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1 Introduction

These notes were written for lectures at CIRM in spring 2014, where I presented
in a unified way classical dynamical and ergodic properties of the horocyclic flow.
Therefore, the writing is unformal. I will state several results, and sketch their
proofs, because my aim is to show you how deeply the ergodic properties of the
horocyclic flow and the geodesic flow are related.

Many good references exist. Among many others, let me recommand [EW11]
(probably not for master students), and at a master level [Cou12] (in french), and
[Dal11] (in french or english).

In this introduction, let me present you the main objects of interest, and state
the main results that are discussed in the text.

Then I will come back with more details to the necessary geometric preliminaries,
prove results on the topological dynamics of the horocycle flow, and then discuss
invariant measures and ergodic properties.

The hyperbolic plane is defined as H = R×R∗
+ and endowed with the hyperbolic

metric ds2 = dx2+dy2

y2 . The geodesics are the curves which minimize the distance.
The hyperbolic geodesics are the vertical half-lines and the half-circles orthogonal to
the boundary R×{0}. The isometries preserving orientation are the homographies

z → az+b
cz+d where

(
a b
c d

)
is a matrix with determinant 1. See exercise 1.1.

Figure 1: Models of the hyperbolic plane

The model of the disk is more natural geometrically. The hyperbolic disk is the
open disk D(0, 1) in C, endowed with the image metric from the hyperbolic metric
of H through the map z 7→ z−i

z+i . In the disk model, the geodesics are the diameters
and the pieces of circles orthogonal to the boundary.

The geodesic flow (gt)t∈R is defined on the unit tangent bundle as follows. A
vector v ∈ T 1H determines a unique geodesic c : R → H such that c′(0) = v. Now,
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follow the geodesic (at unit speed) until time t to get gt(v) := c′(t).

v
gtv

Figure 2: Geodesic flow

A horocycle is a (euclidean) circle tangent to the boundary, or a horizontal line,
in the model of the upper half-plane. We can lift it to the unit tangent bundle
T 1H in the following ways. A stable horocycle is the set of vectors orthogonal to
such a circle, pointing inward. An unstable horocycle is the set of vectors that are
orthogonal to a horocycle of H and pointing outwards. The stable horocycle flow
(hs)s∈R acts on T 1H by moving a vector v ∈ T 1H along the stable horocycle that it
defines. Thus, hs(v) is the vector based on the same horocycle, whose base point is
at distance |s| from the base point of v for the induced distance on the horocycle.
One needs to choose a direction for s positive. See Exercise 1.2 for the matrix group
description of these flows.

v

hs(v)
gt(v)

Figure 3: Horocyclic flow

The key point in everything concerning horocyclic flows is that

W ss
(gt)(v) = {hs(v), s ∈ R} .

In other words, the orbit of v for the horocyclic flow is exactly the strong stable
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manifold of the geodesic flow: A vector w belongs to W ss(v) iff d(gtv, gtw) → 0
when t→ +∞, iff there exists s ∈ R such that w = hsv.

The aim of these lectures is to understand the behaviour of these two flows, and
particularly of (hs). On the unit tangent bundle of T 1H, there is nothing interesting
to say. All orbits of both flows go to infinity. The interesting study is the behaviour
of (gt) and (hs) on the unit tangent bundle T 1S = Γ\PSL(2,R) of a hyperbolic
surface S = Γ\H. The actions of (gt) and (hs) on T 1H commute with the action of
PSL(2,R) by isometries.

Here, Γ is a discrete group of isometries of PSL(2,R). We will always assume
that Γ be nonelementary. It means that Γ does not contain Z as a finite index
subgroup. Or that any orbit Γ.x of Γ has infinitely many accumulation points in
H = H ∪ S1. Any discrete group Γ which contains two hyperbolic isometries with
different fixed points will be nonelementary. For example,
• the group PSL(2,Z),

Figure 4: PSL(2,Z) and the Modular surface

• a Schottky group

Figure 5: Schottky group and Schottky surface

• the fundamental group of a compact surface of genus g
The typical behaviour of these flows is the following. The geodesic flow is hy-

perbolic. The past and the future of a trajectory are independant. This can be
formalized by the so-called local product structure: given a past trajectory and a
future trajectory, there exists a geodesic line which has these prescribed past and
future trajectories, asymptotically.

As a consequence, most trajectories of (hs) are dense. Indeed, given a vector
u ∈ T 1S, any vector v has a neighbour vector w with the same past than v and the
same future as u. It says exactly that the horocyclic orbits are dense.

Another consequence of the hyperbolicity of the geodesic flow is that all be-
haviours that you could imagine will indeed be realized as geodesic trajectories.
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Figure 6: A hyperbolic octogon and associated genus two surface

The geodesic flow will have infinitely many periodic orbits, infinitely many ergodic
invariant probability measures.

By contrast, the horocyclic flow will have very few invariant ergodic measures,
and, heuristically, these ergodic components of the horocyclic flow reflect in which
different ways and with which different speeds a geodesic trajectory can escape (or
not) to infinity.

Let me now state (maybe formally with mistakes) the main results that I will
discuss in these lectures.

A vector v ∈ T 1S is said to be quasi-minimizing for the geodesic flow if there
exists C ≥ 0, such that for all t ≥ 0, d(gtv, v) ≥ t−C. In other words, the geodesic
(gtv)t≥0 goes to infinity at maximal speed.

Proposition 1.1 (Eberlein [Ebe72]). Let S be a hyperbolic surface. The horocycle
(hsv)s∈R is dense (in the nonwandering set E ⊂ T 1H) iff the geodesic (gtv) is not

quasi-minimizing.

As a corollary, we see that if S is a compact hyperbolic surface, the horocyclic
flow is topologically transitive: all horocycles are dense.

One can even prove a refinement of this result and understand at which condition
the positive orbit (hsv)s≥0 is dense or not [Sch11].

The limit set ΛΓ is the set of accumulation points of any orbit Γ.x. See exercise
1.3. The radial (conical) limit set Λrad(Γ) is the set of points ξ ∈ ΛΓ such that for
any geodesic ray ending at ξ, there exists infinitely many points of Γ.x at bounded
distance of this ray. Points in the radial limit set correspond to asymptotic endpoints
of geodesic rays that return infinitely often in a compact set.

The horospherical limit set Λhor(Γ) is the set of points ξ ∈ ΛΓ, such that for any
horodisk centered at ξ, there exists infinitely many points of Γ.x inside the disk. It
contains the radial limit set.

We will see in proposition 2.2 that a geodesic (gtv)t≥0 is not quasi-minimizing
iff any lift ṽ has a positive endpoint v+ in the horospherical limit set.

In terms of the limit set, the above proposition becomes:

Proposition 1.2. Let S be a hyperbolic surface. A horocycle (hsv)s∈R is dense (in
the nonwandering set E ⊂ T 1S of the horocyclic flow) iff any lift ṽ of v to T 1H has
a limit point v+ in the horospherical limit set.

