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Introduction
Because of the growing importance of dose-finding trials, 

we aim to address the problem of dose selection in clinical 
development with the point of view of utility functions [1-8] and 
utility maximization. The topics of dose selection and also of dose-
finding studies are studied in their various aspects: decision rules, 
study designs (fixed versus adaptive designs) and statistical analysis 
methodology. The objective of this paper is to propose and study a 
Bayesian decision-making framework based on a utility function 
explicitly accounting for efficacy and safety modelling, where safety 
could be characterized by the absence of Adverse Events (AEs) for 
instance, and to assess related decision rules. This utility function is 
suitable and relevant with respect to the decisions the sponsor has 
to make: design the phase II trial, define the timing of the interim 
analysis, decide to continue in phase III or not and choose the dose 
for phase III when relevant.

For conducting the analysis and identifying the optimal dose, we 
advocate for the use of a Bayesian method, instead of a frequentist 
maximum likelihood approach, because it has the advantage of 
providing a richer set of dose selection rules aiming at choosing the 
best dose among the tested ones in phase II. Moreover, by definition 
of the Bayesian approach, it allows the sponsor to use external 
information already available.

Material and methods section is devoted to the mathematical 
formalization of the dose-response modelling approach, the defini-
tion  of  our   proposed utility function and each of its components, 
the decision-making framework including the sponsor’s strategies 
to choose the optimal dose, the Go/NoGo decision rules, the relative 
utility loss criterion to make recommendations on phase II sample 
size, and the decision criteria/rules to stop at the interim analysis. 
At the end of this section, we describe our simulation protocol and 
our chosen simulation scenarios. In the Results section, we perform 
simulation analyses, comparing the proposed decision rules for 
dose selection. The selection of doses (number and spacing) is also 
discussed in terms of sensitivity of the framework to such aspects; 
the properties of the operating characteristics in this respect are 
explored. On the other hand, we assess, through simulations, the 
influence of phase II sample size, based on the relative utility loss 
criterion, and we compare different (fixed, adaptive) designs based 
on the suggested stopping criteria for interim analysis. This section 
is complemented by an analysis example based on a real dose-find-
ing study. Finally, the Discussion and Conclusions section consists 
in summarizing our decision-making framework (decision rules for 
dose selection, and decision criteria for phase II recommendations 
and interim analysis).
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Abstract 
Aspects related to dose-finding trials are of major importance in clinical development. Poor dose selection has been recognized as a key driver of 

failures in late phase development programs and postponements in drug approvals. The aim of this paper is to develop a flexible utility-based dose 
selection framework for phase II dose-finding studies that has satisfactory operating characteristics. This framework also allows to plan interim 
analyses with stopping rules that can be easily defined and interpreted by the clinical team within this same framework.
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Material and Methods
In this section, we delineate the common materials and methods 

applied to the work contained within this paper. We specifically 
describe the mathematical formalization of a phase II/phase III 
development program, aiming to define all necessary notations 
and calculations related to the dose-response modelling of efficacy 
and safety, to the Probability of Success (PoS), to the decision rules 
regarding the choice of the optimal dose, Go/No decisions, phase 
II sample size recommendations and interim analysis, and to the 
simulation protocol/scenarios. Note that ’Success’ is defined as 
significant comparison of the selected dose versus placebo in the 
phase III trial. Therefore, the PoS is, in our setting, the power of the 
phase III trial.

Dose-response modelling

In this paper, we model efficacy through a three-parameter Emax 
model [9-11], and safety through a Probit model, both described 
thereafter. A placebo and K active doses are considered, where a 
dose is denoted by d. The random efficacy response of patient i is 
represented by Yd,i, with i = 1, ..., nd, where nd is the number of patients 
for the dose d in phase II study; this random response is assumed 
to follow a Normal distribution ( )( )2; ,N m d θ σ where ( );m d θ is the 
expected mean effect of dose d, and σ  is the residual variability 
(standard deviation of residual error) assumed to be known. The 
empirical mean responses in dose d and placebo are denoted by 

dϒ  and 0ϒ  respectively, and we note ( )d∆  the difference of the 
two. Phase II and phase III sample size are respectively denoted by 
N2 and N3, where N3 is fixed and equal to 1000.

