishing in
γW̃ that meets the orbit ΓW̃ only at the beginning or at the end.

Definition 3 (Positive recurrence in the universal cover). The pair (Γ, F̃ ) is said to be
positive recurrent with respect to a set W ⊂ M̃ such thatW = T 1W intersects Ω if F
is recurrent and

∃x ∈ M̃,
∑
γ∈Γ

W̃

d(x, γx)e
∫ γx
x (F̃−P (F )) < +∞ .

Theorem 3 (Second finiteness criterion). Let M be a negatively curved orbifold with
pinched negative sectional curvature. Let F : T 1M → R be a Hölder continuous
potential with P (F ) < +∞, and denote by mF the associated Gibbs measure on T 1M .

(i) If F is recurrent, and if (Γ, F̃ ) is positive recurrent with respect to some open
relatively compact set W̃ ⊂ M̃ meeting π(Ω̃), then mF is finite.

(ii) If mF is finite, then F is recurrent, and (Γ, F̃ ) is positive recurrent with respect
to any open relatively compact set W̃ ⊂ M̃ meeting π(Ω̃).

In particular, when F is recurrent, then (Γ, F̃ ) is positive recurrent relatively to some
open relatively compact set W̃ which intersects π(Ω̃) if and only if it is positive recurrent
relatively to any such set.
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In [Sar99], Sarig proved a finiteness criterion, established earlier than the symbolic
analogue of Theorem 2. This criterion seems less practical than his later work. How-
ever, we wanted to show a complete analogy between the symbolic and our geometric
settings, so we established the same criterion in our situation. The proof is different
from the previous criteria and relies on equidistribution of weighted periodic orbits.
This criterion requires the assumption that the geodesic flow is topologically mixing on
Ω. This extremely classical assumption is satisfied in most interesting situations, even
if its validity is open in general.

Definition 4. The potential F is said to be positive recurrent in the first sense of Sarig
[Sar99] if there exists an open relatively compact subset W of T 1M meeting Ω, and
constants c > 0, t0 ≥ 0 and C > 0 such that

∀t ≥ t0,
1

C
≤

∑
p∈P

t−c<l(p)≤t

nW(p)e
∫
p(F−P (F )) ≤ C .

Theorem 4 (Third finiteness criterion). LetM be a negatively curved complete orbifold,
with pinched negative curvature. Assume that its geodesic flow is topologically mixing.
Let F : T 1M → R be a Hölder continuous potential with P (F ) < +∞, and denote by
mF its associated Gibbs measure on T 1M . Then mF is finite if and only if F is positive
recurrent in the first sense of Sarig with respect to some open relatively compact setW
meeting Ω.

When this theorem holds, F is actually positive recurrent in the first sense of Sarig
with respect to any open relatively compact setW meeting Ω.

The structure of this paper goes at follows. Section 1 introduces the geometric and
thermodynamic formalism background, including some elementary lemmas of hyper-
bolic geometry stated in a convenient way for our purposes. In particular, Lemma 1.4
plays a crucial role in the proof. Section 2 introduces the notion of number of returns of
a periodic orbit, which is used to state Theorem 1, 2 and 4. The proof of Theorem 1 is
given in section 3. Theorem 3 is proved in section 4, from which an intermediate Theo-
rem 5 is derived in section 5, and Theorem 2 is itself derived in section 6. In section 7,
we state and prove a couple of equidistribution results for nonprimitive periodic orbits,
and derive from it the proof of Theorem 4. Finally, we show in section 8 how to retrieve
previous finiteness results from ours.

We believe that these criteria will lead to new examples of interesting manifolds with
finite Gibbs measure. This will be done in the future.

1. PRELIMINARIES

1.1. Geodesic flow in negative curvature. In the following, M̃ is a Hadamard man-
ifold with pinched negative sectional curvature −b2 ≤ k ≤ −a2 < 0, Γ is a discrete
group of isometries preserving orientation of M̃ , M = Γ\M̃ is the quotient orbifold
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(manifold whenever Γ has no torsion elements), and T 1M = Γ\T 1M̃ is its unit tan-
gent bundle. Observe once and for all that Riemannian/differential concepts are still
well defined on M or T 1M by defining objects first on the universal cover, and then
going down to M . With a slight abuse of notation, we denote by π : T 1M → M or
π : T 1M̃ → M̃ the canonical projection, and by PΓ : T 1M̃ → T 1M or PΓ : M̃ → M
the quotient maps.

The geodesic flow of T 1M̃ and of T 1M is denoted by (gt)t∈R. The boundary at infin-
ity ∂∞M̃ is the set of equivalence classes of geodesic rays staying at bounded distance
from each other. If v ∈ M̃ , we denote by v± the positive and negative endpoints of the
geodesic it defines.

The limit set Λ(Γ) is the closure of any Γ orbit of M̃ in ∂∞M̃ . We will only consider
the nontrivial case where Γ is nonelementary, that is Λ(Γ) is infinite. Eberlein proved
that the nonwandering set Ω of the geodesic flow coincides with the set of vectors v ∈
T 1M̃ such that v± ∈ Λ(Γ).

The Hopf coordinates relatively to any base point x0 ∈ M̃ are given by

v ∈ T 1M̃ 7→ (v−, v+, τx0(v)) .

where τx0(v) is the algebraic distance on the geodesic (v−v+) from the projection px0(v)
of x0 on this geodesic to the base point π(v). They induce an extremely useful home-
omorphism between T 1M̃ and ∂∞M̃ × ∂∞M̃ × R. In these coordinates, the geodesic
flow acts by translation on the real coordinate, so that all dynamically relevant sets can
be expressed nicely in terms of these coordinates.

The set of periodic orbits (respectively primitive periodic orbits) of the geodesic flow
is denoted by P (respectively P ′). Recall that periodic orbits of the geodesic flow are
in 1 − 1 correspondance with conjugacy classes of hyperbolic elements of Γ. More
precisely, let Γh be the set of hyperbolic (or loxodromic) isometries of Γ, and Γ′h those
which are primitive. By definition, such a γ has two fixed points in ∂∞M̃ , one repulsive
and the other attractive. It acts by translation on the geodesic line of M̃ joining them
so that the geodesic orbit of T 1M̃ from the repulsive to the attractive endpoint induces
on T 1M a periodic orbit of the geodesic flow. We will denote by l(γ) for γ ∈ Γh, or
equivalently l(p) for p ∈ P , the period of this orbit.

1.2. Thermodynamical formalism. In this section, we recall briefly some facts about
thermodynamical formalism on negatively curved manifolds, which are either classical
or can be found in [PPS15].

Let F : T 1M → R be a Hölder continuous map (or potential), and F̃ be its Γ-
invariant lift to T 1M̃ . Its topological pressure is defined as the supremum

P (F ) = sup
µ∈M

(
h(µ) +

∫
Fdµ

)
,
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the supremum being taken over the set M of all invariant probability measures, and
h(µ) being the Kolmogorov-Sinai entropy of µ.

A dynamical ball B(v, T, ε) is the set

B(v, T, ε) =
{
w ∈ T 1M

∣∣ d(π(gt(v)), π(gt(w))) ≤ ε for all 0 ≤ t ≤ T
}
.

Here, there is a slight abuse of notation : we use the distance d onM instead of a distance
on T 1M , for example the Sasaki metric. However, standard results about geodesic flows
in negative curvature show that these two points of views are equivalent. We refer to
[PPS15] for details. An invariant Radon measure µ satisfies the Gibbs property (see
[PPS15, Section 3.8]) if for all compact subsets K ⊂ T 1M , there exists a constant
CK > 0, such that for all v ∈ K and T > 0 such that gT (v) ∈ K, one has

(1)
1

CK
e
∫ T
0 F (gt(v))dt−TP (F ) ≤ µ(B(v, T, ε) ≤ CKe

∫ T
0 F (gt(v))dt−TP (F ) .

The careful reader will observe that this definition is slightly simplified compared to
[PPS15], but describes the same measures.

When P (F ) is finite, the Patterson-Sullivan-Gibbs construction, detailed in [PPS15],
allows to build a measure mF , which satisfies the above Gibbs property, whose lift m̃F

on T 1M̃ has the following nice expression in the Hopf coordinates

(2) dm̃F (v) =
1

DF−P (F ),x0(v−, v+)2
dµF◦ιx0

(v−)dµFx0
(v+)dt ,

where ι is the flip map ι : v → −v, µFx0
is the so-called Patterson-Sullivan-Gibbs

conformal density on the boundary, and DF is the F -gap map from x defined as

DF,x(ξ, η) = exp
1

2

(
lim
t→+∞

∫ ηt

x

F̃ −
∫ ηt

ξt

F̃ +

∫ x

ξt

F̃

)
.

This map is continuous and positive on ∂∞M̃ × ∂∞M̃ \ {diagonal}, and therefore
bounded away from 0 and +∞ on all compact sets of ∂∞M̃ × ∂∞M̃ \ {diagonal}.
Moreover, the point x0 being arbitrary, the Patterson-Sullivan-Gibbs conformal densi-
ties (µFx )x∈M̃ form a family of measures that have full support in Λ(Γ) and are Γ-quasi-
invariant.

The Gibbs measure mF satisfies the following alternative, known as the Hopf-Tsuji-
Sullivan Theorem, proved by Roblin [Rob03] in full generality when F ≡ 0, and whose
proof has been adapted to Gibbs measures in [PPS15]. First, recall that the pressure
P (F ) is also the critical exponent of the following Poincaré series

PΓ,x,F (s) =
∑
γ∈Γ

e
∫ γx
x (F̃−s) .

This Hopf-Tsuji-Sullivan-Roblin theorem for Gibbs measures enlights how the conver-
gence or divergence of the above series for s = P (F ) is a crucial point for the ergodicity
of the Gibbs measure mF .
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Theorem. Let M be a negatively curved orbifold with pinched negative curvature, and
F : T 1M → R a Hölder continuous map with finite pressure. Then the measure
mF is ergodic and conservative if and only if the Poincaré series PΓ,x,F (s) diverges
at s = P (F ), i.e. ∑

γ∈Γ

e
∫ γx0
x0

(F̃−P (F ))
= +∞ ,

and the measure mF is totally dissipative otherwise.

In fact, one can show that "the" measure mF built in [PPS15] is well defined if and
only if the above series diverges. As this is the only interesting case for us, we do not
care about this problem of terminology.

When a Gibbs measure mF is finite, it is automatically ergodic and conservative.
However, of course, the converse is not true, and it is precisely the purpose of this paper
to propose criteria of finiteness.

1.3. Some exercises in hyperbolic geometry. This section gathers some well-known
lemmas about the geometry of manifolds with pinched negative sectional curvature.

We start by recalling a very classical comparison lemma, as stated for example in
[PP10, Lemma 2.1], from which we will derive the next lemmas.

Lemma 1.1. Let (X, d) be a CAT(−1)-space. For all points x, y inX and z inX∪∂∞X ,
and every t ∈ [0; d(x, z)] (finite if z ∈ ∂∞X), if xt is the point on [x; z] at distance t
from x, then

d(xt, [y; z]) ≤ e−t sinh(d(x, y)) .

In particular, applying this lemma twice leads to the following lemma.

Lemma 1.2. Let r, r′ > 0. Let x, x′, y, y′ ∈ M̃ such that d(x, y) ≤ r and d(x′, y′) ≤ r′.
For every t ∈ [0; d(x, x′)], denote by xt the point on [x;x′] at distance t from x. Then

d(xt, [y; y′]) ≤ sinh(r)e−t + sinh(r′)et−d(x,x′)+sinh(r) .

Recall also the following.

Lemma 1.3 ([PPS15], remark 2 following lemma 3.2). For every R ≥ 0, there is a
constant C that only depends on F̃ , R and the bounds on the sectional curvature of M̃
such that for every x, x′, y, y′ in M̃ satisfying d(x, x′), d(y, y′) ≤ R∣∣∣∣∣

∫ y

x

F̃ −
∫ y′

x′
F̃

∣∣∣∣∣ ≤ C .

1.4. Parallel geodesic segments avoiding images of a compact set. The following
geometrical lemma is the key ingredient of the proof of Theorem 3, from which The-
orem 2 is derived. It asserts that, if a geodesic segment [y; y′] is known to avoid the
Γ-orbit of balls B(x,R) except maybe at its beginning or at its end, then every other
geodesic segment whose endpoints are close from y and y′ will also essentially avoid
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the Γ-orbit of ε-shrinked balls B(x,R − ε), provided that the guiding segment [y; y′] is
long enough.

Lemma 1.4 (Long range subset avoidance). Let W̃ be an open relatively compact subset
of M̃ . For every R ≥ 0, there exists ρ = ρ(R) such that for all ε > 0, all W̃ ′ ⊂ W̃

open relatively compact subsets with d(W̃ ′, M̃ \ W̃ ) ≥ ε, all y, y′, z, z′ ∈ M̃ with
d(y, z), d(y′, z′) ≤ R, and all γ ∈ Γ, if

[y; y′] ∩ γW̃ = ∅ and [z; z′] ∩ γW̃ ′ 6= ∅ .
then we have

min
(
d(y, γW̃ ), d(y′, γW̃ )

)
≤ ρ− log ε .

Proof. Denote by l = d(z, z′). Let zt be a point of [z; z′] inside γW̃ ′, with t = d(z, zt).
Without loss of generality, we can assume that t ≤ l

2
. By Lemma 1.2, we have

d(zt, [y; y′]) ≤ sinh(R)
(
e−t + et−l+sinh(R)

)
≤ C

(
e−t + et−l

)
≤ 2Ce−t

with C = sinh(R)esinh(R). The assumption d(zt, [y; y′]) ≥ ε ensures that t ≤ log(2C
ε

)

and henceforth that d(y, zt) ≤ ρ− log ε with ρ = log(2C) + diam W̃ . �

1.5. About finding hyperbolic isometries. In the proofs of Theorems 1 and 2, we
will need to compare sums indexed on periodic orbits of the geodesic flows, i.e. on
conjugacy classes of hyperbolic elements of Γ, with sums indexed on the whole group
Γ. To this end, we need some technical tools to go from the former to the latter. We start
by recalling a variant of Anosov closing lemma, which is easily obtained by combining
[GdlH90, cor. 8.22] with Lemma 1.2.