We refer to Dal’bo [Dal99] and [Dal00] for precise references on the following
result.
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Figure 7: A radial (on the left) and a horospherical (on the right) limit point

The length spectrum (l(γ)) of a surface is the collection of lengths of closed
geodesic of the surface that are associated to each conjugacy class of hyperbolic
elements γ ∈ Γ.

Theorem 1.3 (Hedlund, Eberlein, Dal’bo). The length spectrum (l(γ))γ∈Γ is non
arithmetic iff the geodesic flow is topologically mixing iff there exists v ∈ T 1S with
(hsv)s∈R dense and such that (gtv)t≥0 admits an accumulation point.

Note that, as we deal here only with hyperbolic surfaces, all statements of The-
orem 1.3 are not only equivalent, but true because the length spectrum of a hy-
perbolic surface is known to be nonarithmetic. But this equivalence is relevant for
more general nonpositively curved manifolds.

As a consequence of the above proposition 1.1 and our knowledge of the ends of
a finite volume hyperbolic surface, it is easy to get the following result.

Theorem 1.4 (Hedlund). If S is a surface with finite volume, then all horocycles
(hsv)s∈R of T 1S are either periodic or dense.

Let us describe now results about the ergodic theory of the horocyclic flow, that
is results concerning invariant measures µ under the horocyclic flow on T 1S.

The Haar measure on PSL(2,R) identified with T 1H can be written in coordi-
nates as dL(v) = dxdy

y2
dθ
2π where x + iy is the base point of v in H and θ the angle

of v ∈ T 1
x+iyH ≃ S1. This measure is invariant by left and right multiplication by

elements of PSL(2,R), so that it induces on Γ\PSL(2,R) a measure L which is
invariant under both geodesic and horocyclic flows.

It is the most natural invariant measure for these flows.

Theorem 1.5 (Hopf, [Hop71]). If S is a finite volume surface, the measure L on
T 1S is ergodic and even mixing for the geodesic flow. It is the measure of maximal
entropy of the geodesic flow.

The ergodicity of L is due to Hopf through the now famous Hopf argument.
The mixing property can be proven through a refinement of this Hopf argument
(see for example Babillot [Bab02], Coudène [Cou07] and more recently [Cou13]. It
maximizes entropy, but we will not develop this aspect here.

The main results that we shall discuss for the horocyclic flow are the following.

Theorem 1.6 (Furstenberg, 73). Let S be a compact hyperbolic surface. Then the
measure L is the unique invariant ergodic measure for the horocyclic flow.

His proof used harmonic analysis on R2 but we will give purely dynamical ar-
guments.

As an immediate corollary, we get the equidistribution of horocycles.
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Corollary 1.7 (Furstenberg). Let S be a compact hyperbolic surface. For all v ∈
T 1S, and all continuous maps ϕ : T 1S → R, we have

1

t

∫ t

0

ϕ(hsv) ds →
1

L(T 1S)

∫

T 1S

ϕdL .

Moreover, the convergence is uniform in v ∈ T 1S.

Theorem 1.8 (Dani [Dan78]). Let S be a finite volume hyperbolic surface. Then
the normalized Liouville measure L and the (normalized) measures supported by the
periodic orbits are the only invariant ergodic probability measures.

Moreover, for all ϕ : T 1S → R continuous with compact support, and all v ∈ T 1S
whose horocyclic orbit is nonperiodic, we have

1

t

∫ t

0

ϕ(hsv) ds →
1

L(T 1S)

∫

T 1S

ϕdL .

Note that, contrarily to the compact case, the equidistributon of the horocycles
is not a trivial consequence of the classification of invariant measures.

When Γ is finitely generated, ΛΓ is infinite, and S has infinite volume, one says
that S is geometrically finite.

Figure 8: Geometrically finite surface

In this situation, the limit set ΛΓ is strictly included in the circle at infinity, the
interesting dynamics happens on smaller subsets of T 1S. One studies the dynamics
of the geodesic flow on its nonwandering set ΩΓ, which is the set of vectors v ∈ T 1S
which admit a lift ṽ ∈ T 1

H whose endpoints v+ and v− are in ΛΓ. (Result due
to Eberlein). The nonwandering set of the horocyclic flow EΓ ⊃ ΩΓ is the set of
vectors whose horocycle intersects ΩΓ. Equivalently, it is the set of vectors v ∈ T 1S
which admit a lift ṽ ∈ T 1H whose endpoint v+ is in ΛΓ (Dal’bo).

Theorem 1.9 (Burger (1990), Roblin (2003)). Let S be a geometrically finite hy-
perbolic surface. There exists a unique invariant measure supported on the full
nonwandering set E of the horocyclic flow, up to a multiplicative constant. It is an
infinite Radon measure.

This measure is now called the Burger-Roblin measure and denoted by mBR.

Theorem 1.10 (Maucourant-Schapira, 2013). Let S be a geometrically finite hy-
perbolic surface (of infinite volume). For all ϕ : T 1S → R continuous with compact
support and all v ∈ EΓ whose horocycle is nonperiodic, we have

∫ t

−t

ϕ(hsv) ds ∼ tδΓτ(v, t)

∫

T 1S

ϕdmBR
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where 0 < δΓ < 1 is the critical exponent of the group and τ is a positive continuous
function on EΓ × R.

1.1 First exercises

Exercise 1.1 (Hyperbolic metric and geodesics). The hyperbolic length of a C1-
path c : [a, b] → H is measured as follows :

l(c) =

∫ b

a

‖c′(t)‖c(t) dt ,

where ‖v‖z = |v|
y if z = x + iy ∈ H, v ∈ TzH ≃ R2, and |v| is its euclidean norm.

The hyperbolic distance between two points z and z′ is the infimum of the lengths of
all paths from z to z′. s The geodesics are the curves which minimize the distance.
Prove the following claims.
• The vertical half-lines are geodesics.
• The homographies are hyperbolic isometries
• The half-circles orthogonal to the boundary are geodesics
• The group of direct isometries is isomorphic to PSL(2,R) = SL(2,R)/±.

Exercise 1.2 (Geodesic and horocyclic flows as one-parameter matrix flows). •
Prove that PSL(2,R) acts transitively on H and simply transitively on T 1H: given
two vectors v, w ∈ T 1H there exists a unique γ ∈ PSL(2,R) sending v to w.
One identifies PSL(2,R) with T 1H through the map γ 7→ γ.v0 where v0 is the
vector (0, 1) tangent to H at the point i.

• Show that in this identification, if v = γ.v0, then g
t(v) = γ.

(
et/2 0

0 e−t/2

)
. In

other words, the geodesic flow acts by multiplication to the right by the diagonal

group

{(
et/2 0

0 e−t/2

)
, t ∈ R

}
.