Regarding the modelling of efficacy, we used the following 
three-parameter Emax model: ( ) ( )2

1 1 2 3 1 0
3

; , , , wheretdm d E
d

θθ θ θ θ θ θ θ
θ

×
= + = =

′+
is the placebo effect, 2 maxEθ =  is the maximum effect compared with 
placebo and 3 50EDθ =  is the dose with half of the maximum effect.

Regarding the modelling of safety, we used the 
following Probit model: ( ) ( )1 21| , ,W d dλ λ λΡ = = Φ + ×  

( )1 2 1 2, , , ,t where a b Wλ λ λ λ λ= = =  is the binary toxicity outcome 
for one patient, 1 for occurrence of at least one Adverse Event (AE) 
and 0 for absence of AE, and Φ  is the Cumulative Distribution 
Function (CDF) of the standard normal distribution.

Utility function

Utility functions, defined as the opposite of loss functions [12], 
are generally introduced within the decision theory framework 
[13]. Utility describes the preferences of the “decision maker” and 
classifies/orders decisions. A decision theory result suggests that, 
in a risky environment, all decision rules can be compared and 
classified using the expectation of a given utility function. When 
conducting a clinical trial, there is an alternation of decisions 
(choice of doses, sample size, etc.) and observation of random data 
(as in patients responses). The multitude of these possible cases 
can be translated into utility functions to be defined according to 
expectations and goals. Dose optimality can be formalized thanks 
to such functions, representing the benefits of the stage 2 and the 
final dose recommendation.

In this paper, we preferred to focus on utility functions only 
defined by medical/clinical properties of the compound as we 
believe that costs, and more importantly, financial reward (in case 
of successful development) are difficult to precisely quantify in 
phase II. Therefore, we propose a straightforward and workable 
definition of the utility function, with two components, one related 
to efficacy and the other related to safety. The PoS (which is the 
power of a phase III trial with a fixed sample size) represents the 
dose efficacy and can be computed using standard calculations. For 
the case of a balanced phase II trial:   

Let ( ) 0dd∆ = ϒ − ϒ . Efficacy is tested as: ( )
2

,
2

d
Z

SE

∆
= with 

( )2 2 2
3 3/ / 2 2 /SE N Nσ σ= =  at level α .

Assuming ( ) ( )( ) ( ) ( ); 0; ,d E d m d mθ θ∆ = ∆ = −  the power 
results in:

 ( ) ( ) ( )
1 1 1 2

, 1
2

H

d
PoS d Z z z

SE
α αθ − −

 ∆
= Ρ ≥ = −Φ − 

 
.

On the other hand, we chose to express safety according to the 
probability of observing a toxicity rate lower than or equal to a 
thresholds   in  the dose arm, during a phase III trial of  N3 patients 
in total: the number of patients having an AE in the phase III trial is 
a binomial distribution of parameters N3/2 and ( )1| , ;W d λΡ =  the 
quantity obstox  is the observed proportion of patients having AEs in 
phase III, ( ) ( ) ( )( )3# with AEs / / 2 ; ,obs obstox patients N tox d sλ= Ρ ≤  
is then the predictive probability of controlling over-toxicity (due to 
AEs), i.e. the predictive probability of observing a toxicity rate s≤  
in phase III. Note that in practice, the choice of the s value should 
depend on the clinical team project and the related therapeutic 
area.

We considered then utility functions of the following form:

 ( ) ( ) ( )( ), , , ,
kh

obsU d PoS d tox d sθ λ θ λ= ×Ρ ≤ . 