Lemma 1.5. For every l, ε > 0, there exists ε′ ∈ ]0; 1] with limε→0 ε
′ = 0 such that

for every isometry γ of any proper geodesic CAT(−1)-space X , for every x0 in X , if
d(x0, γx0) ≥ l and d(x0, [γ

−1x0; γx0]) ≤ ε′, then γ is hyperbolic and d(x0, Aγ) ≤ ε,
where Aγ is the translation axis of γ in X .

Let Γh be the set of hyperbolic elements of Γ. If γ ∈ Γh, we denote by Aγ ⊂ T 1M̃ its
axis, i.e. the set of vectors v ∈ T 1M̃ such that gl(γ)v = γv, where l(γ) is the minimal
displacement of a point by γ. In other words,Aγ is the set of unit vectors on the geodesic
joining the repulsive fixed point to the attractive fixed point, oriented towards the latter.

If x ∈ M̃ , l ≥ 0 and U ⊂ ∂∞M̃ is open, then the angular sector at distance l based
at x and supported by U is the open set

Cx,l(U) =
{
z ∈ M̃

∣∣∣ d(z, x) > l and ∃ξ ∈ U, z ∈ ]x; ξ[
}
.

Lemma 1.6. Let W̃ ⊂ T 1M̃ be an open relatively compact set intersecting Ω̃, ε > 0

and x ∈ π(W̃) ∩ Conv(Λ(Γ)). There exist g1, . . . , gk ∈ Γ and a finite set S ⊂ Γ such
that for every γ ∈ Γ \ S, there exist i, j such that γ′ = g−1

j γgi is hyperbolic and its axis
satisfies Aγ′ ∩ W̃ ∩ T 1B(x, ε) 6= ∅.
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Proof. Take ε′ = ε′(ε, 1) given by Lemma 1.5. Let U and V be two non empty open
sets of ∂∞M̃ with disjoint closures, both meeting Λ(Γ), such that any geodesic orbit of
T 1M̃ from U to V meets W̃ ∩T 1B(x, ε′). Fix two non empty open sets U0, V0 ⊂ ∂∞M̃
meeting Λ(Γ) such that U0 ⊂ U and V0 ⊂ V . There exists l′ ≥ l such that for every
y ∈ U ′ = Cx,l′(U0) and z ∈ V ′ = Cx,l′(V0), the geodesic orbit of T 1M̃ from y to z meets
W̃ ∩ T 1B(x, ε′).

As Γ acts minimally on Λ(Γ), there exist g1, . . . , gp, . . . , gk ∈ Γ such that

Λ(Γ) ⊂
p⋃
i=1

giU0 and Λ(Γ) ⊂
k⋃

i=p+1

giV0 .

Let R0 = sup
{
d(x, g−1

i x)
∣∣ i = 1, . . . , k

}
, R1 = R0 + 2ε, and define

U ′′ =
{
y ∈ M̃

∣∣∣B(y,R1) ⊂ U ′
}

and V ′′ =
{
z ∈ M̃

∣∣∣B(z,R1) ⊂ V ′
}
.

Observe that ∂∞U ′′ = U0 and ∂∞V ′′ = V0, so that we still have in M̃ ∪ ∂∞M̃

Λ(Γ) ⊂
p⋃
i=1

giU
′′ and Λ(Γ) ⊂

k⋃
i=p+1

giV
′′ .

Therefore, both sets

K = Conv(Λ(Γ)) \
p⋃
i=1

giU
′′ and L = Conv(Λ(Γ)) \

k⋃
i=p+1

giV
′′

are closed and do not meet ∂∞M̃ , hence they are compact in M̃ . Therefore, S =
{γ ∈ Γ | γ−1x ∈ K or γx ∈ L} is finite.

Now if γ ∈ Γ \ S, by construction, there exist i, j such that γ−1x ∈ giU
′′ and

γx ∈ gjV ′′. If γ′ = g−1
j γgi, then u = γ′−1g−1

j x ∈ U ′′ and v = γ′g−1
i x ∈ V ′′, which

means that γ′x satisfies

d(γ′x, v) = d(x, g−1
i x) ≤ R0 < R1 ,

i.e. γ′x ∈ V ′ and similarly γ′−1x ∈ U ′. By our choice of U ′ and V ′, this ensures that
d(x, γ′x) ≥ l and

[
γ′−1x; γ′x

]
meets B(x, ε′), so that by Lemma 1.5, γ′ is hyperbolic

and its axis Aγ′ meets T 1B(x, ε).
Finally, let z ∈ π̃(Aγ′) ∩B(x, ε). Since

d(γ′z, v) ≤ d(γ′z, γ′x) + d(γ′x, v) ≤ ε+R0 < R1 ,

we deduce that γ′z ∈ V ′ and likewise γ′−1z ∈ U ′. This implies that the geodesic orbit
of T 1M̃ from γ′−1z to γ′z, i.e. Aγ′ , also meets W̃ . �
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1.6. Shadows. If y, y′ are two distinct points of M̃ ∪ ∂∞M̃ , let v−(y, y′) ∈ ∂∞M̃

(respectively v+(y, y′) ∈ ∂∞M̃ ) be the endpoint of the one-sided infinite geodesic ray
going from y′ to y (respectively from y to y′). The maps v+ and v− are continuous for
the usual topology on (M̃ ∪ ∂∞M̃)2 \ {diagonal}.

With the above notations, if x ∈ M̃ ∪ ∂∞M̃ and W is an open, relatively compact,
geodesically convex subset of M̃ , the shadow of W viewed from x is the set

OxW = {v+(x, y) | y ∈ W} =
{
ξ ∈ ∂∞M̃

∣∣∣ ]x; ξ[ ∩W 6= ∅
}
.

We start by stating a classical lemma that asserts that, if the base point is far enough
from the set that casts the shadow, then it can be moved around by a bounded amount
almost without changing the shadow.

Lemma 1.7. For every r > 0, every 0 < ε < r and every δ > 0, there exists l0 ≥ 0

such that for all x, y ∈ M̃ satisfying d(x, y) ≥ l0 and for all z ∈ B(y, δ) we have

OyB(x, r − ε) ⊂ OzB(x, r) ⊂ OyB(x, r + ε) .

We will also need the two following lemmas about products of shadows. Their proofs
are very similar to [PPS15, Lemma 3.17] and therefore ommitted.

Lemma 1.8. For all r > 0, r′ > 0 and ε > 0, there exists l0 ≥ 0 such that for all
x, x′ ∈ M̃ satisfying d(x, x′) ≥ l0, for all y ∈ B(x, r) and y′ ∈ B(x′, r′), we have

(v−(y, y′), v+(y, y′)) ∈ Ox′B(x, r + ε)×OxB(x′, r′ + ε) .

Lemma 1.9. For every r > 0, r′ > 0, and ε > 0, there exists l0 ≥ 0 such that
the following holds : for every x, x′ ∈ M̃ satisfying d(x, x′) ≥ l0, for every v− ∈
Ox′B(x, r) and every v+ ∈ OxB(x′, r′), there exist y ∈ B(x, r+ ε) and y′ ∈ B(x′, r′+
ε) such that

(v−, v+) = (v−(y, y′), v+(y, y′)) .

The next lemma states that when two balls are far enough one from each other, their
shadows relative to each other’s center cannot intersect.

Lemma 1.10. For every R ≥ 0, there exists a l0 ≥ 0 such that, for every x, y ∈ M̃
satisfying d(x, y) ≥ l0, one has

OxB(y,R) ∩ OyB(x,R) = ∅ .

Proof. Suppose not, and take ξ in the intersection. In the triangle (x, y, ξ), we would
have d(x, [y; ξ[) ≤ R and d(y, [x; ξ[) ≤ R. Triangles of M̃ are δ-hyperbolic for some
positive constant δ depending only on the upper bound of the sectional curvature. There-
fore, this situation is possible only if d(x, y) ≤ 2R + 2δ. Thus, the lemma is proved
with l0 = 2R + 2δ. �
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Measure of shadows. The Shadow Lemma, initially due to Sullivan, estimates the mea-
sure given by Patterson-Sullivan-Gibbs densities to shadows of balls in terms of inte-
grals of the normalized potential. It has been proven by Mohsen in our setting, and
asserts the following.

Lemma 1.11 (Mohsen’s Shadow Lemma, Lemma 3.10 in [PPS15]). Let (µFx )x∈M̃ be
the Patterson-Sullivan-Gibbs conformal density associated with F , andK be a compact
subset of M̃ . There exists R0 > 0 such that, for all R ≥ R0, there exists C > 0 such
that for all γ ∈ Γ and x, y ∈ K

1

C
e
∫ γy
x (F̃−P (F )) ≤ µFx (OxB(γy,R)) ≤ Ce

∫ γy
x (F̃−P (F )) .

A careful examination of the proof of this lemma shows that the condition R ≥ R0

is actually only necessary for the lower bound. In the following, we will only use this
lemma for its upper bound, so we can forget about this restriction.

However, we will also need some lower bound estimates for the mF -measure of dy-
namical balls. To this end, we will use the following variant of the Shadow Lemma for
product of shadows of balls, which replaces the restriction on the size of balls by the
assumption that the ball intersects the nonwandering set of the geodesic flow.

Lemma 1.12 (Shadow product lemma). Let (µFx )x∈M̃ and (µF◦ιx )x∈M̃ be the Patterson-
Sullivan-Gibbs conformal densities respectively associated with F and F ◦ ι. Assume
that B(x,R) ⊂ M̃ intersects the base of the nonwandering set Ω̃. Then there exist
C > 0 and S,G ⊂ Γ finite such that for every γ ∈ Γ \ S there exist g, h ∈ G such that

1

C
e
∫ γx
x (F̃−P (F )) ≤ µF◦ιx (OγxB(gx,R))µFx (OxB(γhx,R)) ≤ Ce

∫ γx
x (F̃−P (F )) .

Proof. If T 1B(x,R) ∩ Ω̃ 6= ∅, then we can find η, ξ ∈ Λ(Γ) distinct such that the
geodesic (ξη) intersects B(x,R). In particular there exists ε > 0 such that η ∈
OξB(x,R − ε) and ξ ∈ OηB(x,R − ε). By continuity of the shadows, there exist
two neighbourhoods U, V of respectively ξ and η in M̃ ∪ ∂∞M̃ such that

∀y ∈ U,OξB(x,R− ε) ⊂ OyB(x,R) and ∀z ∈ V,OηB(x,R− ε) ⊂ OzB(x,R) .

By using the same technique as in the proof of lemma 1.6, we can find S,G ⊂ Γ
finite such that, for every γ ∈ Γ \ S, there exist g, h ∈ G such that g−1γx ∈ U and
h−1γ−1x ∈ V .

Since the Patterson-Sullivan-Gibbs densities charge any open set that intersects the
limit set,

α = min
{
µF◦ιg−1x(OξB(x,R− ε))

∣∣ g ∈ G} > 0 and β = µFx (OηB(x,R− ε)) > 0 .

Let γ ∈ Γ \ S and take g, h ∈ G such that g−1γx ∈ U and h−1γ−1x ∈ V . By the
invariance property of the densities, we have that on the one hand that

µF◦ιx (OγxB(gx,R)) = µF◦ιg−1x(Og−1γxB(x,R)) ≥ µF◦ιg−1x(OξB(x,R− ε)) ≥ α ,
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and on the other hand that

µFγhx(OxB(γhx,R)) = µFx (Oh−1γ−1xB(x,R)) ≥ β .

But the conformal density property of (µFx ) ensures that

µFx (OxB(γhx,R)) =

∫
ζ∈OxB(γhx,R)

e−CF−P (F ),ζ(x,γhx)dµFγhx(ζ) ,

where CF,ζ(x, y) = limt→∞
∫ ζt
y
F̃ −

∫ ζt
x
F̃ is the Gibbs cocycle associated with F . By

applying [PPS15, Lemma 3.4] (2), we get the existence of a constant C1 ≥ 1 indepen-
dent of γ and h such that

1

C1

e
∫ γhx
x (F̃−P (F )) ≤ µFx (OxB(γhx,R))

µFγhx(OxB(γhx,R))
≤ C1e

∫ γhx
x (F̃−P (F )) .

This implies that
αβ

C1

e
∫ γhx
x (F̃−P (F )) ≤ µF◦ιx (OγhxB(x,R))µFx (OxB(γhx,R)) ≤ C1e

∫ γhx
x (F̃−P (F )) .

Finally, after noting that d(γx, γhx) = d(x, hx) is bounded from above independently
from γ, we apply Lemma 1.3 to obtain a constant C2 ≥ 0 that only depends on M̃ , F̃ ,
x and R such that ∣∣∣∣∫ γhx

x

(F̃ − P (F ))−
∫ γx

x

(F̃ − P (F ))

∣∣∣∣ ≤ C2 .

This concludes the proof with C = C1

αβ
eC2 . �

2. NUMBER OF RETURNS OF A PERIODIC ORBIT

The aim of this section is to introduce an useful mathematical definition of the "num-
ber of times that a periodic geodesic enters in a given setW". Observe that as soon as
W is non convex, or has holes, it may be highly non trivial if done in a too naive way.

Let W̃ be a relatively compact subset of T 1M̃ . If γ ∈ Γh, we define the number of
copies of the axis of γ intersecting W̃ as the quantity

nW̃(γ) = #
{
γ′ ∈ Γ

∣∣∣ ∃g ∈ Γ, γ′ = g−1γg and Aγ′ ∩ W̃ 6= ∅
}
.

By definition, this number depends only on the conjugacy class of γ ∈ Γh. Of course, it
is also Γ-invariant, in the sense that

nW̃(γ) = ngW̃(γ) .

We shall now extend this definition to relatively compact subsets of T 1M in the fol-
lowing way. First note that ifW ⊂ T 1M is open and relatively compact, then it admits
an open relatively compact lift (actually many of them), i.e. an open relatively compact
set W̃ ⊂ T 1M̃ such that PΓ(W̃) = W where PΓ : T 1M̃ → T 1M is the covering map.
Indeed, it is enough to coverW by trivializing open sets for the covering PΓ, to take for
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each of these sets the image of its intersection with W by one of the inverse branches
of PΓ, and then let W̃ to be the union of these preimages. However, there might not be
an open lift W̃ ofW such that PΓ : W̃ → W is 1 − 1 if, for example, the base π(W)
contains a ball B(x,R) whose radius R is larger than the injectivity radius at x.

GivenW ⊂ T 1M open relatively compact, and any periodic orbit p ∈ P , this leads
us to define the number of returns of p intoW by

nW(p) = inf nW̃(γp) ,

where γp is any hyperbolic isometry in the conjugcy class associated with p, and the
infimum is taken over all open relatively compact lifts W̃ ofW to T 1M̃ .