• Show that the action of the stable horocyclic flow corresponds to the multiplica-

tion to the right by the unipotent group

{(
1 s
0 1

)
, s ∈ R

}
.

• Show that the action of PSL(2,R) by (differentials of) isometries on T 1H corre-
sponds to the multiplication to the left by PSL(2,R).

Exercise 1.3 (The limit set). • Show that the limit set ΛΓ does not depend on the
point x ∈ H used to define it.
• Show that if Γ ⊳ Γ0 is a normal subgroup of Γ, then ΛΓ = ΛΓ0

.
• Show that ΛΓ is the smallest closed Γ-invariant set in S1.
• Show that the action of Γ on ΛΓ is minimal, i.e. for all ξ ∈ ΛΓ, Γ.ξ is dense in
ΛΓ.
• Show that the set of points γ+ for γ ∈ Γ a hyperbolic isometry, is dense in ΛΓ.
• Show that the set of pairs (γ−, γ+), for γ ∈ Γ a hyperbolic isometry, is dense in
ΛΓ × ΛΓ

Exercise 1.4 (The Liouville measure). Show that the measure L is invariant under
left and right multiplication.

Exercise 1.5 (Unique ergodicity and equidistribution). Let T : X → X be a
homeomorphism of a compact topological space. Show that T is uniquely ergodic
(i.e. admits a unique invariant probability measure) iff for all continuous maps

ϕ : X → R, the ergodic averages
1

N

N−1∑

k=0

ϕ ◦ T k(x) converge uniformly in x to a

constant.
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2 Topological dynamics of the horocyclic flow

2.1 Nonarithmeticity, mixing of the geodesic flow, density of

horocycles

The length spectrum (l(γ)) is the set of lengths of translation of the hyperbolic
elements γ ∈ Γ. It is said to be nonarithmetic if it generates a dense subgroup of
R.

We will admit the following result.

Theorem 2.1 (Hedlund). The length spectrum of a hyperbolic surface is nonarith-
metic.

It is more generally the case in constant curvature, or for any surface, or in
presence of cusps, or when the limit set is connected. See [Dal99] proposition 2.1
for details and references on nonarithmeticity.

The geodesic flow is said to be topologically mixing (in restriction to the non-
wandering set ΩΓ) if for all open sets A,B of ΩΓ there exists T > 0 such that for
all t ≥ T , gtA ∩ B 6= ∅. Theorem 1.3 combined with the above result ensures that
the geodesic flow on the nonwandering set of a nonelementary hyperbolic surface is
topologically mixing.

In general, on the unit tangent bundle of negatively curved manifolds, it is always
at least topologically transitive, that is for all open sets A,B of ΩΓ and all T > 0
there exists t ≥ T such that gtA ∩B 6= ∅.

The geodesic flow admits a local product structure. If S is a hyperbolic surface,
for all vectors v and w in T 1S close enough, there exists a vector [v, w] close to v
and w with the same past than v and the same future than w.

v

w

Figure 9: Local product structure

The geodesic flow of a nonelementary hyperbolic surface satisfies the Anosov
closing lemma. For all T large enough and nonwandering vectors v ∈ ΩΓ, if d(g

T v, v)
is small enough, there exists a periodic vector of period almost T in a small neigh-
bourhood of v.

Let us prove Theorem 1.3.

Proof. • Assume that the geodesic flow is topologically mixing. Let U be an open
set of ΩΓ. For all t > 0 large enough, gtU ∩ U 6= ∅. Choosing the diameter of
U small enough, it implies that for all t > 0 large enough and ǫ > 0, we can find
a vector vt,ε such that d(gtvt,ε, vt,ε) ≤ ε. The closing lemma furnishes a periodic
vector pt,ε with period in [t− ε, t+ ε] in the ε-neighbourhood of vt,ε. It proves the
nonarithmeticity of the length spectrum.

• Assume that the length spectrum is nonarithmetic. Thanks to the transitivity
of the geodesic flow and the local product structure, it is enough to show that given
any open set U , and all t large enough, gtU ∩ U is nonempty. By continuity of the
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v

Figure 10: Anosov closing lemma

geodesic flow, for ε small enough, it is enough to prove that the set of t ≥ 0 such
that gtU ∩ U 6= ∅ is ε-dense in an interval [T,+∞[.

We can use the density of periodic orbits to find a periodic vector p0 ∈ U , and
the nonarithmeticity of the length spectrum to find another periodic vector p ∈ T 1S
such that there exist n,m ∈ Z with |nl(p0)−ml(p)| < ε.

Now, using the local product structure, the transitivity and the closing lemma,
one can construct an orbit which is negatively asymptotic to the negative orbit of
p0, then turns k.m times around the orbit of p, then is positively asymptotic to
the orbit of p0. On the resulting orbits, one can find vectors vk that belong to U
and such that for some large Tk, g

Tkvk also belongs to U , and such that the set of
numbers Tk, k ∈ N, is ε-dense in [T0,+∞[.

• Assume that the geodesic flow is topologically mixing. Let p ∈ T 1S be a
periodic vector for the geodesic flow. Let V be a small neighbourhood of p and U
any open set. By topological mixing, there exists T > 0 such that for all t ≥ T
there exists ut ∈ U with gtut ∈ V . By local product one can glue the negative orbit
of ut with the positive orbit of p and obtain a vector in the weak stable manifold
of v and in U . Choosing correctly t allows to ensure that this vector belongs to
W ss(v), so that W ss(v) is dense in T 1S.

• Assume that there exists v ∈ T 1S such that (hsv)s∈R is dense and gtnv → z ∈
T 1S. We refer to [Dal00] page 987 or [Cou08] chapter 2.1 for the proof of the fact
that then, the length spectrum is nonarithmetic. We reproduce here the argument
of Coudène.

Observe first that the density of (hsv)s∈R implies the density of (hsglv)s∈R for
all l ∈ R. Fix a small neighbourhood V of z, and assume that V is small enough
to satisfy the closing lemma. Choose a vector w 6= v in the intersection of the orbit
(hsglv)s∈R and of V . Note that d(gtv, gt−lw) → 0 when t → +∞. Observe that
we can find a sequence tn → ∞ s.t. for all n ∈ N large enough, gtnv ∈ V and
gtn−lw ∈ V . We can apply the closing lemma to the geodesic orbits (gtv)t0≤t≤tn

and (gtw)0≤t≤tn−l. Up to ε, we get periodic orbits of lengths tn−t0 and tn− l. This
is true for all ε > 0 and l ∈ R. Therefore the length spectrum is nonarithmetic.

2.2 The horocycle (hsv) is dense iff the geodesic (gtv) is not

quasiminimizing

Let us prove the following result.

Proposition 2.2 (Eberlein). A vector v ∈ T 1S is not quasi-minimizing iff its
endpoint v+ is horospherical.