Parameters h and k reflect the respective contributions 
of efficacy and safety to the utility function. They are project 
dependent and must be chosen according to the context. For 
instance, for a rare disease indication for which there is a clear 
unmet medical need, there should be less constraint on safety: 
therefore low values of k should be chosen. On the contrary, for a 
very competitive therapeutic area, more constraint should be put on 
the safety side, therefore large values of k should be chosen. There 
are several ways to combine the efficacy and safety components: 
an additive approach, of the form U=Efficacy component + Safety 
component, could be used as well. We have chosen a multiplicative 
form because, according to us, it leaves less room for compensation 
of the weakness in one of the two components by the other one.

For the sake of simplicity, and in order to facilitate the reading, 
in the following of the paper, we will drop the parameters in the 
notations of the quantities of interest when there is no ambiguity. For 
instance, we will note ( )PoS d  instead of ( ),PoS d θ , ( )( )obstox dΡ  
instead of ( )( ) ( ), ,obstox d U dλΡ  instead of ( ), ,U d θ λ , etc.

We use a MCMC approach [14,15], particularly a Metropolis 
Hastings algorithm to capture the posterior of the PoS for the 
purpose of dose selection. Samples from the posterior of the PoS 
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can be obtained from MCMC iterations:
 ( ) ( ) ( )( )( )2 2; 0; 1.96 2 / 2 ,j j jPoS d m d m SE SEθ θ= Φ − − ×

 

where 
jθ


 is the point estimate of the vector of efficacy 
model parameters θ  obtained at iteration j. The same procedure 
is implemented to estimate the safety model parameters. The 
advantage of Bayesian framework over a purely frequentist 
approach lies in its ability to account for the uncertainty in 
parameter values in the decisional process and also, in allowing 
greater flexibility in the definition of the decision rules.

Decision-Making Framework

Sponsor’s strategy: Optimal dose and decision rules

In the following, we compare various decision rules related to 
the choice of dose by the sponsor. We consider five decision rules 
that are described thereafter. Note that 1000 phase II studies are 
simulated, each study contains 1000 MCMC iterations.

For each study, the sponsor makes two decisions regarding the 
fixed design:

Dose selection: the sponsor chooses the optimal dose d* 
according to one of the decision rules discussed in the following: 
Decision rule 1, Decision rule 1*, Decision rule 2, Decision rule 3 
and Decision rule 4.

Go/ NoGo decision: the sponsor computes the average of PoSs 
and the average of the toxicity probabilities for the recommended 
dose d* among all MCMC iterations denoted by:

( )( ) ( )( )( )* *andMCMC MCMC obsmean PoS d mean tox d sΡ ≤

 respectively.

The ’Go’ for phase III is then decided if these averages pass 
prefixed efficacy and toxicity thresholds denoted by threshold.
eff2 and threshold.safe2, respectively. In other words, the sponsor 
chooses ’Go’ if:

( )( )* . 2MCMCmean PoS d thershold eff>  
         and

( )( )( )* . 2MCMC obsmean tox d s thershold safeΡ ≤ >

This decision-making described above is applied at the study 
level (efficacy and safety constraints are applied for each simulated 
phase II study). A more restrictive approach would be to apply 
constraints at the MCMC level, in addition to the ones applied at the 
study level (for each MCMC iteration, efficacy and safety constraints 
are applied, in a similar way to those applied for each study). 
This alternative strategy (referred to as “Decision rule 1*” in the 
following) is described thereafter.