Note that the quantities nW̃(γ) and nW(p) do not depend on the multiplicity of γ or p.
Indeed, two isometries γ and γ′ are conjugated by an element g if and only if γk and γ′k

are conjugated by this element g, for k ≥ 1. Moreover, the axii Aγ and Aγk are equal
for all k ≥ 1. Therefore, we get

∀k ≥ 1, nW̃(γk) = nW̃(γ) .

Equivalently, if p ∈ P is a periodic orbit with multiplicity whose associated primitive
orbit is p0 ∈ P ′, we have

nW(p) = nW(p0) .

Although there might not exist a lift ofW that realizes the number of returns nW(p)
of p ∈ P into W as a number of copies, the number of copies of the axis of γ ∈ Γh
intersecting two lifts ofW are uniformly commensurable with each other.

Lemma 2.1. Let W̃1, W̃2 be two lifts ofW to T 1M̃ . Then there is a C = CW̃1,W̃2
such

that

∀γ ∈ Γh,
1

C
nW̃2

(γ) ≤ nW̃1
(γ) ≤ CnW̃2

(γ) .

Proof. It is enough to show that nW̃1
(γ0) ≤ CnW̃2

(γ0) with γ0 ∈ Γ′h. Take γ′ = g−1γ0g

for some g ∈ Γ such that there is a v ∈ Aγ′ ∩ W̃1. Since W̃1 and W̃2 are both lifts of
the same setW , the set

Hv =
{
h ∈ Γ

∣∣∣hv ∈ W̃2

}
is non empty. Note that if h ∈ Hv, then h(v) ∈ W̃2 ∩ Aγ′′ where γ′′ = hγ′h−1 is a
conjugate of γ0. This ensures that{

γ′ ∈ Γ
∣∣∣∃g ∈ Γ, γ′ = g−1γ0g and Aγ′ ∩ W̃1 6= ∅

}
⊂
⋃
h∈H

h−1
{
γ′′ ∈ Γ

∣∣∣∃g ∈ Γ, γ′′ = g−1γ0g and Aγ′′ ∩ W̃2 6= ∅
}
h ,

where H = ∪v∈W̃1
Hv depends only on W̃1 and W̃2 but not on γ0. In order to conclude,

it is enough to show that H is finite. Indeed, let W̃3 = W̃1 ∪ W̃2. It is a compact subset
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of T 1M̃ and we have

H =
{
h ∈ Γ

∣∣∣∃v ∈ W̃1, hv ∈ W̃2

}
⊂
{
h ∈ Γ

∣∣∣ W̃3 ∩ hW̃3 6= ∅
}
,

which is finite since the action of Γ on T 1M̃ is proper. �

In particular, if one takes a relatively compact lift W̃1 ofW , then there exists a con-
stant C which depends only on W̃1 such that for every p0 ∈ P ′ and every γ0 in the
conjugacy class associated with p0 we have

1

C
nW̃1

(γ0) ≤ nW(p0) ≤ CnW̃1
(γ0) .

Lemma 2.2. IfW ⊂ T 1M is covered by a finite collection (Wi)i=1,...,n of open relatively
compact subsets of T 1M , then there exists C = CW,W1,...,Wn > 0 such that

∀p ∈ P , nW(p) ≤ C

n∑
i=1

nWi
(p) .

Proof. We may assume that p ∈ P ′. Fix γp ∈ Γ′h in the conjugacy class associated
with p. For each i, take an open relatively compact lift W̃i ofWi to T 1M̃ , as well as a
constant Ci independent from p and γp such that

nW̃i
(γp) ≤ CinWi

(p) .

Observe that

W̃ = P−1
Γ (W) ∩

n⋃
i=1

W̃i

is an open relatively compact lift ofW , and that if an axis Aγ meets W̃ then it meets at
least one of the W̃i. Therefore

nW(p) ≤ nW̃(γp) ≤
n∑
i=1

nW̃i
(γp) ≤ max(Ci)

n∑
i=1

nWi
(p) . �

3. ERGODICITY OF GIBBS MEASURES FOR RECURRENT POTENTIALS

Let F : T 1M → R be a Hölder continuous potential on T 1M . According to the
Hopf-Tsuji-Sullivan Theorem, we know that mF is ergodic and conservative if and only
if the Poincaré series associated with F diverges at the critical exponent s = P (F ),
in which case (Γ, F ) is said to be divergent following the terminology in [PPS15]. In
this section, we will prove Theorem 1 which asserts that it is also equivalent to the
divergence of the series ∑

p∈P

nW(p)e
∫
p(F−P (F )) ,

forW an open relatively compact set intersecting Ω. F is said to be recurrent relatively
toW when this series diverges.
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Note that periodic orbits meeting W are the only periodic orbits to consider in the
above sum, because otherwise nW(p) = 0.

Theorem 1. Let M be a negatively curved orbifold with pinched negative curvature,
and F : T 1M → R a Hölder continuous potential with P (F ) < +∞. Then the Gibbs
measure mF is ergodic and conservative if and only if F is recurrent with respect to
some open relatively compact set intersecting Ω.

In particular, the recurrence property does not depend on the choice of the open rela-
tively compact subsetW .

Observe first that, for any real number k, this equivalence is satisfied for a potential
F if and only if it is satisfied for the potential F + k, as the Gibbs measures mF and
mF+k are equal. We may therefore assume from now on that P (F ) = 0. We will also
denote by F̃ the Γ-invariant lift of F to T 1M̃ .

3.1. Recurrence implies divergence.

Lemma 3.1. If F is recurrent relatively to some open relatively compact subset W of
T 1M which intersects Ω, then (Γ, F ) is divergent.

Proof. Let W̃ be an open relatively compact lift of W to T 1M̃ that meets Ω̃. Choose
a base point x ∈ π(W̃) ⊂ M̃ . If p ∈ P intersects W , let γp,1, . . . , γp,np ∈ Γh be the
distinct hyperbolic isometries whose axii intersect W̃ and project onto the periodic orbit
p. According to Lemma 2.1, there exists C > 0 such that for every 1 ≤ i ≤ np one has

np = nW̃(γp,i) ≥
1

C
nW(p) .

For each 1 ≤ i ≤ np, pick zi(p) ∈ Aγp,i ∩ W̃ and let xi(p) = π(zi(p)) ∈ M̃ . In
particular, we have d(x, xi(p)) ≤ diamπ(W̃).

According to Lemma 1.3, there is a constant C ′ ≥ 0 that only depends on F , on
diamπ(W̃) and on the bounds on the sectional curvature of M̃ such that

∀p ∈ P , ∀i,
∣∣∣∣∫
p

F −
∫ γp,ix

x

F̃

∣∣∣∣ =

∣∣∣∣∣
∫ γp,ixi(p)

xi(p)

F̃ −
∫ γp,ix

x

F̃

∣∣∣∣∣ ≤ C ′ .

Hence we have∑
p∈P

nW(p)e
∫
p F ≤ CeC

′∑
p∈P

np∑
i=1

e
∫ γp,ix
x F̃ ≤ CeC

′∑
γ∈Γ

e
∫ γx
x F̃ ,

and the recurrence of F implies the divergence of (Γ, F ). �

3.2. Divergence implies recurrence.

Lemma 3.2. If (Γ, F ) is divergent, then F is recurrent relatively to any open relatively
compact subsetW of T 1M which intersects Ω.
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Proof. Choose an open relatively compact lift W̃ ofW to T 1M̃ . Assume that (Γ, F ) is
divergent. As divergence is independent from the chosen base point x ∈ M̃ , consider
x ∈ Ω̃ ∩ π(W̃).

According to Lemma 1.6, there exist g1, . . . , gk ∈ Γ and S ⊂ Γ finite such that∑
γ∈Γ

e
∫ γx
x F̃ ≤

∑
γ∈S

e
∫ γx
x F̃ +

∑
i,j

∑
γ′∈Γh

Aγ′∩W̃6=∅

e
∫ gjγ′g−1

i
x

x F̃ .

Let R0 = sup {d(x, gix) | i = 1, . . . , k}. Lemma 1.3 ensures that there exists a constant
C1 ≥ 0 which depends only on F , R0 and the bounds on the sectional curvature of M̃
such that for all 1 ≤ i, j ≤ k,∣∣∣∣∣

∫ giγ
′g−1
j x

x

F̃ −
∫ γ′x

x

F̃

∣∣∣∣∣ =

∣∣∣∣∣
∫ γ′g−1

j x

g−1
i x

F̃ −
∫ γ′x

x

F̃

∣∣∣∣∣ ≤ C1 .

From this we deduce that∑
γ∈Γ

e
∫ γx
x F̃ ≤

∑
γ∈S

e
∫ γx
x F̃ + k2eC1

∑
γ′∈Γh

Aγ′∩W̃6=∅

e
∫ γ′x
x F̃ .

We can now reindex this last sum by summing first over p ∈ P , and then over the
hyperbolic isometries γ associated with p, i.e. those such that PΓ(Aγ) = p, as follows.∑

γ∈Γh
Aγ∩W̃ 6=∅

e
∫ γx
x F̃ =

∑
p∈P

∑
γ∈Γh

Aγ∩W̃6=∅
PΓ(Aγ)=p

e
∫ γx
x F̃ .

Recall that for all p ∈ P meetingW , there exist only finitely many γp,1, . . . , γp,np ∈ Γh

that project onto p and whose axis intersects W̃ . Thus this last sum is equal to∑
p∈P

np∑
i=1

e
∫ γp,ix
x F̃ .

But according to Lemma 2.1, there exists C2 > 0 such that for every 1 ≤ i ≤ np one
has

np = nW̃(γp,i) ≤ C2nW(p) .

As before, pick for every 1 ≤ i ≤ np a point xi(p) ∈ π̃(Aγp,i ∩ W̃), that satisfies
d(xi(p), x) ≤ diamπ(W̃). Lemma 1.3 gives a constant C3 ≥ 0 which depends only on
F̃ , on diam π(W̃) and on the geometry of M̃ such that for all p ∈ P and 1 ≤ i ≤ np,∣∣∣∣∫ γp,ix

x

F̃ −
∫
p

F

∣∣∣∣ =

∣∣∣∣∣
∫ γp,ix

x

F̃ −
∫ γp,ixi(p)

xi(p)

F̃

∣∣∣∣∣ ≤ C3 .
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We finally get that ∑
γ∈Γh

Aγ∩W̃6=∅

e
∫ γx
x F̃ ≤ C2e

C3

∑
p∈P

nW(p)e
∫
p F ,

and the divergence of (Γ, F ) implies the recurrence of F relatively toW . �

4. FINITENESS OF GIBBS MEASURES FOR POSITIVE RECURRENT POTENTIALS

The aim of this section is to prove Theorem 3. As noted the introduction, the only
efficient tool to see whether a measure is finite or not is the so-called Kac Lemma. Un-
fortunately, it is not very easy to use, and also usually stated for single transformations,
and not for flows. Translating this statement in the criterion of Theorem 3 is the work
done below.

4.1. Positive recurrence. For W̃ an open relatively compact subset of M̃ , we define
the set

ΓW̃ =
{
γ ∈ Γ

∣∣∣∃y, y′ ∈ W̃ , [y; γy′] ∩ gW̃ 6= ∅ ⇒ W̃ ∩ gW̃ 6= ∅ or γW̃ ∩ gW̃ 6= ∅
}

of elements γ such that some interval [y; γy′] intersects ΓW̃ only around y or γy′. When
W̃ = B(x,R) for some x ∈ M̃ andR > 0, we shorten this notation into Γx,R = ΓB(x,R).
Note that for all g ∈ Γ, ΓgW̃ = gΓW̃g

−1.

For any open and relatively compact set W̃ ⊂ T 1M̃ , and any γ ∈ Γ, we define the
W̃ , γ-geodesic ball by

UW̃,γ =
{
v ∈ W̃

∣∣∣ ∃t ≥ 0, g̃t(v) ∈ γW̃
}
.

When W̃ = T 1B(x,R) for some x ∈ M̃ and R > 0, we simplify this notation into

Ux,R,γ = UT 1B(x,r),γ .

We recall Definition 3 for the reader’s convenience. The pair (Γ, F̃ ) is said to be
positive recurrent relatively to W̃ for some open relatively compact set W̃ if P (F ) is
finite, (Γ, F ) is divergent and the series∑

γ∈Γ
W̃

d(z, γz)e
∫ γz
z (F̃−P (F )) < +∞

for some z ∈ M̃ . According to Lemma 1.3, the behaviour of this series does not depend
on the choice of the point z ∈ M̃ . By replacing F by F −P (F ), which does not change
mF , we may also assume that P (F ) = 0.
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4.2. A Kac lemma for flows. Let (X,B, µ) be a measured space. If f : X → X and
Y ∈ B, the return time map TY to Y is defined by

TY : Y → N ∪ {+∞}
y 7→ inf {n ≥ 1 | fn(y) ∈ Y }

.

We start by recalling the statement of Kac’s recurrence lemma for measure-preserving
invertible transformations, as stated in [Aar97] or [Wri61]. Note that this lemma usually
requires that the transformation is conservative and ergodic, but the classical partitioning
proof shows that these hypothesis can be replaced by assuming that the return time is
finite almost everywhere in Y and by looking only at points that can be reached from Y .

Lemma 4.1 (Kac’s lemma for transformations). Let (X,B, f, µ) be a measured dynam-
ical system, with f invertible. If the return time map TY is finite µ-almost everywhere
on Y , then ∑

n≥1

nµ ({TY = n}) = µ

(⋃
n∈Z

fn(Y )

)
.

Let X be a locally compact topological space equipped with the Borel σ-algebra, and
let (gt) be a continuous flow on X . For every W ⊂ X open and ε > 0, we define the
ε-hitting time of W by

∀x ∈ X, τε,W (x) = inf
{
t ≥ ε

∣∣ gt(x) ∈ W
}
∈ [ε; +∞] .

We can now derive a Kac’s lemma for flows by applying Lemma 4.1 to the ε-time of the
flow. In particular, the ε "margin of error" in the definition of the ε-hitting time allow
us to ignore any possible pathological behaviour at the boundary of W . Although this
proposition is the simplest analogue of Kac’s lemma for flow that one can devise, we
could not find any explicit reference to this technique in the literature.