Theorem 1.4 follows easily from the above proposition because quasi-minimizing
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vectors on a finite volume surface are well understood. They go straight away in
some cusp and their horocycle is periodic.

Proof. Let v ∈ T 1S be a nonwandering vector, ṽ any lift of v and v+ the endpoint
of ṽ in ΛΓ. For simplicity, assume that the origin o of the disk is the basepoint of
ṽ. The endpoint v+ is not horospherical iff there exists t0 ∈ R such that Γ.o does
not intersect the horoball centered in v+ and containing π(gt0v) in its boundary.
It is equivalent to say that for all t ≥ 0, the ball centered in π(gt0+t) of radius t
does not intersect Γ.o. It is also equivalent to say that for all γ ∈ Γ and t ≥ 0, the
distance d(γ.o, π(gt0+tṽ) is at least t. On the quotient surface S it is equivalent to
say that for all t ≥ 0, the distance from π(v) to π(gt0+tv) is at least t, or in other
words d(π(v), π(gtv)) ≥ t− t0.

Let us assume that the length spectrum is nonarithmetic, or equivalently that
the geodesic flow is topologically mixing. Let us now prove that (hsv)s∈R is dense
in EΓ iff v+ is horospherical, following arguments of Coudène [Cou08].

Proof. • If v+ is horospherical, there exists sequences ti → +∞ and si ∈ R such that
gtihsiv converges to some vector w. Consider some very small open neighbourhood
W of w on which the local product structure holds, and any open set U of ΩΓ. For
i large enough, gtihsiv belongs to W . The mixing property of the geodesic flow
implies that for all t large enough there exists ut ∈ U such that gtut ∈W .

Now, use the local product structure to glue the past of gtiuti with the future
of gtihsiv. We obtain a vector wti ∈ W ss(gtiv) with g−tiv ∈ U . But g−tiv also
belongs to W ss(v). It proves that W ss(v) = {hsv, s ∈ R} is dense in ΩΓ.

• Conversely, assume that (hsv)s∈R is dense in ΩΓ. Let ṽ be a lift of v to T 1H

and v+ its endpoint. Choose a periodic vector p ∈ T 1S, p̃ its lift to T 1H and
o ∈ H his basepoint. By density, there exists a sequence si → +∞ such that hsiv
converges to p. In particular, for any T0 > 0 there exists si large enough so that for
all 0 ≤ t ≤ T , gthsiv and gtp stay very close one another. It implies easily that the
horoball which contains π(gT0v) in its boundary contains a point of the orbit Γ.o
(up to slightly cheeting with the constants).

2.3 Geometrically finite surfaces

A hyperbolic surface S is geometrically finite iff π1(S) is finitely generated iff Γ =
π1(S) admits a fundamental domain on H which is a domain bounded by finitely
many geodesics, possibly with endpoints in the boundary. It is equivalent to say
that S has a compact part, and finitely many ends, isometric either to a cusp
{z ∈ H,ℑ(z) ≥ 1}/{z 7→ z + 1}, or to a funnel {z ∈ H,ℜ(z) > 0}/{z 7→ λz} for
some λ > 1.

Proposition 2.3 (Hedlund, Eberlein, Dal’bo). Let S be a geometrically finite hy-
perbolic surface. If v ∈ T 1S, its horocycle (hsv) is either periodic, or dense in EΓ,
or embedded nonperiodic. The last case corresponds to vectors that do not belong to
EΓ.

This proposition also follows easily from Proposition 2.2, as quasi-minimizing
vectors go straight away in a cusp or in a funnel.

Remark 2.4. There exist examples, due to Coudène-Maucourant [CM10], of infi-
nite volume surfaces where all horocycles are recurrent, i.e. return infinitely often
in a compact set, but not all dense.
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2.4 Some more exercises

Exercise 2.1. Let S be a hyperbolic surface whose limit set is infinite. Prove that
there exists v ∈ T 1S such that (gtv)t≥0 is dense in the nonwandering set ΩΓ of the
geodesic flow.

Prove that it is equivalent to the topological transitivity of the geodesic flow
restricted to its nonwandering set.

3 Invariant measures for the horocyclic flow

3.1 The Hopf coordinates

A key tool is the following fact. The unit tangent bundle T 1H is homeomorphic to
the product space S1 × S1 \Diagonal× R through the map

v ∈ T 1
H 7→ (v−, v+, βv+(o, π(v)) ,

where π : T 1
H → H is the canonical projection, and β is the Busemann cocycle,

defined for x, y ∈ H and ξ ∈ S1 by

βξ(x, y) = lim
t→+∞

d(x, ξx(t)) − d(y, ξx(t)) = ”d(x, ξ) − d(y, ξ)”.

In these coordinates, the geodesic flow acts by translation on the last factor: if
v = (v−, v+, τ), then gtv = (v−, v+, τ + t). The group Γ = π1(S) acts as follows.

γ.(v−, v+, τ) = (γ.v−, γ.v+, τ + βv+(γ−1o, o)) .

In these coordinates, it is easy to understand the orbits of the (stable) horocyclic
flow. Indeed, if v = (v−, v+, τ(v)), we have

W ss(v) = {hsv, s ∈ R} = {w = (w−, v+, τ(v)} .

In other terms the horocycle (hsv)s∈R of T 1H can be identified with S1 \ {v+}, and
the space of horocycles can be identified with S1 × R.

Proposition 3.1. Let S be a hyperbolic surface. The set of invariant (ergodic)
Radon measures for the geodesic flow on T 1S (resp. on ΩΓ) is in 1− 1 correspon-
dance with the set of invariant (ergodic) Radon measures for the action of Γ on
S1 × S1 \ {Diagonal} (resp. on ΛΓ × ΛΓ \ {Diagonal}).

Similarly, the set of invariant (ergodic) Radon measures for the horocyclic flow
on T 1S (resp. on EΓ) is in 1− 1 correspondance with the set of invariant (ergodic)
Radon measures for the action of Γ on S1 × R (resp. on ΛΓ × R).

Proof. Exercise

The above coordinates are extremely useful, because in terms of these coordi-
nates, the Liouville measure has a product structure: if L̃ is the lift of the Liouville
measure to T 1H, this measure can be written as

dL̃(v) = ψ(v−, v+)dλ(v−)dλ(v+)dt,

where λ is the angular measure on the circle viewed from the origin and ψ is a
continuous positive map on S1 × S1 \Diagonal.

It is a corollary of the property of absolute continuity of the stable foliation,
due to Hopf for hyperbolic surfaces, and Anosov and Sinai much later in higher
dimensions [Ano67], [Sin72].