Comparisons of several decision rules

The aim is to compare various decision rules, through 
simulations, and visualize their performances through the relative 
utility loss (defined below) graph (see Figure 2 and Table 1). To 
do so, we will work on the decision rule of the sponsor (choice 
of dose), by comparing simulation results with different possible 

alternatives:

•	 Decision rule 1: dose that has the greatest probability of 
being the best is selected

•	 Decision rule 1*: dose that has the greatest probability of 
being the best, with additional constraints at the MCMC 
level (modified version of Decision rule 1, see discussion 
below), is selected

•	 Decision rule 2: dose that maximizes ( )MCMCE U  is selected

•	 Decision rule 3: dose that maximizes ( )( )MCMCU E parameter  
is selected

•	 Decision rule 4: dose that maximizes ( )( )MCMCU Median parameter  
is selected

Decision rule 1* is a slightly different version of Decision rule 
1; it is defined as follows: the main idea is the same, selecting the 
dose that is the most likely (according to posterior distribution) to 
be the optimal dose, but the implementation is slightly different. 
In order to avoid that the selected dose although having likely the 
highest utility has at the same time either a too low PoS or a too 
high probability to have an observed toxicity rate > s, we modified 
the dose selection algorithm. We selected the dose with highest 
probability to be the optimal one with respect to a modified utility 
denoted by U ′ . This latter utility U ′  has the same values than U, 
but is set to 0 when the PoS is either lower to a given threshold 
(threshold.eff1) or when the probability of having an observed 
toxicity ≤ s is lower than another threshold (threshold.safe1). These 
thresholds are applied at the MCMC level. In other words, this 
modified utility function can be defined, at each MCMC iteration, 
as follows:

By applying efficacy and safety rules (at both MCMC and study 
levels), the sponsor is more restrictive regarding the dose choices.

We have chosen the relative utility loss as a metric to rank 
these five decision rules proposed above; it is defined as the 
difference between the expectation of the utility induced by 
the considered decision rule and the maximum true utility 
value within the K doses, named Umax, divided by this same 
maximal value Umax. It enables to characterize the quality of the 
decision rule, through its relative proximity to the ideal best 
decision rule (always select the optimal dose). It can be defined 
as follows: ( )max

max

,
U E U

U
−  where ( )E U  is the Umax empirical utility  

expectation of the chosen dose d* for the 1000 simulated phase II 
trials.

Influence of phase II sample size - sample size 
recommendations

In the following, we propose a criterion allowing to choose the 
sample size of phase II: we will discuss the necessary sample size 
according to a utility criteria (and not according to power criteria 
as usually done). For instance, the sample size would be defined as 
follows: “if the profiles of efficacy and safety are of such type then X 

( ) ( ) ( )if PoS> . 1and . 1
0 otherwise

obsU d thershold eff tox s thershold safe
U d

Ρ ≤ >′ = 
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patients are required in phase II to have 90% of the maximal utility. 
If the efficacy and safety profiles are of another type then it takes Y 
patients in phase II to have 90% of the maximal utility”.

This necessary sample size obviously depends on the profile 
that is unknown, but this is common practice; in order to have more 
robustness for the power calculations, several alternative scenarios 
are assessed or, more recently (see [16]), prior distribution are 
considered for ∆  and σ  in order to have some Bayesian-averaged 
sample size calculation. A very similar approach can be used with 
the new methodology we propose: in the simulation-based sample 
size calculation, instead of simulating studies with the same 
hypothesized fixed value of the efficacy and safety parameters, those 
structural parameters could be sampled from prior distribution 
representative of the sponsor’s expectation related to the new drug.

 Our recommendations will be of the same type, even richer 
(assumptions on both efficacy and safety) and the sample size will 
not guarantee a power of 90%, if the assumptions are true, but 90% 
of the maximum utility: this could be a new approach consistent 
with the true objective of the phase II study (recommending a safe 
and active dose for phase III study).

In the Results section, and with Decision rule 1, we apply the 
above criterion allowing to judge whether the phase II sample size 
is sufficient or not. This criterion is based on the importance of the 
relative loss of utility previously defined: one can say that the size N2 
is sufficient if the global estimation of the utility expectation (over 
all simulated phase II studies) reaches 90% (or maybe less, 80% 
for example) of the maximum utility. This gives an idea of necessary 
sample size of phase II. Then we can vary the efficacy and safety 
scenarios and decide which is the necessary sample size of phase 
II according to the efficacy and safety profiles. For each profile, the 
determination of this sample size is based on the relative loss of 
utility graphs, which is plotted for each profile (see Figures 3-6).