Proposition 4.2 (Kac’s lemma for flows). LetX be a locally compact topological space,
B its Borel σ-algebra, (gt) a continuous flow on X , and µ a Borel (gt)-invariant Radon
measure onX , which is ergodic and conservative. LetW be an open relatively compact
subset of X with positive µ-measure. Then for every ε > 0, the set

Wε =
⋃

s∈[0;ε[

g−s(W )

is open, relatively compact in X , the ε-hitting time map τε,W is finite µ-almost every-
where on Wε and ∑

k≥0

kµ ({τε,W ∈ [εk; ε(k + 1)[} ∩Wε) = µ(X) .

Proof. Fix ε > 0, and let

XW,k = {x ∈ X | τε,W (x) ∈ [εk; ε(k + 1)[}
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be the set of points of the whole space X that ε-hit W after a time approximately εk.
Denote by f = gε the time-ε map of the flow. We have

x ∈ XW,k ⇔ ∃t ∈ [εk; ε(k + 1)[ , gt(x) ∈ W and ∀s ∈ [ε; εk[ , gs(x) 6∈ W
⇔ ∃u ∈ [0; ε[ , fk(x) ∈ g−u(W )

and ∀1 ≤ i ≤ k − 1,∀s ∈ [0; ε[ , f i(x) 6∈ g−s(W )

⇔ fk(x) ∈ Wε and ∀0 ≤ i ≤ k − 1, f i(x) 6∈ Wε

with Wε as given in the statement. This set Wε is open, hence measurable. Moreover,
since W is relatively compact and the flow is continuous, Wε is also relatively compact,
and it contains W so it has positive µ-measure. Thus

XW,k ∩Wε = {x ∈ Wε |TWε(x) = k}

with TWε the f -return time map to Wε as defined before. Furthermore, if we define

XW,∞ = {x ∈ X | τε,W (x) = +∞} ,

then the family of sets (XW,k)k≥1 together with XW,∞ form a partition of X and

XW,∞ ∩Wε = {x ∈ Wε |TWε(x) = +∞} .

Observe that µ(XW,∞ ∩ Wε) = 0. Indeed, the conservativity of (gt) ensures that µ-
almost every point of W will return to W . Therefore, by definition of Wε, µ-almost
every point of Wε will return to Wε at some time multiple of ε. We can now apply
Lemma 4.1 to f and Wε to obtain that

µ

(⋃
k∈Z

fk(Wε)

)
=
∑
k≥0

kµ ({TWε = k}) =
∑
k≥0

kµ ({τε,W ∈ [εk; ε(k + 1)[} ∩Wε) ,

where ⋃
k∈Z

fk(Wε) =
⋃
s∈R

gs(W )

is a (gt)-invariant measurable set which containsW with µ(W ) > 0. Since µ is ergodic,
this set has full measure. �

4.3. Positive recurrence implies finiteness of the Gibbs measure. The strategy of
the proof of the theorem is very natural and simple. We approximate the return time
level sets {τε,W ∈ [εk; ε(k + 1)[} ∩ Wε appearing in the above proposition by some
products of shadows on the boundary, whose mF measure, thanks to Mohsen’s Shadow
Lemma, can be expressed in terms of exponentials of integrals of F between points of
Γx. However, as the length of the next subsections shows, the rigorous proof of this
result is technically much more involved than the intuitive idea. Recall that we only
need to prove this result for P (F ) = 0.
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Lemma 4.3. Let M be a negatively curved orbifold, and F : T 1M → R a Hölder
continuous potential such that P (F ) = 0. For all x ∈ M̃ and R ≥ 0, there exist C ≥ 0
and a finite set S ⊂ Γ such that for all γ ∈ Γ \ S, we have

m̃F (Ux,R,γ) ≤ Ce
∫ γx
x F̃ .

Proof. According to Lemma 1.8, there exists l0 ≥ 0 such that for all γ ∈ Γ satisfying
d(x, γx) ≥ l0, we have in the Hopf coordinates

Ux,R,γ ⊂ OγxB(x,R + 1)×OxB(γx,R + 1)× {τx(v) | v ∈ Ux,R,γ} .

Given any two vectors v, w ∈ Ux,R,γ , observe that both px(v) and px(w) are in B(x,R),
so that d(px(v), px(w)) ≤ 2R. This implies that |τx(v)− τx(w)| ≤ 2R and

Ux,R,γ ⊂ OγxB(x,R + 1)×OxB(γx,R + 1)× I2R ,

where I2R is some interval of R of length 2R.
We may assume that l0 is large enough so that Lemma 1.10 is satisfied for balls of

radius R + 1. Let S = {γ ∈ Γ | d(x, γx) < l0}. Fix γ ∈ Γ \ S. The set OγxB(x,R +

1) × OxB(γx,R + 1) is relatively compact in ∂∞M̃ × ∂∞M̃ \ {diagonal}, so that by
continuity and positivity of the gap map, there exists a constant C1 ≥ 0 such that

∀(ξ, η) ∈ OγxB(x,R + 1)×OxB(γx,R + 1),
1

DF,x(ξ, η)2
≤ C1 .

Equation (2) defining the Gibbs measure m̃F implies therefore

m̃F (Ux,R,γ) ≤ C1µ
F◦ι
x (OγxB(x,R + 1))µFx (OxB(γx,R + 1))2R .

On the one hand µF◦ιx is a probability measure on ∂∞M̃ , so µF◦ιx (OγxB(x,R+ 1)) ≤ 1.
On the other hand, Mohsen’s Shadow Lemma 1.11 ensures the existence of a constant
C2 such that

µFx (OxB(γx,R + 1)) ≤ C2e
∫ γx
x F̃ .

The lemma is proved with C = C1C22R. �

Lemma 4.4. Let W be an open relatively compact subset of M . Fix an open relatively
compact lift W̃ of W to M̃ , and setW = T 1W ⊂ T 1M and W̃ = T 1W̃ ⊂ T 1M̃ . For
all ε > 0 and x ∈ M̃ , there exist R ≥ 0 and G ⊂ Γ finite such that the following holds.

For every v ∈ W such that τε,W(v) ∈ [εk; ε(k + 1)[ with k ≥ 3, and any lift ṽ of v to
W̃ , there exist g, h ∈ G and γ ∈ ΓW̃ such that ṽ ∈ UW̃,hγg and εk − R ≤ d(x, γx) ≤
ε(k + 1) +R.

Proof. Since W̃ is relatively compact, there exists R ≥ 0 such that W̃ ⊂ B(x,R). The
condition τε,W(v) ∈ [εk; ε(k + 1)[ with k ≥ 3 means that there exists T ∈ [εk; ε(k + 1)[
such that

v ∈ W and gT (v) ∈ W and ∀s ∈ [ε;T − ε] , gs(v) 6∈ W ,
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where 0 < ε < T − ε < T . Lift everything to M̃ . If zt = π(gt(ṽ)), observe that

z0 ∈ W̃ and zT ∈ γ0W̃ and ∀s ∈ [ε;T − ε] , zs 6∈ ΓW̃ ,

for some γ0 ∈ Γ. In particular, ṽ ∈ UW̃,γ0
.

Let us show now that we can replace γ0 by an element of ΓW̃ . Define

G =
{
g ∈ Γ

∣∣∣∃y, y′ ∈ W̃ , d(y, gy′) ≤ ε
}
,

and note that

γ0Gγ
−1
0 =

{
g ∈ Γ

∣∣∣ ∃y, y′ ∈ γ0W̃ , d(y, gy′) ≤ ε
}
.

Remark also that

gW̃ ∩ [z0; zε] 6= ∅ ⇒ g ∈ G and gW̃ ∩ [zT−ε; zT ] 6= ∅ ⇒ g ∈ γ0Gγ
−1
0 .

Set I =
{
s ∈ [0; ε]

∣∣∣ zs ∈ GW̃}. There exists u ∈ I such that for every g ∈ G with

zu ∈ gW̃ , we have

∀h ∈ Γ, hW̃ ∩ [zu; zε] 6= ∅ ⇒ hW̃ ∩ gW̃ 6= ∅ .
Indeed, otherwise we could find for every u ∈ I elements gu ∈ G and hu ∈ Γ such that
zu ∈ guW̃ and

huW̃ ∩ [zu; zε] 6= ∅ and huW̃ ∩ guW̃ = ∅ .
In particular, note that hu ∈ G since huW̃ meets [z0; zε]. Denote by u∞ = sup I ∈ I .
Since G is finite, we can take an increasing sequence of (un)n converging to u∞ such
that gun = g and hun = h for every n. For every n, there also exists vn ∈ [un; ε] such
that zvn ∈ hW̃ . As h ∈ G, vn ∈ I hence un ≤ vn ≤ u∞. Therefore both (un)n and
(vn)n converge to u∞, and taking the limit as n goes to infinity yields

zu∞ ∈ hW̃ ∩ gW̃ .

This is a contradiction. Likewise, there exists v ∈
{
s ∈ [T − ε;T ]

∣∣∣ zs ∈ γ0Gγ
−1
0 W̃

}
such that for every g ∈ γ0Gγ

−1
0 for which zv ∈ gγ0W̃ we have

∀h ∈ Γ, hW̃ ∩ [zT−ε; zv] 6= ∅ ⇒ hW̃ ∩ gγ0W̃ 6= ∅ .
By definition of these u and v, one can find gu, gv ∈ G such that

zu ∈ guW̃ and zv ∈ (γ0gvγ
−1
0 )γ0W̃ .

Let γ1 = (γ0gvγ
−1
0 )γ0g

−1
u = γ0gvg

−1
u . Note how zv ∈ γ1guW̃ . The previous discussion

ensures that γ1 ∈ ΓguW̃ = guΓW̃g
−1
u , therefore

γ = g−1
u γ1gu = g−1

u γ0gv ∈ ΓW̃ ,

and we still have ṽ ∈ UW̃,guγg
−1
v

.
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Finally, the triangle inequality gives that

|d(x, γx)− T | =
∣∣d(x, g−1

u γ0gvx)− d(z0, zT )
∣∣

≤ |d(gux, γ0gvx)− d(zu, zv)|+ 2ε

≤ d(gux, zu) + d(γ0gvx, zv) + 2ε < 2R + 2ε

since zu ∈ guW̃ and zv ∈ γ0gvW̃ . Therefore εk −R′ ≤ d(x, γx) ≤ ε(k + 1) +R′ with
R′ = 2R + 2ε. �

Proposition 4.5. Let W̃ be an open relatively compact subset of M̃ such that T 1W̃

meets the nonwandering set Ω̃ of g̃t. If (Γ, F̃ ) is positive recurrent relatively to W̃ , then
mF is finite.

Proof. Let W = PΓ(W̃ ),W = T 1W and z ∈ M̃ from the positive recurrence property.
Choose R such that W̃ ⊂ B(z,R). Fix ε > 0. If v ∈ Wε, there exists s ∈ [0; ε[ such
that v′ = gs(v) ∈ W . Now if τε,W(v) ∈ [εk; ε(k + 1)[, k ≥ 4, then

τε,W(v′) ∈ [εk − s; ε(k + 1)− s[ ⊂ [ε(k − 1); εk[ t [εk; ε(k + 1)[ .

Since we assumed that k − 1 ≥ 3, Lemma 4.4 gives the existence of R ≥ 0 and G ⊂ Γ

finite, both independent of v, such that for every lift ṽ′ of v′ to W̃ = T 1W̃ there are
γ ∈ ΓW̃ and g, h ∈ G such that

ε(k − 1)−R ≤ d(z, γz) ≤ ε(k + 1) +R and ṽ′ ∈ UW̃,hγg .

Therefore, any lift ṽ of v to W̃ will satisfy

ṽ ∈
⋃

γ∈Γ
W̃ ,k

⋃
g,h∈G

⋃
s∈[0;ε[

g̃−s
(
UW̃,hγg

)
⊂

⋃
γ∈Γ

W̃ ,k

⋃
g,h∈G

Uz,R+ε,hγg ,

where ΓW̃ ,k =
{
γ ∈ ΓW̃

∣∣ ε(k − 1)−R ≤ d(z, γz) ≤ ε(k + 1) +R
}

. This ensures
that

∀k ≥ 4,mF ({τε,W ∈ [εk; ε(k + 1)[} ∩Wε) ≤
∑

γ∈Γ
W̃ ,k

∑
g,h∈G

m̃F (Uz,R+ε,hγg) .

According to Lemma 4.3, there exists S finite and C ≥ 0 (both depending on z, R
and ε) such that

∀k ≥ 4,mF ({τε,W ∈ [εk; ε(k + 1)[} ∩Wε) ≤ C
∑

γ∈Γ
W̃ ,k

∑
g,h∈G
hγg 6∈S

e
∫ hγgz
z F̃ .

By Lemma 1.3, there is a constant C ′ ≥ 0 which only depends on F̃ , the geometry of
M̃ and on sup {d(z, gz) | g ∈ G} < +∞ such that

∀γ ∈ Γ,

∫ hγgz

z

F̃ =

∫ γgz

h−1z

F̃ ≤ C ′ +

∫ γz

z

F̃ .
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Hence if K = #G we get

∀k ≥ 4,mF ({τε,W ∈ [εk; ε(k + 1)[} ∩Wε) ≤ CK2eC
′ ∑
γ∈Γ

W̃ ,k

e
∫ γz
z F̃ .

For all k ≥ k0 = max(6, 2R
ε

) and all γ ∈ ΓW̃ ,k, we have

d(z, γz) ≥ ε(k − 1)−R ≥ ε

(
k − 1− k

2

)
≥ ε

3
k .

Since (Γ, F ) is divergent, mF is ergodic and conservative (see Hopf-Tsuji-Sullivan
[PPS15, Theorem 5.4]). Moreover, W meets Ω hence has positive mF -measure. We
can apply Lemma 4.2 to obtain

mF (T 1M) ≤ A+
3CK2eC

′

ε

∑
k≥k0

∑
γ∈Γ

W̃ ,k

∑
g,h∈G

d(z, γz)e
∫ γz
z F̃ ,

where A is the finite sum of the first k0 − 1 terms in Kac’s lemma.
Finally, note that for all γ ∈ ΓW̃ , γ ∈ ΓW̃ ,k if and only if

d(z, γz)−R
ε

− 1 ≤ k ≤ d(z, γz) +R

ε
+ 1 ,

which allows at most 2R
ε

+ 3 possibilities. Therefore

mF (T 1M) ≤ A+
3CK2eC

′

ε

(
2
R

ε
+ 3

) ∑
γ∈Γ

W̃

d(z, γz)e
∫ γz
z F̃ ,

and the positive recurrence of (Γ, F̃ ) with respect to W̃ implies that mF is finite. �

4.4. Finiteness of the Gibbs measure implies positive recurrence. The aim of this
section is to prove the following proposition which, combined together with Proposition
4.5, will prove Theorem 3. The idea of the proof, as said earlier, is very natural, even if
the rigorous details take a long time to be written.