In some proofs, we will ignore the map ψ above, as it is useful only to guarantee
the Γ-invariance of L̃, but not to understand the arguments.
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3.2 The Hopf argument, ergodicity and mixing of the Liou-

ville measure

As soon as one knows that, in the Hopf coordinates, a measure has a product struc-
ture, the now classical Hopf argument implies ergodicity of the Liouville measure
w.r.t. the geodesic flow. From this ergodicity, Hedlund deduced the ergodicity of
the same measure w.r.t. the horocyclic flow. Then, he could deduce the mixing of
the Liouville measure w.r.t. the geodesic flow from the ergodicity of the horocyclic
flow.

Let us present the argument for the Liouville measure. We let the reader check
that we only use the product structure.

Denote by L̃ the Γ-invariant lift of the Liouville measure. As said above, its prod-
uct structure means that it can be written locally as dL̃(v) = ψ(v−, v+)dλ(v−)dλ(v+)dt,
where λ is the angular measure on the circle viewed from the origin.

Let us prove that it is ergodic.

Proof. Let f be a continuous map with compact support, and consider the almost
sure limits

f+(v) = lim
T→+∞

1

T

∫ T

0

f ◦ gtv dt and f−(v) = lim
T→−∞

1

T

∫ T

0

f ◦ gtv dt .

These maps are defined L-almost surely, and coincide L-almost surely (the limit is
the conditional expectation of f w.r.t the σ-algebra of invariant sets).

Let us call Ω the set of full measure of vectors v such that f+(v) and f−(v) are
well defined and equal. Denote therefore by f∞ a measurable map which coincides
with both functions on Ω. Observe now that f+ is invariant under the stable horo-
cyclic flow and the geodesic flow, and f− is invariant under the unstable horocyclic
flow and the geodesic flow.

Therefore, almost surely, they coincide in the stable direction, the unstable
direction and the direction of the flow, so that they have to be constant.

Remark 3.2. It seems maybe obvious to the reader. Because our intuition is based
on product measures: when we have several coordinates on Rn, we usually work
with the Lebesgue measure which is a product measure. Imagine that we replace the
Liouville measure by a (nonergodic) measure which is the average of two periodic
measures on two periodic orbits. You can check that f∞ coincides with f+ and f−

almost surely but neither of these three maps is (even almost surely) constant.

Future

Past

Support of µ

Figure 11: A non product measure

Let us come back to the requested proof, that you feel maybe more useful af-
ter the above example. To make rigorous the ”almost surely”, let us do the following

12



computation. The local product structure of L̃ says that
∫
ϕdL =

∫
S1

∫
S1

∫
R
ϕ̃dλ−(v−)dλ+(v+)dt

where ϕ̃ is a lift of ϕ to a fundamental domain of T 1H for the action of Γ.
Call ψ+ (resp. ψ−) a measurable map on S1 such that f+(v) = ψ+(v+) L-almost

surely and f−(v) = ψ−(v−) L-almost surely.
Forget the density ψ of L w.r.t. the product and do the following computations.

∫

S1

(ψ+)2dλ+(v+) =

∫

S1

∫

S1

∫ 1

0

(ψ+)2dλ+(v+)dλ−(v−)dt

=

∫

T 1H

(f+(v))2dL(v)

=

∫

T 1H

f+(v)f−(v)dL(v)

=

∫

S1

∫

S1

∫ 1

0

ψ+(v+)ψ−(v−)dλ+(v+)dλ−(v−)dt

=

(∫

S1

ψ+(v+)dλ+(v+)

)
.

(∫

S1

ψ−(v−)dλ−(v−)

)

=

(∫

S1

ψ+(v+)dλ+(v+)

)
.

(∫

S1

∫

S1

∫ 1

0

ψ−(v−)dλ−(v−)dλ+(v+)dt

)

=

(∫

S1

ψ+(v+)dλ+(v+)

)
.

(∫

S1

∫

S1

∫ 1

0

f−(v)dL(v)

)

=

(∫

S1

ψ+(v+)dλ+(v+)

)
.

(∫

S1

∫

S1

∫ 1

0

f+(v)dL(v)

)

=

(∫

S1

ψ+(v+)dλ+(v+)

)
.

(∫

S1

ψ+(v+)dλ+(v+)

)

=

(∫

S1

ψ+(v+)dλ+(v+)

)2

The equality case in Cauchy-Schwarz inequality implies that ψ+ is constant λ+

almost surely, equal say to a constant c+. (Similarly, ψ− is constant λ−-almost
surely.) Therefore, as L is equivalent to λ− × λ+ × dt, the set of vectors such that
f∞ = c+ is of full L-measure. It proves that the geodesic flow is ergodic.

Theorem 3.3 (Hedlund, 1936 [Hed39]). Let S be a finite volume surface. The
Liouville measure is ergodic w.r.t. the horocyclic flow.

Proof. We follow verbatim [Cou13], whose argument is inspired from [Tho95]. Let
F ∈ L2(T 1S,L) be a (hs)-invariant map. The goal of the proof is to prove that F
is invariant under the geodesic flow. The ergodicity of the geodesic flow w.r.t. the
Liouville measure concludes the argument.

We want to see that F is almost surely invariant under the geodesic flow. The
key point is that by doing alternatively long travels along stable horocycles and
short travels along unstable horocycles, starting from a vector v, one can come
back to some gtv. Moreover, given a fixed t, we have enough flexibility to make
the travels along unstable horocycles as short as we want, and get this almost sure
invariance.

More precisely, for s > 0 and ε > 0, check that the following relation holds.
(

1 0
−ε
S 1

)(
1 S−1

ε
0 1

)(
1 0
ε 1

)(
1 1/S−1

ε
0 1

)
=

(
S 0
0 1/S

)

Denote by (hs) the stable horocyclic flow, and (hsu)s∈R the unstable horocyclic
flow. Now use the invariance of F under (hs) and the invariance of L under both

13



v

v
−

v
+

Figure 12: Ergodicity of the horocyclic flow

flow, and observe that

‖F ◦ g2 lnS − F‖2L2 = ‖F ◦ h
S−1

−1

ε ◦ hεu ◦ h
S−1

ε ◦ u−
ε
S − F‖22

≤ ‖F ◦ hεu ◦ h
S−1

ε ◦ u−
ε
S − F ◦ h

S−1

ε ◦ u−
ε
S ‖22 + ‖F ◦ h

S−1

ε ◦ u−
ε
S − F‖22

= ‖F ◦ hεu − F‖22 + ‖F ◦ u−
ε
S − F‖22

Let ε go to 0 to get that F ◦ g2 lnS = F L-almost surely.

A measure µ invariant under the geodesic flow is mixing if for all borel sets A
and B, one has

µ(A ∩ gtB) → µ(A)µ(B) .

Equivalently, it is mixing iff for all f ∈ L2(T 1S,L), the sequence (f◦gt)t≥0 converges
weakly towards a constant.

Theorem 3.4 (Hedlund, 1936 [Hed39]). Let S be a finite volume surface. The
Liouville measure is mixing w.r.t. the geodesic flow.