Proposition 4.6. Let M be a negatively curved orbifold and F : T 1M → R a Hölder
continuous potential such that P (F ) = 0. If mF is finite, then (Γ, F̃ ) is positive recur-
rent relatively to any open relatively compact subset W̃ ⊂ M̃ that intersects π(Ω̃).

Recall that when mF is finite, it is ergodic, so that (Γ, F ) is divergent.

Lemma 4.7. For every x ∈ M̃ such that B(x,R) intersects π(Ω̃), there exist C > 0
and S,G ⊂ Γ finite such that for all γ ∈ Γ \ S, there exist g, h ∈ G such that

m̃F (Ugx,R,γhg−1) ≥ Ce
∫ γx
x F̃ .
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Proof. The proof of this lemma is similar to the one of Lemma 4.3, but we will use
Lemma 1.12 instead of Lemma 1.11.

Take ε > 0 such that we still have B(x,R − 2ε) ∩ π(Ω̃) 6= ∅. Lemma 1.12 applied
to B(x,R − 2ε) gives us C1 > 0 and S,G ⊂ Γ finite such that for all γ ∈ Γ there exist
g, h ∈ G such that

1

C1

e
∫ γx
x F̃ ≤ µF◦ιx (OγxB(gx,R− 2ε))µFx (OxB(γhx,R− 2ε) ≤ C1e

∫ γx
x F̃ .

Thanks to Lemma 1.7 applied for δ = sup {d(x, gx) | g ∈ G}, there exists l0 ≥ 0 such
that if d(x, γx) ≥ l0 then

OγxB(gx,R− 2ε)×OxB(γhx,R− 2ε) ⊂ OγhxB(gx,R− ε)×OgxB(γhx,R− ε) .

But according to Lemma 1.9 (applied with ε
2

instead of ε), we can assume that l0 is large
enough that for all γ ∈ Γ satisfying d(x, γx) ≥ l0, one has

OγhxB(gx,R− ε)×OgxB(γhx,R− ε)× {0} ⊂ Ugx,R− ε
2
,γhg−1 .

Indeed, for every v− ∈ OγhxB(gx,R − ε) and v+ ∈ OgxB(γhx,R − ε), the geodesic
(v−v+) intersectsB(gx,R− ε

2
), so that v = (v−, v+, 0) always belongs to Ugx,R− ε

2
,γhg−1 .

This implies easily that

OγhxB(gx,R− ε)×OgxB(γhx,R− ε)×
]
−ε

2
;
ε

2

[
⊂ Ugx,R,γhg−1 .

We may assume that l0 is large enough so that Lemma 1.10 is satisfied for balls of
radius R− ε. By possibly adding finitely many elements to S, we may also assume that
d(x, γx) ≥ l0. The set OγhxB(gx,R − ε) × OgxB(γhx,R − ε) is relatively compact
in ∂∞M̃ × ∂∞M̃ \ {diagonal}, thus continuity and positivity of the gap map ensure the
existence of C2 > 0 such that

∀(ξ, η) ∈ OγxB(gx,R− ε)×OgxB(γhx,R− ε), 1

DF,x(ξ, η)2
≥ C2 .

Therefore, by definition (2) of the Gibbs measure m̃F , we have

m̃F (Ugx,R,γhg−1) ≥ C2µ
F◦ι
x (OγhxB(gx,R− ε))µFx (OgxB(γhx,R− ε)) ≥ C2

C1

e
∫ γx
x F̃ .

�

For γ ∈ Γ, define

Ex,R,γ,ε =

{
v ∈ T 1B(x,R)

∣∣∣∣∣
{
∃t > 2ε, gt(v) ∈ T 1B(γx,R)

∀s ∈ [ε; t− ε] , gs(v) 6∈ ΓT 1B(x,R)

}
.

The following lemma ensures that a geodesic ball Ux,R,γ with γ "close" from ΓB(x,R) is
contained in a compact union of sets of the type Ex,R−ε,γ′,ε which, as we will see later,
project to vectors with ε-return time into T 1W comparable with d(x, γx).
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Lemma 4.8. Assume thatB(x,R) ⊂ W̃ with x ∈ M̃ \Σ̃. For every ε ∈ ]0;R[ and every
D ≥ 0, there exist finite subsets S,G ⊂ Γ and θ > 0 such that for every γ0 ∈ ΓW̃ \ S,
every h ∈ Γ such that d(x, hx) ≤ D, and every γ ∈ Γ satisfying d(γ0x, γhx) ≤ D we
have

Uhx,R−ε,γ ⊂
⋃
g∈G

⋃
γ′∈γ0Gg−1

⋃
s∈[0;θ]

g−s (Egx,R−ε,γ′,ε) .

Proof. Since W̃ is relatively compact and H is finite, there is R1 ≥ max(R,D) such
that B(x,R) ⊂ W̃ ⊂ B(x,R1).

By definition of γ0 ∈ ΓW̃ , there exist y, y′ ∈ W̃ ⊂ B(x,R1) such that, if [y; γ0y
′] in-

tersects some gW̃ , then gW̃ intersects either W̃ or γ0W̃ . In particular, sinceB(gx,R) ⊂
gW̃ ⊂ B(gx,R1), then either d(y, gx) ≤ 2R1 or d(γ0y

′, gx) ≤ 2R1.
Let ε ∈ ]0;R[, and ρε = ρ1(2R, 3R1) − log ε given by Lemma 1.4 for the open

relatively compact subsets B(x,R − ε) ⊂ B(x,R). By possibly increasing it, we may
assume that ρε ≥ 3R1. Therefore, a ball B(gx,R) at distance greater than ρε both from
y and y′ cannot intersect [y; γ0y

′]. Lemma 1.4 ensures that for such g ∈ Γ the ball
B(gx,R− ε) does not meet any segment [z; z′] with d(y, z), d(γ0y

′, z′) ≤ 3R1.
Now take h and γ such that d(x, hx) ≤ D and d(γ0x, γhx) ≤ D. If v ∈ Uhx,R,γ , we

have for some T ≥ 0

d(π(v), y) ≤ R1 +D +R1 ≤ 3R1 and d(π(gT (v)), γ0y
′) ≤ 3R1 .

Thus, for 0 ≤ t ≤ T , gt(v) ∈ T 1B(gx,R − ε) only if d(y,B(gx,R)) ≤ ρε or
d(γ0y

′, B(gx,R)) ≤ ρε, which implies respectively

d(x, gx) ≤ R1 + ρε +R or d(γ0x, gx) ≤ R1 + ρε +R .

We denote by G = {g ∈ Γ | d(x, gx) ≤ R1 +R + ρε}. Observe that

{g ∈ Γ | d(γ0x, gx) ≤ R1 +R + ρε} = γ0G ,

hence both sets are finite and have same cardinal.
Let v ∈ Uhx,R−ε,γ , i.e. v ∈ T 1B(hx,R− ε) and gtv(v) ∈ T 1B(γhx,R− ε) for some

tv ≥ 0 satisfying

tv = d(π(v), π(gtv(v))) ≥ d(hx, γhx)− 2(R− ε) ≥ d(x, γ0x)− 2(D +R− ε) .
We recall that gs(v) ∈ T 1B(gx,R − ε) may only happen for g ∈ G ∪ γ0G. If for
example g ∈ G, note that

s = d(π(v), π(gs(v))) ≤ d(hx, gx) + 2(R− ε) ≤ D +R1 +R + ρε + 2(R− ε) = θ .

Since every ball of M̃ is convex, the set

Iv =
{
t ∈ ]0; tv[

∣∣ gt(v) ∈ ΓT 1B(x,R− ε)
}

is open and made of finitely many connected components included in ]0; θ[∪ ]tv − θ; tv[.
Let

S = {γ0 ∈ Γ | d(x, γ0x) ≤ 2θ + 2(D +R− ε)} ,
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so that γ0 6∈ S implies tv > 2θ and these two intervals are disjoint. Furthermore, we
have that

(i) there exists sv ∈ ]0; θ[ such that gsv(v) ∈ T 1B(gvx,R− ε) for some gv ∈ G ;
(ii) there exists uv ∈ ]tv − θ; tv[ such that guv(v) ∈ T 1B(hvx,R − ε) for some

hv ∈ γ0G ;
(iii) gt(v) 6∈ ΓT 1B(x,R− ε) for all t ∈ [sv + ε;uv − ε].

This means exactly that gsv(v) ∈ Egvx,R−ε,γ′,ε where γ′ is an isometry mapping gvx

to hvx. Since x 6∈ Σ̃, γ′ satisfies γ′gv = hv, i.e. γ′ ∈ γ0Gg
−1
v . This concludes the

proof. �

For all k ≥ 1, we define

ΓW̃ ,k =
{
γ ∈ ΓW̃

∣∣ d(x, γx) ∈ [k − 1; k[
}
.

Lemma 4.9. Let R, ε > 0 and G ⊂ Γ finite. There are two constants C,L > 0 such
that the following holds : for every g ∈ G and every k ≥ 1

m̃F

 ⋃
γ∈Γ

W̃ ,k

⋃
γ′∈γGg−1

⋃
s∈[0;ε[

g−s (Egx,R,γ′,ε)


≤ CmF

 ⋃
s∈[0;ε[

g−s
({
τε,T 1B(π̃(x),R) ∈ [k − L; k + 1 + L[

}) .

Proof. Take v ∈ Egx,R,γ′,ε with γ ∈ ΓW̃ ,k, g ∈ G and γ′ = γhg−1 for some h ∈ G. This
means that v ∈ T 1B(gx,R), gt(v) ∈ T 1B(γ′gx,R) for some t ≥ 2ε, and

∀s ∈ [ε; t− ε] , gs(v) 6∈ ΓT 1B(x,R) .

In particular, t must satisfy |t− d(gx, γ′gx)| ≤ 2R, which implies, by triangular in-
equality,

|t− d(x, γx)| ≤ 2(R + L0) ,

where L0 = sup {d(x, gx) | g ∈ G}. Denote byW = T 1B(PΓ(x), R) the projection of
T 1B(x,R) in T 1M . Then PΓ(v) satisfies

(i) PΓ(v) ∈ W ;
(ii) PΓ(gt(v)) ∈ W ;

(iii) ∀s ∈ [ε; t− ε] ,PΓ(gs(v)) 6∈ W .
Therefore

τε,W(PΓ(v)) ∈ [t− ε; t] ⊂ [d(x, γx)− L; d(x, γx) + L[ ⊂ [k − L; k + 1 + L[

with L = 2(R + L0) + ε− 1. In other words,

PΓ (Egx,R,γ′,ε) ⊂ {τε,W ∈ [k − L; k + 1 + L[} ,
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where the set on the right hand side depends neither on γ nor on γ′. Hence⋃
γ∈Γ

W̃ ,k

⋃
γ′∈γGg−1

⋃
s∈[0;ε[

g−s (Egx,R,γ′,ε)

⊂ P−1
Γ

 ⋃
s∈[0;ε[

g−s ({τε,W ∈ [k − L; k + 1 + L[})

 .

The union on the left is relatively compact in T 1M̃ , because included in T 1B(gx,R +
ε). Therefore, any w ∈

⋃
s∈[0;ε[ g

−s ({τε,W ∈ [k − L; k + 1 + L[}) has finitely many
preimages that lie in the union of the left hand side, their number being bounded from
above by

C = # {h ∈ Γ |B(gx,R + ε) ∩B(hgx,R + ε) 6= ∅} ,
which is actually independent of g. As mF = PΓ∗(m̃F ), this concludes the proof of the
lemma. �

Lemma 4.10. For all x ∈ M̃ and R > 0, there exists a constant C ≥ 0 such that for
every k ≥ 1 ∑

γ∈Γ
W̃ ,k

m̃F (Ux,R,γ) ≤ Cm̃F

 ⋃
γ∈Γ

W̃ ,k

Ux,R,γ

 .

Proof. Assume that γ, γ′ ∈ ΓW̃ ,k are such that Ux,R,γ ∩ Ux,R,γ′ 6= ∅. There exist v ∈
T 1B(x,R) and t, s ≥ 0 such that gt(v) ∈ T 1B(γx,R) and gs(v) ∈ T 1B(γ′x,R).
Without loss of generality, assume that t ≤ s. We have

d(γx, γ′x) ≤ d(γx, π(gt(v))) + s− t+ d(π(gs(v)), γ′x) ≤ s− t+ 2R .

But on the one hand,

t = d(π̃(v), π̃(gt(v))) ≥ d(x, γx)− 2R ≥ k − 1− 2R ,

and on the other hand

s = d(π̃(v), π̃(gt(v))) ≤ d(x, γx) + 2R ≤ k + 2R .

Therefore d(γx, γ′x) ≤ 1 + 6R i.e. γ′ ∈ γG where G = {g ∈ Γ | d(x, gx) ≤ 1 + 6R}
is finite. This ensures that∑

γ∈Γ
W̃ ,k

m̃F (Ux,R,γ) ≤ Cm̃F

 ⋃
γ∈Γ

W̃ ,k

Ux,R,γ

 ,

where C = #G. �

We can now prove Proposition 4.6.
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Proof. Recall that we assumed that P (F ) = 0. Since Σ̃ is locally finite, there exists
x ∈ W̃ and 0 < R1 < R2 such that

T 1B(x,R1) ∩ Ω̃ 6= ∅ and B(x,R1) ⊂ B(x,R2) ⊂ W̃ .

Lemma 4.7 ensures that there exist finite sets S1, G1 ⊂ Γ and a constant C1 > 0 such
that for all γ ∈ Γ \ S1, there exist g, h ∈ G1 such that

e
∫ γx
x F̃ ≤ 1

C1

m̃F (Ugx,R1,γhg−1) .

Fix k ≥ 1. We have∑
γ∈Γ

W̃ ,k
\S1

e
∫ γx
x F̃ ≤ 1

C1

∑
g,h∈G1

∑
γ∈Γ

W̃ ,k

m̃F (Ugx,R1,γhg−1) .

According to Lemma 4.10, there is a constant C2 ≥ 0 which does not depend on k such
that ∑

γ∈Γ
W̃ ,k
\S1

e
∫ γx
x F̃ ≤ C2

C1

∑
g,h∈G1

m̃F

 ⋃
γ∈Γ

W̃ ,k

Ugx,R1,γhg−1

 .