Proof. We follow the arguments of [Cou07], see also [Cou08], who proves that all
weak accumulation values of (f ◦ gt)t≥0 are invariant under the stable and unstable
horocyclic flow. Therefore, they are constant by ergodicity of this flow.

Let us show this invariance property. Assume that f is a bounded lipschitz
function. Consider a sequence Tk such that f ◦ gTk weakly converges to a certain
map f∞ ∈ L2. There exists a subsequence Tki

such that 1
N

∑N
i=1 f ◦ g

Tki converges

in L2 towards f∞. And up to taking a subsequence Nj,
1
Nj

∑Nj

i=1 f ◦ g
Tki converges

almost surely towards f∞.
For all v ∈ T 1S and w ∈ (hsv)s∈R such that this convergence holds, we have

∣∣∣∣∣∣
1

Nj

Nj∑

i=1

f ◦ gTki v −

Nj∑

i=1

f ◦ gTkiw

∣∣∣∣∣∣
≤

C

Nj

Nj∑

i=0

d(gTki v, gTkiw) → 0 whenNj → +∞ .

This proves that f∞ is invariant under the horocyclic flow.
The ergodicity of the horocyclic flow concludes the proof for lipschitz functions,

and a density argument of lipschitz functions in L2(T 1S,L) concludes the proof.

Refinements of these arguments lead to the following theorem.

Theorem 3.5 (Babillot, [Bab02]). Let M be a negatively curved manifold. The
length spectrum is nonarithmetic iff all invariant measures under the geodesic flow
that have a product structure are mixing.
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3.3 Unique ergodicity of the horocyclic flow

A corollary of the mixing is the following classical result.

Corollary 3.6. Let S be a finite volume hyperbolic surface. Let ϕ : T 1S → R be a
continuous map with compact support. Then for all v ∈ T 1S, one has

1

2

∫ 1

−1

ϕ ◦ g−t(hsv) ds →
1

L(T 1S)

∫

T 1S

ϕdL .

Proof. The idea is simply to thicken slightly the set {hsv, |s| ≤ 1} in the weak
unstable direction into a relatively compact neighbourhood Uv of v. Pushing by
the geodesic flow in negative time does not expand the weak unstable direction,
so that the error due to thickening will not increase when t goes to infinity, and∫ 1

−1
ϕ ◦ g−t(hsv) ds stays close from

∫
ϕ ◦ g−t(w).1Uv

(w) dL(w). Now, the mixing

property ensures that this last quantity converges to 1
L(T 1S)

(∫
T 1S

ϕdL
)
× L(Uv).

It remains to let the size of the thickening go to 0 to get the desired result.

Remark 3.7. It is important to notice that once again, we did not use many
assumptions, and in particular neither the fact that the Liouville measure is the
Liouville measure nor the dimension 2 or the finiteness of volume or constant cur-
vature assumption. We only used that we have a finite invariant mixing measure
with a product structure (with continuous density).

Remark 3.8. Using similar arguments, it is possible to show that the family of

maps v 7→
∫ 1

−1
ϕ ◦ g−t(hsv) ds is equicontinuous in t ≥ 0, so that the above conver-

gence is uniform on compact sets.

Let us deduce from the above result the unique ergodicity of the horocyclic flow
in the compact case (theorem 1.6).

Proof. Observe the following fundamental relation. For all t, s ∈ R, we have

gt ◦ hs = hse
−t

◦ gt (1)

This relation, easy to check on matrices of PSL(2,R), means geometrically that
the geodesic flow contracts exponentially the stable manifolds.

We deduce that (g−thsv)|s|≤1 = (hsg−tv)|s|≤et .
As a corollary, one can check that

1

2

∫ 1

−1

ϕ ◦ g−thsv ds =
1

2et

∫ et

−et
ϕ ◦ hs(g−tv) ds .

By the above corollary, the left term converges to 1
L(T 1S)

∫
T 1S

ϕdL, and by remark

3.8, this convergence is uniform on T 1S.

It implies that the averages
∫ et

−et
ϕ ◦ hs(w) ds converge towards the same limit

when t→ +∞, uniformly in t ≥ 0. It is the desired result, by exercise 1.5 .

3.4 The finite volume case

In the finite volume case, there is no uniform convergence anymore in Corollary
3.6. Therefore, one cannot deduce so easily the equidistribution of all orbits of the
horocyclic flow.

However, it is possible to refine the argument to obtain the uniqueness of an
invariant measure supported by the nonperiodic horocyclic orbits, and therefore
the fact that the Liouville measure and the periodic measures are the only invariant
ergodic measures.
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3.4.1 About the proof of unique ergodicity

We follow the argument of Coudène [Cou09]. Roblin [Rob03] proved the same result
in a more general context.

Observe that corollary 3.6 and remark 3.8 still hold on finite volume surfaces, so

that the averages 1
2

∫ 1

−1 ϕ◦ g−t(hsv) ds converge uniformly on compact sets towards
1

L(T 1S)

∫
T 1S ϕdL.

Let µ be an (hs)-invariant ergodic probability measure, which gives zero measure
to the set of (hs)-periodic vectors. It is equivalent to say that for µ-almost all
v ∈ T 1S, there is a sequence tk → +∞ such that gtkv converges to some w ∈
T 1S. Choose such a vector v which is moreover generic for µ, that is satisfies the
conclusion of Birkhoff theorem. For all ϕ : T 1S → R continuous with compact
support, we have 1

2t

∫ t

−t ϕ(h
sv) ds →

∫
ϕdµ.

Let K ⊂ T 1S be a compact set containing the sequence gtkv and its limit

w. The averages 1
2

∫ 1

−1
ϕ ◦ g−t(hsw) ds converge uniformly in w ∈ K towards

1
L(T 1S)

∫
T 1S

ϕdL. In particular,

1

2tk

∫ tk

−tk

ϕ(hsv) ds =
1

2

∫ 1

−1

ϕ ◦ g−tk(hsgtkv) ds

converges uniformly to 1
L(T 1S)

∫
T 1S

ϕdL. As 1
2t

∫ t

−t
ϕ(hsv) ds →

∫
ϕdµ, we deduce

immediately that µ is the normalized Liouville measure.

To deduce the equidistribution of nonperiodic horocycles towards the Liouville
measure, one needs additional ingredients.

3.4.2 Nondivergence of horocycles

Theorem 3.9 (Dani [Dan84] ). Let S be a finite volume hyperbolic surface. For
all ε > 0 there exists a compact K ⊂ T 1S such that for all v ∈ T 1S nonperiodic
vectors (w.r.t. the horocyclic flow), there exists Tv,ε such that for all t ≥ Tv,ε, the
proportion of time spent by (hsv)0≤s≤t in K is at least 1− ε:

1

t

∫ t

0

1K(hsv) ds ≥ 1− ε .

This theorem ensures that all accumulation points of the family of measures
1
t

∫ t

0
δhsv ds are probability measures.
Let us prove Theorem 3.9. For the sake of simplicity assume that there exists

only one cusp on S. On H this cusp cutted at an arbitrary initial height lifts to an
infinite family of disjoint horoballs, centered at parabolic points.

Denote by K0 the set of vectors based outside the cusp C0. Denote by CN the
cusp cutted at a height N compared to C0. Denote by KN the set of vectors based
outside CN . let γiC̃0 and γiC̃N be the collection of lifts of C0 and CN .

Consider v ∈ K0 a nonperiodic vector (for the horocyclic flow). Observe that
the proportion of time spent by (hsv)0≤s≤t in KN is greater than the time spent
by (hsv) in KN \K0 divided by the time spent by (hsv) outside K0

To obtain a small upper bound of the proportion of time spent by the orbit out-
sideKN , it is enough to consider each horodisk of H separately. And to observe that
the amount of time spent by a horocycle in some γiC̃N compared to the amount of
time spent in γiC̃0 is exponentially small, uniformly in the horocycle, and therefore
in v. It concludes the proof of theorem 3.9.
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Figure 13: A cusp and corresponding horoball on the universal cover

3.4.3 Conclusion of the proof

A final argument shows that these accumulation measures give zero mass to periodic
orbits of the horocyclic flow.

Consider now a fixed continuous map ϕ : T 1S → R with compact support, and
the ergodic averages 1

t

∫ t

0 ϕ(h
sv) ds, for some vector v ∈ T 1S which is nonperiodic.

We aim to show that it converges to 1
L(T 1S)

∫
T 1S ϕdL.

By theorem 3.9, all accumulation values of the sequence 1
t

∫ t

0
δhsv ds are proba-

bility measures. (See exercise 3.2.)
To deduce the equidistribution of horocycles from the classification of invariant

measures and the nondivergence theorem 3.9, it remains to show that any limit
measure µ of the family 1

t

∫ t

0 δhsv ds gives zero measure to the set of periodic vectors

for the horocyclic flow. Let µ = limtk→+∞
1
tk

∫ tk
0 δhsv ds

Remember that a vector v ∈ T 1S is periodic for the horocyclic flow iff gtv goes
to infinity when t→ +∞.

Assume by contradiction that there exists a compact subset of this set of periodic
horocyclic vectors with µ(Q) ≥ α > 0. For ε = α/4, let Kε be the compact given
by theorem 3.9. By the above, one can find some T0 > 0 such that for all t ≥ T0,
gtQ does not intersect Kε. For some T1 ≥ T0 and all tk ≥ T1, we have

1

tk

∫ tk

0

1Q(h
sv) ds ≥

α

2
.

But we also have

1

tk

∫ tk

0

1Q(h
sv) ds =

1

tke−T0

∫ tke
−T0

0

1gT0Q(h
sgT0v) ds

The left term is at least α/2 whereas the right term, for tk large enough, is less than
ε. It is a contradiction, which allows to conclude the proof of theorem 1.8.

3.5 Geometrically finite case

A geometrically finite hyperbolic surface has finitely many ends, that are cusps or
funnels. The interesting geodesics are those which come back infinitely often in a
compact set. They are exactly those which never enter a funnel. Heuristically the
dynamics is the same as on the unit tangent bundle of finite volume surfaces. How-
ever, it is supported on a Cantor set of Liouville measure zero, and the Liouville
measure is no more ergodic. Moreover, the nonwandering set of the horocyclic flow
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contains properly the nonwandering set of the geodesic flow.

These technical difficulties do not change the flavour of the results, just the
length of the proofs.

3.5.1 The Patterson-Sullivan construction

Choose a point o ∈ H. The Poincaré series
∑

γ∈Γ e
−sd(o,γ.o) converges for s > δΓ

and diverges for s < δΓ, where the critical exponent δΓ satisfies (exercise)

δΓ = lim
T→+∞

#{γ ∈ Γ, d(o, γ.o) ∈ [T, T + 1[}

Consider the family of finite measures on Γ.o defined by

νx,s =
1

P (o, s)

∑

γ∈Γ

e−sd(x,γ.o)δγ.o

For all x ∈ H, when s decreases to δΓ, up to considering subsequences, we can
assume that it converges. Even more, thanks to a trick due to Patterson, one can
assume that the limit νx is supported in the boundary S1 = ∂H, and therefore in
ΛΓ.

Theorem 3.10 (Patterson, Sullivan). When S is a geometrically finite hyperbolic
surface, the above sequences converge to a family of measures (νx)x∈H of measures
supported in Λrad(Γ) and ergodic for the action of Γ on S1.

Moreover, this family (νx) satisfies for all γ ∈ Γ and x, y ∈ H, γ∗νx = νγx and
for νx-almost all ξ ∈ S1, dνx

dνy
(ξ) = exp(δΓβξ(x, y)).

The measure νo is the Hausdorff measure of the radial limit set for the visual
distance on S1 viewed from the point o.

Therefore, the measures (νx) are the good measures to play the role on ΛΓ of
the Lebesgue measures (λx) viewed from x on the circle S1.

Now, define the measure

dm̃(v) = exp(δΓβv+(o, π(v)) + δΓβv−(o, π(v)))dνo(v
−)dνo(v

+)dt .

This measure does not depend on the point o (exercise: check it), is invariant under
the action of Γ (check it) and under the geodesic flow (by construction). Therefore
it induces on the quotient on T 1S an invariant Radon measure for the horocyclic
flow. In constant curvature, this measure is finite (Sullivan). The Hopf argument
shows that it is ergodic, and even mixing ([Rud82], [Bab02], [Rob03]) One can show
that it is the measure of maximal entropy of the geodesic flow (δΓ).

3.5.2 The Burger-Roblin measure

This measure is not invariant under the horocyclic flow. Indeed, call µHs(v) the
conditional measure of the Bowen-Margulis measure on the strong stable horocycles.
This measure can be written as

dµHs(v)(w) = exp(δΓβw−(o, π(w)))dνo(w
−)

It is supported by a Cantor subset of the horocycle (hsv)s∈R and more precisely by
the set of vectors w = hsv such that w− ∈ ΛΓ. Therefore, it can not be invariant
under the horocyclic flow.
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Figure 14: A chart of the horocyclic foliation

To get an invariant measure under the horocyclic flow, it is enough to replace
these conditional measures by the Lebesgue measure induced by the parametriza-
tion of horocyclic flow.

The measure that we obtain is now called the Burger-Roblin measure, and can
be written as

dmBR(v) = exp(δΓβv+(o, π(v)) + βv−(o, π(v))dλo(v
−)dνo(v

+)dt .

It is well defined and Γ-invariant on T 1H so that it induces a measure on T 1S, which
is invariant under (hs) (exercise), quasi-invariant under (gt). But it is infinite.

However, one can show the following results.