Observe that if g, h ∈ G1 then

d(γhg−1(gx), γx) = d(hx, x) ≤ D = sup {d(x, gx) | g ∈ G1} .

Therefore, Lemma 4.8 applied withR = R2, ε < R2−R1 and thisD gives the existence
of finite sets S2, G2 ⊂ Γ and of θ < Nε such that for every g, h ∈ G1 one has

∀γ ∈ ΓW̃ \ S2,Ugx,R1,γhg−1 ⊂ Ugx,Rε,γhg−1 ⊂
⋃
g′∈G2

⋃
γ′∈γG2g′

−1

⋃
s∈[0;θ]

g−s (Eg′x,Rε,γ′,ε) ,

with Rε = R2 − ε > R1. Assume that S1 ⊂ S2. The (gt)-invariance of m̃F gives

∑
γ∈Γ

W̃ ,k
\S2

e
∫ γx
x F̃ ≤Mk + C3

∑
g∈G2

m̃F

 ⋃
γ∈Γ

W̃ ,k

⋃
γ′∈γG2g−1

⋃
s∈[0;ε[

g−s (Egx,Rε,γ′,ε)

 ,

where

C3 =
C2N

C1

(#G1)2 and Mk =
C2

C1

∑
g,h∈G1

m̃F

 ⋃
γ∈Γ

W̃ ,k
∩S2

Ugx,Rε,γhg−1

 .

Note that Mk is finite, and even Mk = 0 for k ≥ k0 since S2 is finite.
Apply now Lemma 4.9 with R = Rε to obtain two constants C4, L ≥ 0 such that

∑
γ∈Γ

W̃ ,k
\S2

e
∫ γx
x F̃ ≤Mk + C3C4#G2mF

 ⋃
s∈[0;ε[

g−s ({τε,W ∈ [k − L; k + 1 + L[})

 ,
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whereW = T 1B(π(x), Rε) ⊃ T 1B(π(x), R1). If we denote by C5 = C3C4#G2 and

B =
∑
k≥1

k
∑

γ∈Γ
W̃ ,k
∩S2

e
∫ γx
x F̃

which is finite since S2 is finite, we get∑
γ∈Γ

W̃

d(x, γx)e
∫ γx
x F̃

≤ B +
∑
k≥1

k
∑

γ∈Γ
W̃ ,k
\S2

e
∫ γx
x F̃

≤ B +

k0∑
k≥1

kMk + C5

∑
k≥1

kmF ({τε,W ∈ [k − L; k + 1 + L[} ∩Wε)

≤ B +

k0∑
k≥1

kMk + C5(2L+ 1)
∑
k≥1

kmF ({τε,W ∈ [k; k + 1[} ∩Wε) .

SinceW contains T 1B(π(x), R1), it meets the nonwandering set Ω, hence mF (W) > 0
and we can apply Kac’s Lemma 4.2 to finally obtain∑

γ∈Γ
W̃

d(x, γx)e
∫ γx
x F̃ ≤ B +

k0∑
k≥1

kMk + C5(2L+ 1)mF (T 1M) < +∞ .

Therefore (Γ, F̃ ) is positive recurrent relatively to W̃ . �

5. AN INTERMEDIATE TECHNICAL CRITERION OF POSITIVE RECURRENCE IN THE
UNIVERSAL COVER

In this section, we prove a slightly modified version of the preceding criterion (The-
orem 3), which will allow us to prove Theorem 2 in the next section. We introduce a
notion of (Γ, F̃ )-positive recurrence with multiplicity N ≥ 1, and prove that it is still
equivalent to the finiteness of mF .

For an open relatively compact set W̃ ⊂ M̃ , and N ≥ 1, define

Γ?
W̃

(N) =
{
γ ∈ Γ

∣∣∣ ∃y, y′ ∈ W̃ ,#
{
g ∈ Γ \ {id}

∣∣∣ [y; γy′] ∩ gW̃ 6= ∅
}
≤ N

}
.

Of course, N 7→ Γ?
W̃

(N) is increasing, and for all g ∈ Γ,

Γ?
gW̃

(N) = gΓ?
W̃

(N)g−1 .

Theorem 5 (Alternative criterion). Let M be a negatively curved orbifold with pinched
negative curvature, and F : T 1M → R a Hölder continuous potential with P (F ) <
+∞. Let mF be its associated Gibbs measure on T 1M .
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(i) If F is recurrent, and if there exists an open relatively compact subset W̃ of M̃
meeting π(Ω̃) such that for some x ∈ M̃ ,∑

γ∈Γ?
W̃

(N)

d(x, γx)e
∫ γx
x F̃−P (F ) < +∞ ,

with N ≥ NW̃ = 2#
{
g ∈ Γ \ {id}

∣∣∣ W̃ ∩ gW̃ 6= ∅}+ 1, then mF is finite.

(ii) If mF is finite, then F is recurrent, and for all x ∈ M̃ and N ≥ 1, we have∑
γ∈Γ?

W̃
(N)

d(x, γx)e
∫ γx
x F̃−P (F ) < +∞ ,

for every open relatively compact subset W̃ of M̃ large enough to contain a ball
B(x0, R) with x0 ∈ π(Ω̃) and R > R0(x0). Moreover, the map R0 : M̃ → R+

appearing in this statement is bounded on compact sets and satisfies R0 = 0

when Λ(Γ) = ∂∞M̃ .

Like in the previous sections, we can assume that P (F ) = 0, and we will prove
Theorem 5 as an immediate consequence of the following two lemmas.

Lemma 5.1. Let W̃ be an open relatively compact subset of M̃ . If (Γ, F̃ ) is positive
recurrent relatively to W̃ , then

∀z ∈ M̃, ∀N ≥ 1,
∑

γ∈Γ?
W̃

(N)

d(z, γz)e
∫ γz
z F̃ < +∞ .

Proof. We shall show the convergence of this series by induction over N ≥ 1.
If γ ∈ Γ?

W̃
(1), then there are y, y′ ∈ W̃ such that [y; γy′] only meets W̃ and γW̃ ,

which naturally ensures that γ ∈ ΓW̃ . Therefore Γ?
W̃

(1) ⊂ ΓW̃ , and the positive recur-

rence of (Γ, F̃ ) relatively to W̃ implies the convergence of the series for N = 1.
We now assume that (Γ, F̃ ) is positive recurrent relatively to W̃ , and that the sum

converges for some N ≥ 1. Let γ ∈ Γ?
W̃

(N + 1) \ Γ?
W̃

(N), and pick y, y′ ∈ W̃ such

that [y; γy′] intersects g0W̃ = W̃ , g1W̃ , . . . gN+1W̃ = γW̃ where the gi are distinct.
Suppose W̃ ⊂ B(z, R) for some R > 0. Except for possibly finitely many γ, one has

d(z, γz) ≥ 12R, so that W̃ ∩ γW̃ = ∅.
Let

Iγ = {i ∈ {1, . . . , N} | d(z, giz) ≥ 2R and d(γz, giz) ≥ 2R} .

We shall first treat the case where Iγ 6= ∅. Pick some i ∈ Iγ and w ∈ [y; γy′] ∩ giW̃ .
Then d(y, w) > 0, d(w, γy′) > 0, and there are at mostN copies gjW̃ that will intersect
[y;w] ∪ [w; γy′], since they do not intersect respectively γW̃ and W̃ by definition of
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i ∈ Iγ . Therefore gi ∈ Γ?
W̃

(N) and γg−1
i ∈ Γ?

giW̃
(N), or in other words g−1

i γ ∈ Γ?
W̃

(N).
Moreover, we have either

d(z, giz) ≥ d(y, w)− 2R ≥ d(y, γy′)

2
− 2R ≥ d(z, γz)

2
− 3R ≥ d(z, γz)

4
,

or similarly

d(z, g−1
i γz) = d(giz, γz) ≥

d(z, γz)

4
.

Assume the former happens, for the second case can be treated similarly. Remembering
that d(giz, γz) ≥ 2R, and thanks to Lemma 1.3, we get

d(z, γz)e
∫ γz
z F̃ ≤ 4eCd(z, giz)e

∫ giz
z F̃ e

∫ g−1
i

γz
z F̃

≤ 2eC

R
d(z, giz)e

∫ giz
z F̃d(z, g−1

i γz)e
∫ g−1
i

γz
z F̃ .

For every γ such that Iγ 6= ∅, we can find some gγ = gi ∈ Γ?W (N) such that this estimate
(or its symmetric version for g−1

i γ) holds. It follows that∑
γ∈Γ?

W̃
(N+1)

Iγ 6=∅

d(z, γz)e
∫ γz
z F̃ ≤ 2eC

R

∑
γ∈Γ?

W̃
(N+1)

Iγ 6=∅

d(z, gγz)e
∫ gγz
z F̃d(z, g−1

γ γz)e
∫ g−1
γ γz

z F̃

≤ 2eC

R

∑
g∈Γ?

W̃
(N)

d(z, gz)e
∫ gz
z F̃

∑
h∈Γ?

W̃
(N)

d(z, hz)e
∫ hz
z F̃ ,

and this upper bound is finite by the recurrence hypothesis. To go from the second to
the third line above, observe that in the above reasoning γ ∈ Γ?W (N + 1) can be written
γ = gh, so that for a given pair g, h ∈ Γ?W (N), there is at most one γ = gh in the left
sum.

Now assume that Iγ = ∅. Let G = {g ∈ Γ | d(x, gx) ≤ 2R}. Reasoning as in the
proof of Lemma 4.4, we can find g ∈ G, g′ ∈ γGγ−1, w ∈ gW̃ and w′ ∈ g′W̃ such that

hW̃ ∩ [w;w′] 6= ∅ ⇒ hW̃ ∩ gW̃ 6= ∅ or hW̃ ∩ g′W̃ 6= ∅ ,
which means that g′g−1 ∈ ΓgW̃ , or in other words that γ′ = g−1g′ ∈ ΓW̃ . Moreover,
note that

d(z, γ′z) = d(gz, g′z) ≥ d(z, γz)− 4R ≥ 8R .

Applying once again Lemma 1.3, we get the existence of a constant C (depending on
R) such that

d(z, γz)e
∫ γz
z F̃ ≤ (4R + d(gz, g′z))eC+

∫ g′z
gz F̃ ≤ 3

2
eCd(z, γ′z)e

∫ γ′z
z F̃ .

This also ensures that the series ∑
γ∈Γ?

W̃
(N+1),Iγ=∅

d(z, γz)e
∫ γz
z F̃
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converges. Combining those two cases together, we get the convergence of the series
for N + 1. �

Lemma 5.2. For every W̃ ⊂ M̃ open relatively compact, there exists NW̃ ≥ 1 such
that if

∃N ≥ NW̃ , ∃z ∈ W̃ ,
∑

γ∈Γ?
W̃

(N)

d(z, γz)e
∫ γz
z F̃ < +∞ ,

then (Γ, F̃ ) is positive recurrent relatively to W̃ .

Proof. Set
NW̃ = 2#

{
g ∈ Γ \ {id}

∣∣∣ W̃ ∩ gW̃ 6= ∅}+ 1 .

Let γ ∈ ΓW̃ . If y, y′ ∈ W̃ are such that

[y; γy′] ∩ gW̃ 6= ∅ ⇒ W̃ ∩ gW̃ 6= ∅ or γW̃ ∩ gW̃ 6= ∅ ,

then clearly at most NW̃ copies gW̃ with g 6= id can meet [y; γy′], thus γ ∈ Γ?
W̃

(NW̃ ).
We just showed that ΓW̃ ⊂ Γ?

W̃
(NW̃ ), and we always have Γ?

W̃
(NW̃ ) ⊂ Γ?

W̃
(N) when

N ≥ NW̃ , so the result is proved. �

6. POSITIVE RECURRENCE FOR THE GEODESIC FLOW ON THE MANIFOLD

In this section, we shall prove Theorem 2. We will assume once again that P (F ) = 0.

Lemma 6.1. Let W ⊂ M be open relatively compact, W = T 1W and fix any open
relatively compact lift W̃ ofW to M̃ , so that W̃ = T 1W̃ . There exists a constant C ≥ 1

such that, for all z ∈ M̃ and N ≥ 1, if∑
γ∈Γ?

W̃
(CN)

d(z, γz)e
∫ γz
z F̃ < +∞ ,

then ∑
p∈P ′W

nW (p)≤N

l(p)e
∫
p F < +∞ .

Proof. According to Lemma 2.1, there exists C ≥ 1 which depends only on W̃ such
that

∀p ∈ P ′, 1

C
nW̃(p) ≤ nW(p) ≤ CnW̃(p) .

Pick p ∈ P ′W with nW(p) ≤ N and γp ∈ Γh an hyperbolic element in the conjugacy
class associated with p. Then

0 <
1

C
≤ 1

C
nW(p) ≤ nW̃(γp) = nW̃(p) ≤ CnW(p) ≤ CN .

In particular, one must have at least n = nW̃(γp) ≥ 1, so fix zp ∈ π̃(Aγp) ∩ W̃ . As
γp is primitive, the geodesic segment [zp; γp(zp)] will meet at most n copies gW̃ where
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g 6= id, for each of them yields a distinct conjugate gγpg−1 whose axis meets W̃ . This
ensures that γp ∈ Γ?

W̃
(CN), and therefore∑

p∈P ′W
nW (p)≤N

l(p)e
∫
p F ≤

∑
γp∈Γh∩Γ?

W̃
(CN)

d(zp, γpzp)e
∫ γpzp
zp

F̃
.

Finally, since zp ∈ W̃ , which is relatively compact, there exists a R ≥ 0 such that
d(zp, z) ≤ R for any p. In particular,

d(zp, γpzp) ≤ 2R + d(z, γpz) ≤ 2d(z, γpz)

whenever γp does not belong to the finite set S =
{
γ ∈ Γ

∣∣ d(z, γz) < R
2

}
. Moreover,

Lemma 1.3 gives the existence of a constant C ′ such that∫ γpzp

zp

F̃ ≤ C ′ +

∫ γz

z

F̃ .

Therefore, ∑
p∈P ′W

nW (p)≤N

l(p)e
∫
p F ≤ A+ 2eC

′ ∑
γ∈Γ?

W̃
(CN)

d(z, γz)e
∫ γz
z F̃ ,

where A is the finite sum of terms that correspond to elements γp ∈ S. This concludes
the proof. �

Lemma 6.2. Let W be an open relatively compact subset of M such that T 1W meets
Ω. For every open relatively compact lift W̃ ⊂ M̃ of W to M̃ , and for every W̃ ′ open
and relatively compact subset of W̃ , there exists K ≥ 0 such that for all N ≥ 1, if∑

p∈P ′W′
nW (p)≤N+K

l(p)e
∫
p F < +∞ ,

withW ′ = PΓ(T 1W̃ ′) ⊂ T 1W , then

∀x ∈ M̃,
∑

γ∈Γ?
W̃

(N)

d(x, γx)e
∫ γx
x F̃ < +∞ .

Proof. By a routine application of Lemma 1.3, we may assume that the base point x lies
in W̃ ∩ π(Ω̃).

Take R > 0 such that W̃ ⊂ B(x,R). Since W̃ ′ is relatively compact in W̃ , ε =

d(W̃ ′, M̃ \ W̃ ) > 0. Lemma 1.4 gives then the existence of ρε = ρ1(R,R)− log ε such
that for every y, y′, z, z′ ∈ W̃ , if g ∈ Γ satisfies

[y; y′] ∩ gW̃ 6= ∅ and [z; z′] ∩ gW̃ = ∅ ,
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then either d(y, gW̃ ) ≤ ρε, or d(y′, gW̃ ) ≤ ρε, or gW̃ ′ does not meet [z; z′]. In partic-
ular, pick γ ∈ Γ?

W̃
(N), and y, y′ ∈ W̃ such that [y; γy′] meets at most N copies gW̃ ,

with g 6= id. Denote by K the cardinal

K = 2# {g ∈ Γ | d(x, gx) ≤ ρε +R} ,

which depends on both W̃ and W̃ ′, but not on F , y, y′ and γ. Fix z, z′ ∈ W̃ . Then
[z; γz′] can meet hW̃ ′ only if either hW̃ meets [y; γy′], or

d(x, hx) ≤ d(x, y) + d(y, hW̃ ) ≤ ρε +R or d(γx, hx) ≤ ρε +R .

Therefore there are at most N + K copies hW̃ ′ which meet any segment [z; z′] going
from W̃ to γW̃ , and K only depends on W̃ and W̃ ′.

According to Lemma 1.6, there exist g1, . . . , gk ∈ Γ and a finite set S ⊂ Γ such
that for every γ ∈ Γ \ S, there are i, j such that γ′ = g−1

j γgi is hyperbolic and its
axis π̃(Aγ′) meets W̃ ′. Moreover, the previous discussion ensures that if γ ∈ Γ?

W̃
(N)

then γ′ ∈ Γ?
W̃ ′

(N + K), where the segment going from W̃ ′ to γ′W̃ ′ meeting at most

N + K copies hW̃ ′ can be chosen as [zγ′ ; γ
′zγ′ ] where zγ′ ∈ W̃ ′ ∩ π̃(Aγ′). Denote by

R1 = sup {d(x, gix) | i = 1, . . . , k}, so that∣∣d(g−1
j x, γ′g−1

i x)− d(zγ′ , γ
′zγ′)

∣∣ ≤ d(x, gix) + d(x, gjx) + 2d(x, zγ′) ≤ 2(R1 +R) .

If C1 is the constant given by Lemma 1.3 for R2 = 2(R1 +R), then

∑
γ∈Γ?

W̃
(N)

d(x, γx)e
∫ γx
x F̃ ≤ A+

∑
i,j

∑
γ′∈Γ?

W̃ ′
(N+K)∩Γh

d(g−1
j x, γ′g−1

i x)e

∫ γ′g−1
i

x

g−1
j

x
F̃

≤ A+ k2
∑

γ′∈Γ?
W̃ ′

(N+K)∩Γh

(R2 + d(zγ′ , γ
′zγ′))e

C+
∫ γ′zγ′
zγ′

F̃
,

whereA is the sum over the elements γ ∈ S. By possibly adding finitely many elements
to S, we may assume that every γ 6∈ S satisfies d(x, γ′x) ≥ R2 + 2R so that

d(zγ′ , γ
′zγ′) ≥ d(x, γ′x)− 2R ≥ R2 .

Therefore ∑
γ∈Γ?

W̃
(N)

d(x, γx)e
∫ γx
x F̃ ≤ A+ 2k2

∑
γ∈Γ?

W̃ ′
(N+K)∩Γh

l(γ)e
∫
pγ
F
,

where pγ is the periodic orbit associated with γ ∈ Γh.
Our goal is now to obtain a sum over primitive hyperbolic isometries. Recall that

γ ∈ Γ?
W̃ ′

(N +K) means that [zγ; γzγ] meets q copies gW̃ ′ with g 6= id and q ≤ N +K.



36 VINCENT PIT AND BARBARA SCHAPIRA

Therefore, if such γ can be written γn0 with γ0 ∈ Γ′h and n ≥ 1, then n must divide q
and furthermore γ0 ∈ Γ?

W̃ ′
( q
n
) ⊂ Γ?

W̃ ′
(N +K). This means that∑

γ∈Γ?
W̃ ′

(N+K)∩Γh

l(γ)e
∫
pγ
F ≤

∑
1≤n≤N+K

∑
γ0∈Γ?

W̃ ′
(N+K)∩Γ′h

nl(γ0)e
n
∫
pγ0

F
.

For every p ∈ P ′W ′ with nW(p) ≤ N+K, there are exactly nW ′(p) primitive hyperbolic
isometries γ ∈ Γ?

W̃ ′
(N +K) ∩ Γ′h such that pγ = p. Therefore∑

γ0∈Γ?
W̃ ′

(N+K)∩Γ′h

l(γ0)e
∫
pγ0

F
=

∑
p∈P ′W′

nW′ (p)≤N+K

nW ′(p)l(p)e
∫
p F

≤ (N +K)
∑
p∈P ′W′

nW′ (p)≤N+K

l(p)e
∫
p F ,

which is finite by hypothesis. Moreover, l(γ0) ≥ 1 except for maybe finitely many γ0 in
the above sum, hence the series∑

γ0∈Γ?
W̃ ′

(N+K)∩Γ′h

e
∫
pγ0

F ≤ A′ + (N +K)
∑
p∈P ′W′

nW′ (p)≤N+K

l(p)e
∫
p F

is convergent. This implies in particular that there exists a constantC ′ such that
∫
pγ0

F ≤
C ′ for every γ0 ∈ Γ?

W̃ ′
(N +K) ∩ Γ′h. Gathering all these elements together, we obtain

∑
γ∈Γ?

W̃ ′
(N+K)∩Γh

l(γ)e
∫
pγ
F ≤

( ∑
1≤n≤N+K

ne(n−1)C′

) ∑
γ0∈Γ?

W̃ ′
(N+K)∩Γ′h

l(γ0)e
∫
pγ0

F

≤ (N +K)3

2
e(N+K−1)C′

∑
p∈P ′W′

nW′ (p)≤N+K

l(p)e
∫
p F ,

which proves precisely the statement of this lemma. �

Let us now complete the proof of Theorem 2.

Proof. First, if mF is finite, we know by Theorem 5 (ii) that F is recurrent and that
(Γ, F̃ ) is positive recurrent in the sense of Theorem 5 for all N ≥ 1 and x ∈ M̃ . By
Lemma 6.1, this implies that F is positive recurrent in the sense of Definition 2.

Conversely, if F is positive recurrent in the sense of Definition 2 for some N >

K = 2# {g ∈ Γ | d(x, gx) ≤ ρε +R}, Lemma 6.2 implies that (Γ, F̃ ) will be positive
recurrent in the sense of Theorem 5 for some integer greater than N −K ≥ 1 and, since
F is assumed to be recurrent in the sense of Definition 1, Theorem 5 (i) implies that
mF is finite. �
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7. FINITENESS OF GIBBS MEASURES FROM EQUIDISTRIBUTION OF WEIGHTED
PERIODIC ORBITS

7.1. An equidistribution result for nonprimitive orbits. If γ is an hyperbolic isom-
etry, denote by Lγ the Lebesgue measure along γ, that is the measure defined on T 1M̃
by ∫

ϕ̃dLγ =

∫
R
ϕ̃(g̃t(ṽ))dt

for any compactly supported continuous function ϕ̃ on T 1M̃ , where ṽ is any vector of
Aγ . This definition ignores the multiplicity of γ : if γ = γk0 with γ0 primitive, then
Lγ = Lγ0 .

If p is a periodic orbit of the geodesic flow, denote by Lp the Lebesgue measure along
p, that is the measure defined on T 1M by∫

ϕdLp =

∫ l(p)

0

ϕ(gt(v))dt

for any compactly supported continuous function ϕ on T 1M , where v is any vector of
p. This definition takes into account the multiplicity of the periodic orbit : if p is the
k-th iterate of a primitive periodic orbit p0, then Lp = kLp0 . In the following, we will
denote by m(p) the multiplicity of a periodic orbit p ∈ P .

We remark that if Π : µ̃ 7→ µ denotes the projection of locally finite Γ-invariant
measures through the branched cover T 1M̃ → T 1M , then for every γ0 ∈ Γh primitive
we have

Π

(∑
g∈Γ

Lg−1γ0g

)
= Lp0 ,

where p0 is the primitive periodic orbit on which the axis of γ0 projects.
The third finiteness criterion will be derived from the next equidistribution result for

weighted sums of measures supported on nonprimitive periodic orbits of the geodesic
flow, which itself requires the Gibbs measure to be mixing. Note that by virtue of
Babillot’s theorem (see theorem 1 in [Bab02]) this is equivalent to the nonarithmeticity
of the length spectrum, regardless whether the Gibbs measure is finite or not. In more
dynamical terms, it is also equivalent to the topological mixing of the geodesic flow.

Theorem 6. Let M = Γ\M̃ be a negatively curved orbifold with pinched negative
curvature, topologically mixing geodesic flow, and let F : T 1M → R be a Hölder
continuous potential. Assume that the pressure P (F ) is finite and positive. Define

νF,t = P (F )e−P (F )t
∑
p∈P
l(p)≤t

e
∫
p F

1

m(p)
Lp .

(1) If mF is finite, then νF,t converges weakly to mF
‖mF ‖

.
(2) If mF is infinite, then νF,t converges weakly to 0.
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Proof. According to the remark above, νF,t can be rewritten in terms of primitive peri-
odic orbits as

νF,t = δe−δt
∑
k≥1

∑
p∈P ′
kl(p)≤t

ek
∫
p FLp .

Since Π : µ̃ 7→ µ is continuous with respect to the weak convergences of measures, and
Π(m̃F ) = mF , it is enough to study the weak convergence of the sequence

ν ′F,t = δe−δt
∑
k≥1

∑
γ∈Γ′h
kl(γ)≤t

e
k
∫ γzγ
zγ

F̃Lγ = δe−δt
∑
γ∈Γh
l(γ)≤t

e
∫ γzγ
zγ

F̃Lγ ,

where zγ ∈ M̃ is any point on the invariant axis of γ on M̃ . The first step of the proof
of [PPS15, Theorem 9.11] shows that ν ′F,t weak-star converges to m̃F

‖m̃F ‖
(respectively 0)

whenever mF is finite (respectively infinite), therefore νF,t weak-star converges to mF
‖mF ‖

or 0 accordingly. �

Theorem 7. Let M = Γ\M̃ be a negatively curved orbifold with pinched negative
curvature, topologically mixing geodesic flow, and let F : T 1M → R be a Hölder
continuous potential. Assume that the pressure P (F ) is finite and positive. For c > 0,
define

ζF,c,t =
P (F )

1− e−cP (F )
e−P (F )t

∑
p∈P

t−c<l(p)≤t

e
∫
p F

1

m(p)
Lp ,

with the convention that δ
1−e−cδ = 1 when c = 0.

(1) If mF is finite, then ζF,c,t converges weakly to mF
‖mF ‖

for every c > 0.
(2) If mF is infinite, then ζF,c,t converges weakly to 0 for every c > 0.

Proof. First assume that mF is finite. It is enough to show the convergence of this se-
quence of measures when tested against nonnegative continuous functions with compact
support in T 1M . Let ϕ be such a test function. If

∫
ϕdmF = 0, then the support of

ϕ does not meet the nonwandering set Ω, so ζF,c,t = 0 and the result holds. Otherwise
denote by δ = P (F ), set κ = max(0,−δ) + 1 so that δ + κ ≥ 1 and mF+κ = mF , and
let Pϕ = {p ∈ P | p ∩ suppϕ 6= ∅} as well as

f : Pϕ → [0; +∞[
p 7→ l(p)

and g : Pϕ → [0; +∞[

p 7→ ‖mF ‖∫
ϕdmF

e
∫
p F 1

m(p)

∫
p
ϕdLp

.

With these notations, Theorem 6 applied to the potential F + κ ensures that

lim
t→+∞

(δ + κ)e−(δ+κ)t
∑
p∈Pϕ
f(p)≤t

eκf(p)g(p) = 1 .
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Note that f is proper since only finitely many periodic orbits of length smaller than
some constant can meet the support of ϕ. Therefore Lemma 9.5 from [PPS15] shows
that for every c > 0 one has

lim
t→+∞

δ

1− e−cδ
e−δt

∑
p∈Pϕ

t−c<f(p)≤t

g(p) = 1 ,

which means exactly that
∫
ϕdζF,c,t converges to

∫
ϕdmF .

Now assume that mF is infinite, and take κ as before so that δ + κ > 0. If ϕ is a
nonnegative continuous function with compact support in T 1M , note that

∫
ϕdζF,c,t is

comparable with

δ

1− e−cδ
1

δ + κ

(∫
ϕdνF+κ,t −

∫
ϕdνF+κ,t−c

)
=

δ

1− e−cδ
e−δt

∑
p∈P

t−c<l(p)≤t

e(l(p)−t)κe
∫
p F

1

m(p)

∫
p

ϕdLp ,

which goes to 0 as t goes to infinity following Theorem 6 (2). �

7.2. Proof of Theorem 4. In this section, the assumptions of Theorem 4 are satisfied.
The geodesic flow is topologically mixing, and F is a Hölder continuous potential with
finite pressure. ForW ⊂ T 1M , c > 0 and t ≥ 0, define

Zc,t(F,W) =
∑
p∈P

t−c<l(p)≤t

nW(p)e
∫
p F−P (F ) .

Lemma 7.1. If mF is finite, then for every open relatively compact set W meeting Ω
and every c > 0 there exist a constant C > 0 and t0 ≥ 0 such that

∀t ≥ t0, Zc,t(F,W) ≥ C .