Theorem 3.11 (Burger, Roblin). The measure mBR is the unique invariant Radon
measure for (hs) giving zero measure to the periodic orbits of (hs).

Let us refer to [Sch15] for a proof of this Theorem using Coudene’s argument,
extended to this infinite volume situation.

Theorem 3.12 (Maucourant-Schapira [MS14]). Let S be a geometrically finite
hyperbolic surface. Let v ∈ EΓ be a nonwandering nonperiodic vector for (hs). For
all continuous maps ϕ : T 1S → R with compact support, we have

∫ t

−t

ϕ(hsv) ds ∼t→+∞ µHs(v)((h
sv)|s|≤t).

∫

T 1S

ϕdmBR .

Moreover, the quantity µHs(v)((h
sv)|s|≤t) is (uniformly) comparable to tδΓ when gln tv

belongs to the compact part K of the manifold, and is comparable to tδΓ .e(1−δΓ)d(g
ln tv,K)

when gln tv does not belong to K.

One has to deal with the two measures mBM and mBR, one of them being
invariant under (gt) and the other under (hs). However, the strategy remains the
same.

3.5.3 Equidistribution of horocycles towards the Bowen-Margulis mea-

sure

The mixing of the geodesic flow allows to prove the following theorem of equidistri-
bution pushed by the geodesic flow

Theorem 3.13 (Babillot, Roblin). Let S be a geometrically finite surface, v ∈ EΓ a
nonwandering vector wrt the horocyclic flow and ϕ a continuous map with compact
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support. Then we have

∫ 1

0

ϕ ◦ g−t(hsv) ds→

∫
ϕdmBM

when t→ +∞.

From this equidistribution pushed by the geodesic flow, and from theorem 3.11,
one can deduce the equidistribution of horocycles parametrized by (µHs(v)), thanks
to a nondivergence result.

Theorem 3.14 (S. 2004 [Sch04]). Let S be a geometrically finite surface. For all
ε > 0 there exists a compact Kε such that for all v ∈ EΓ, there exists Tv,ε such that
for t ≥ Tv,ε,

1

µHs(v)({hsv, |s| ≤ t})

∫

{hsv,|s|≤t}

1Kε
dµHs(v) ≥ 1− ε .

This theorem can be proven thanks to a refinement of the so-called Sullivan
Shadow lemma, also due to the author. Using theorem 3.11 one deduces as in the
finite volume case the following result.

Theorem 3.15 (S. 2005[Sch05] ). Let S be a geometrically finite surface. For all
v ∈ EΓ, and ϕ : T 1S → R continuous with compact support, the averages of ϕ along
(hsv) wrt µHs(v) become equidistributed towards the Bowen-Margulis measure. More
precisely,

1

µHs(v)({hsv, |s| ≤ t})

∫

{hsv,|s|≤t}

ϕdµHs(v) →

∫
ϕdmBM when t→ +∞

Now, the proof of theorem 3.12 follows by changing the parametrization of the
horocycles, observing that the convergence in the above theorem implies a transver-
sal equidistribution of the intersections of (hsv) with any transversal manifold, and
that this transverse equidistribution implies theorem 3.12.

3.6 Geometrically infinite surfaces

We restricted our study to surfaces whose ends are finitely many, and easy to un-
derstand.

On reasonable geometrically infinite surfaces (when they admit a decomposition
in pairs of pants with bounded diameters), Sarig [Sar04] proved that all nontrivial
(i.e. nonperiodic) ergodic invariant measures under the horocyclic flow are quasi-
invariant under the geodesic flow, and in 1− 1 correspondance with positive eigen-
functions of the Laplace-Beltrami operator on S. This result largely generalizes
a result due to Babillot in the case of a nilpotent cover of a compact hyperbolic
surface.

On abelian covers of compact hyperbolic surfaces, the set of ergodic invariant
measures for the horocyclic flow is completely understood, and in 1 − 1 correspon-
dance with the set of asymptotic cycles, i.e. asymptotic speed of escape of a geodesic
(gtv) in the cover group.

These results ”show” that, heuristically, the ergodic components of the horo-
cyclic flow are in 1 − 1 correspondance with the different ways for a geodesic to
escape to infinity.
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3.7 Exercises

Exercise 3.1. Consider the horoballs H0 = {z ∈ H,ℑ(z) ≥ 1} and HN = {z ∈
H,ℑ(z) ≥ eN}. Consider a horocycle centered on the real line and prove that the
time spent by this horocycle in HN is exponentially small (in N) compared to the
time spent in H0.

Exercise 3.2. Let T : X → X be a homeomorphism of a noncompact topological
space. Assume that the sequence µx,N = 1

N

∑N−1
k=0 δTkx is tight: for all ε > 0, there

exists a compact Kx,ε such that for all N ≥ 0, µx,N(Kx,ε) ≥ 1− ε.
Show that all limit measures of the sequence (µx,N ) are probability measures.
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Enseign. Math., vol. 43, Enseignement Math., Geneva, 2013, pp. 13–24.
MR 3220549

[Dal99] Françoise Dal’bo, Remarques sur le spectre des longueurs d’une surface et
comptages, Bol. Soc. Brasil. Mat. (N.S.) 30 (1999), no. 2, 199–221. MR
1703039

[Dal00] , Topologie du feuilletage fortement stable, Ann. Inst. Fourier
(Grenoble) 50 (2000), no. 3, 981–993. MR 1779902

[Dal11] Françoise Dal’Bo, Geodesic and horocyclic trajectories, Universitext,
Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011,
Translated from the 2007 French original. MR 2766419

[Dan78] S. G. Dani, Invariant measures of horospherical flows on noncompact ho-
mogeneous spaces, Invent. Math. 47 (1978), no. 2, 101–138. MR 0578655
(58 #28260)

[Dan84] , On orbits of unipotent flows on homogeneous spaces, Ergodic The-
ory Dynam. Systems 4 (1984), no. 1, 25–34. MR 758891

21



[Ebe72] Patrick Eberlein, Geodesic flows on negatively curved manifolds. I, Ann.
of Math. (2) 95 (1972), 492–510. MR 0310926

[EW11] Manfred Einsiedler and Thomas Ward, Ergodic theory with a view towards
number theory, Graduate Texts in Mathematics, vol. 259, Springer-Verlag
London, Ltd., London, 2011. MR 2723325

[Hed39] Gustav A. Hedlund, Fuchsian groups and mixtures, Ann. of Math. (2) 40
(1939), no. 2, 370–383. MR 1503464

[Hop71] Eberhard Hopf, Ergodic theory and the geodesic flow on surfaces of con-
stant negative curvature, Bull. Amer. Math. Soc. 77 (1971), 863–877. MR
0284564

[MS14] François Maucourant and Barbara Schapira, Distribution of orbits in R2

of a finitely generated group of SL(2,R), Amer. J. Math. 136 (2014), no. 6,
1497–1542. MR 3282979
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