Proof. Fix c > 0, and denote by δ = P (F ). First, Lemma 2.2 ensures that for every
W ′ ⊂ W , there is a constant C1 > 0 such that

∀t ≥ 0, Zt,c(F,W ′) ≤ C1Zt,c(F,W) .

It is therefore enough to show the result when π(W) = B(x,R) intersects π(Ω) but
R is small enough that the Γ-images of B(x,R) in M̃ are pairwise disjoint. Let ϕ :
T 1M → R be a continuous map with compact support in W , such that

∫
ϕdmF > 0

and 0 ≤ ϕ ≤ 1. Since π(W) is a small ball, the intersection ofW with a periodic orbit
p of the geodesic flow is a collection of at most nW(p) geodesic segments of length
smaller than the diameter ofW , each of them being visited m(p) times. Hence

∀p ∈ P ,
∫
ϕdLp ≤ nW(p)m(p)2R .
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According to Theorem 7 (1), the finiteness of mF gives that

lim
t→+∞

e−δt
∑
p∈P

t−c<l(p)≤t

e
∫
p F

1

m(p)

∫
ϕdLp =

1− e−cδ

δ‖mF‖

∫
ϕdmF = C2 > 0 .

Therefore, with δ = P (F ), there is a t0 ≥ 0 such that

∀t ≥ t0,
C2

2
e−cδ ≤

∑
p∈P

t−c<l(p)≤t

e
∫
p F−P (F ) 1

m(p)

∫
ϕdLp ≤ 2RZt,c(F,W) . �

Lemma 7.2. If mF is finite, then for every open relatively compact setW intersecting
Ω and every c > 0 there is a constant C > 0 such that

∀t ≥ 0, Zt,c(F,W) ≤ C .

Proof. Since the set Σ of singular points of M is locally finite, we can cover W by a
finite collection of open relatively compact sets Wi = T 1B(xi, Ri) for which there is
an ε > 0 such that for each i we have

• either xi 6∈ Σ̃ and the Γ-images of B(xi, Ri + ε) in M̃ are pairwise disjoint, in
which case we let si = 1 ;
• or xi ∈ Σ̃ and B(xi, Ri + ε) ∩ gB(xi, Ri + ε) if and only if g is an elliptic

isometry fixing xi, in which case we denote by si the cardinal of the stabilizer
of xi.

Let S = max si < +∞. Lemma 2.2 gives then a constant C1 such that

∀p ∈ P , nW(p) ≤ C1

∑
i

nWi
(p) .

It is therefore enough to find an upper bound when W = T 1B(xi, Ri) for every i.
Let ϕ : T 1M → R be a continuous map with compact support such that ϕ = 1 on
T 1B(xi, Ri + ε). By definition of xi and Ri, the intersection of T 1B(xi, Ri + ε) with
a periodic orbit p that meetsW is a collection of at least nW(p) geodesic segments of
length greater than 2ε, each of them being visited m(p) times. However, at most si
copies of these geodesic segments in the universal cover are going to project onto the
same geodesic segment of M . Hence

∀p ∈ P ,
∫
ϕdLp ≥

nW(p)m(p)

si
2ε ≥ nW(p)m(p)

S
2ε .

According to Theorem 7 (1), the finiteness of mF gives that

lim
t→+∞

e−δt
∑
p∈P

t−c<l(p)≤t

e
∫
p F

1

m(p)

∫
ϕdLp =

1− e−cδ

δ‖mF‖

∫
ϕdmF < +∞ .
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Therefore there is a C2 > 0 such that

∀t ≥ 0,
2ε

S
Zt,c(F,W) ≤

∑
p∈P
l(p)≤t

e
∫
p F−P (F ) 1

m(p)

∫
ϕdLp ≤ ecδC2 . �

The same proof using Theorem 7 (2) instead of (1) yields immediately the following
result.

Lemma 7.3. If mF is infinite, then for everyW open relatively compact meeting Ω and
every c > 0 we have

lim
t→+∞

Zt,c(F,W) = 0 .

8. APPLICATIONS

In this section, we show that our results let us retrieve some partial finiteness criteria
existing in the litterature. It is likely that our criteria will allow to find new interesting
examples where the Bowen-Margulis measure is finite, in addition to known examples
of [Pei03], [Anc].

8.1. Finiteness of Gibbs measures on geometrically finite manifolds. Geometrically
finite manifolds are the most simple negatively curved manifolds with infinite volume.
We refer to [Bow95] for details on their geometry. Recall simply that they can be
decomposed into the union of a compact part, finitely many finite volume ends, the
cusps, and finitely many infinite volume ends, the funnels.

Moreover, the nonwandering set Ω ⊂ T 1M of such a manifold is (transversally) a
Cantor set completely included in the unit tangent bundle of the compact part and of the
cusps. Therefore, dynamically, we can forget the funnels.

In [DOP00], Dal’bo-Otal-Peigné proposed a finiteness criterion for the so-called
Bowen-Margulis measure of such manifolds which is, in our terminology, the Gibbs
measure m0 associated with the zero potential F ≡ 0. It has been generalized in
[Cou03] to all Gibbs measures. We refer to [PPS15], where it was also exposed, because
the notations and construction of [Cou03] are slightly different (although equivalent).

Recall that for such manifolds, the lift to the universal cover of a cusp is called a
horoball, and the stabilizer of a horoball in Γ is a parabolic subgroup, denoted by Π.

Let F : T 1M → R be a Hölder continuous potential, and F̃ be its Γ-invariant lift to
T 1M̃ . Recall that the pressure P (F ) that we consider since the beginning is the critical
exponent of the Poincaré series ∑

γ∈Γ

e
∫ γx
x (F̃−s) ,

The finiteness criterion from Dal’bo-Otal-Peigné-Coudène can be stated in this way.

Theorem 8 ([DOP00], [Cou03], [PPS15]). Let M be a negatively curved geometrically
finite orbifold with pinched negative curvature, and F : T 1M → R a Hölder continuous
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potential with finite pressure. Assume that (Γ, F ) is divergent (i.e. F recurrent). Then
the Gibbs measure mF is finite if and only if the series∑

π∈Π

d(x, πx)e
∫ πx
x (F̃−P (F ))

converges for every parabolic subgroup Π < Γ.

We will infer immediately this result from the following propostion.

Proposition 8.1. The convergence of the series above is exactly given by our criterion
of positive recurrence of definition 3 applied to a connected lift W̃ inside a fundamental
domain of the compact part of M .

Proof. As usual, we may assume that P (F ) = 0. Let W̃ be the lift to the universal cover
of this compact part into a connected domain inside a Dirichlet fundamental domain for
the action of Γ on M̃ . We may assume that the frontier of W̃ is the union of finitely
many submanifolds of M̃ of codimension 1, so that the intersection of any geodesic
segment with this frontier is a finite union of segments.

Now recall the definition of ΓW̃ : it is the set of elements γ such that, for some
y, y′ ∈ W̃ , the geodesic [y; γy′] will intersect ΓW̃ only at the beginning and at the end.

More precisely, this geodesic intersects gW̃ if and only if gW̃∩W̃ 6= ∅ or gW̃∩γW̃ 6= ∅.
Geometrically on M = Γ\M̃ , it means that except during a time bounded from above
by diam (W ) at the beginning and at the end, and maybe except for finitely many γ, the
projection PΓ([y; γy′]) has to leave the compact part in the middle. This is possible only
if it enters inside some cusp C and then returns in the compact part.

Lift this cusp to a horoball C̃ which has a common boundary with W̃ (and there-
fore γW̃ ). Without loss of generality, we can assume that both y and y′ lie on this
common boundary ∂C̃ ∩ ∂W̃ . Therefore, there exists some parabolic element π in-
side the parabolic subgroup Π stabilizing C̃ such that πy′ ∈ ∂C̃ ∩ ∂γW̃ . Except
maybe during a bounded length (less than 2diam W̃ ), the geodesic segments [y; γy′]

and [y; πy′] stay uniformly close (at distance less than diam W̃ ), uniformly in π ∈ Π, so
that

∣∣∣∫ γxx F̃ −
∫ πx
x
F̃
∣∣∣ stay uniformly bounded by a constant depending only on F and

diam W̃ .
Thus, the series

∑
γ∈Γ

W̃
d(x, γx)e

∫ γx
x F̃ is bounded from above, up to some constant,

by the sum over the finite number of parabolic subgroups stabilizing a horoball with a
common frontier with W̃ , of the sum

∑
p∈Π d(x, πx)e

∫ πx
x F̃ .

Conversely, the same reasoning shows that Π < ΓW̃ , so that the reverse inequality is
trivial. This concludes the proof of the proposition. �

8.2. Existence of finite Bowen-Margulis measures on geometrically infinite mani-
folds. We shall now apply our criteria to recover the finiteness of the Bowen-Margulis
measure mBM = m0 (which is the measure of maximal entropy, associated with any
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potential cohomologous to a constant), for free products of Kleinian groups in Schottky
position as exposed in [Pei03].

Recall first the main result in [Pei03].

Theorem 9 (Peigné, [Pei03]). There exist geometrically infinite hyperbolic manifolds of
dimension at least 4 with finite Bowen-Margulis measure mBM = m0. These manifolds
are constructed by taking the free product of two Kleinian subroups of SOo(4, 1) in
Schottky position one of them geometrically infinite inside some SOo(3, 1) < SOo(4, 1),
the second divergent with a larger critical exponent.

Let us explain a little bit its construction. Let G and H be two Kleinian groups,
i.e. two nonelementary discrete torsion-free groups of orientation-preserving isometries
of the d-dimensional standard hyperbolic space Hd+1 (d ≥ 1) with constant curvature
−1. They are said to be in Schottky position when there exist two closed disjoint sets
FG, FH ⊂ Sd such that

G?(Sd \ FG) ⊂ FG and H?(Sd \ FH) ⊂ FH ,

where G? = G \ {idG} and H? = H \ {idH}. Note that the limit set Λ(G) of G must
be a subset of FG since the fixed points of hyperbolic elements of G can only lie in FG,
and likewise Λ(H) ⊂ FH .

A variation of the ping-pong lemma shows that the group Γ generated by G and H
is equal to the free product Γ = G ? H of G and H , and that the limit set Λ(Γ) of Γ is
included in FG ∪FH . Any γ ∈ Γ has an unique representation γ = g1h1 . . . gnhn where
n ≥ 1, g1 ∈ G, gj ∈ G? (j > 1), hn ∈ H and hj ∈ H? (j < n). We denote by ΓG the
subset of γ ∈ Γ which are written gγ′ with g ∈ G? in this representation, and we define
ΓH similarly, so that Γ is the disjoint union of Γ = ΓG t ΓH t {id}.

In the following, we will readily identifyG andH with their respective images by the
canonical inclusions G→ G ? H and H → G ? H . We will also denote by δG, δH and
δΓ = P (0) the respective critical exponents of G, H and Γ = G ? H , i.e. the exponents
of convergence of the Poincaré series∑

g∈G

e−sd(x,gx),
∑
h∈H

e−sd(x,hx) and
∑
γ∈Γ

e−sd(x,γx) .

Theorem ([Pei03], Theorem A). Let Γ = G ? H be the free product of two Kleinian
groups in Schottky position. If δG > δH and G is divergent, then δΓ > max(δG, δH), Γ
is divergent and its Bowen-Margulis measure is finite.

These assumptions are satisfied in particular with G a convex cocompact subgroup,
which is always divergent, and H a geometrically infinite subgroup of SOo(3, 1) <
SOo(4, 1). By conjugating G and H , it is easy to obtain the inequality δG > δH , and
the fact that they are in Schottky position. When d ≥ 2, one can even assume H to be
finitely generated but non geometrically finite.

We will use the criterion from Theorem 3 to retrieve the finiteness of the Bowen-
Margulis measure in these examples. To achieve this, we first need the following lemma
which will help us to choose the right open relatively compact subset.
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Lemma 8.2. For every x ∈ Hd+1, there exists R > 0 such that

∀g ∈ ΓG,∀h ∈ ΓH , [g(x);h(x)] ∩B(x,R) 6= ∅ .

Proof. Take UG and UH two open sets of Hd+1∪Sd, respectively containing FG and FH ,
and whose closures are disjoint. In particular, there is a R > 0 such that

∀η ∈ UG,∀ξ ∈ UH , d(x, ]η; ξ[) < R .

The Schottky position condition ensures that the attractive fixed point of any element
of ΓG must lie in FG, therefore the ΓG-orbit of x accumulates in FG, and only finitely
many g ∈ ΓG are such that g(x) 6∈ UG. Hence we may assume that R is large enough
that g(x) ∈ UG whenever d(x, g(x)) ≥ R, and likewise that h(x) ∈ UH whenever
d(x, h(x)) ≥ R. In any case, the geodesic segment [g(x);h(x)] will meet B(x,R). �

We now use notations from Theorem 3, and we take W̃ = B(x,R) with a fixed x and
R large enough according to Lemma 8.2 and Theorem 3.

We will prove the following.

Proposition 8.3. For W̃ = B(x,R) with R given by Lemma 8.2, (Γ, F̃ ) is positive
recurrent, and therefore mF is finite.

Lemma 8.4. There exists S ⊂ Γ finite such that

ΓW̃ \ S ⊂ G ∪H .

Proof. If γ 6∈ G∪H , then it can be written γ = ghγ′ or γ = hgγ′, with g ∈ G?, h ∈ H?

and hγ′ 6∈ G (respectively gγ′ 6∈ H). We only consider the first case, the second case
being similar. Note that

ghγ′ 6∈ ΓW̃ ⇔ hγ′g 6∈ g−1ΓW̃g = Γg−1W̃ .

Now consider the geodesic segment I = [g−1(x);hγ′(x)] = [g−1(x);hγ′gg−1(x)]. Both
g−1W̃ and hγ′W̃ intersect I , but according to Lemma 8.2 W̃ also intersects I . Finally,
there is only a finite set S of such γ for which g−1W̃ or hγ′W̃ meets W̃ , so that if
γ ∈ ΓW̃ \ S, then γ ∈ G ∪H . �

We can now complete the proof. Since δΓ > max(δG, δH) we have∑
g∈G

d(x, gx)e−δΓd(x,gx) < +∞ ,

and the same goes for H . Therefore,∑
γ∈G∪H

d(x, γx)e−δΓd(x,γx) < +∞ ,

and Theorem 3 ensures that the Bowen-Margulis measure mBM = m0 of T 1M is finite.
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