We also compare the phase II recommendations based on this 
relative utility loss criterion to their corresponding phase II powers, 
denoted by ( )phaseIIPower d . These powers can be considered 
as reference values allowing to judge the interest of this new 
approach, i.e. of choosing between 80% or 90% of the maximum 
utility. The phase II power is calculated for each dose separately 
versus placebo, for a unilateral test at 5% level. No adjustment for 
multiplicity is performed.

Criteria for interim analysis

A sub-issue of this paper is to perceive if an interim data 
inspection strategy for phase II, when 2 2N N′ <  patients are enrolled, 
can significantly reduce the mean sample size (consequently, 
budget and time as well) while maintaining the properties of the 
design (good decision quality of the dose for the phase III). To 
do so, an adaptive design (with futility and efficacy rules at the 
interim analysis) is compared to a fixed design in order to check the 
usefulness of interim analysis.

In the following, we consider several stopping rules criteria for 
the interim analysis, as well as several threshold values to stop at 

interim analysis.

For a given l value, 0 1l< <  the first stopping rule criterion for 
interim analysis is defined as follows:

stop at interim if 

( ) ( ) ( )* *for all the other doses is the best doesj jU d U d d data l d data l Ρ > ≥ = Ρ ≥  .

The choice of threshold l should be made prudently and should 
guarantee a fair compromise between accuracy of the dose choice, 
and the frequency of early termination at interim.

Another possible criterion for the interim analysis, inspired by 
[17], could be based on the difference of the means or medians of 
the utilities. The idea is to calculate the median or mean for each 
utility / iteration and calculate the median differences between each 
dose d1 and d2 and to check if these differences are at least equal to 
a given value, say X, in favour of a given dose. In other words, a dose 
d2 would dominate another dose d1 and could be preferred, if the 
difference between the two relative utility medians or means is at 
least X, in favour of d2. So we could define these criteria as follows:

• Stop at interim if ( ) ( )( )* dosesE U d U other X− ≥ ;

• Stop at interim if ( )( ) ( )( )* dosesMedian U d Median U other X− ≥ .

Strictly speaking, to justify a dose choice, one could imagine 
the following two domination criteria: a dose d2 would dominate 
another dose d1 and could therefore be preferred if the difference 
between the two means of the utility is at least X in favour of d2, or, 
a dose d2 would dominate another dose d1 and could therefore be 
preferred if the difference between the two medians of the utility is 
at least X in favour of d2. We call these criteria ’Domination criterion 
1’ and ’Domination criterion 2’ respectively.

The decision for the interim analysis, based on the selected 
dose d* (with Decision rule 1 for instance) could then be defined as 
follows: if d dominates all other doses for one of the two domination 
criteria mentioned above, then stop and go to phase III with d*.

We will compare these three stopping rule criteria, via 
simulation, through the following four fixed/adaptives designs:

•	 Design 1: 100 patients in phase II.

•	 Design 2: 500 patients with interim analysis at 100 patients; at 
100 patients, one determines the dose d*:

1. if one of the stopping rule criteria is met at interim  
( ( ) ( )* for all the other doses j jU d U d d data l Ρ > ≥ 

, Domi-
nation criterion 1, or Domination criterion 2), then stop 
the study, and choose the optimal dose d*;

2. otherwise we continue to the final analysis with 500 
patients.

•	 Design 3: 500 patients with interim analysis at 250 patients; at 
250 patients, one determines the dose d*:

1. if one of the stopping rule criteria is met at interim  
( ( ) ( )* for all the other doses j jU d U d d data l Ρ > ≥  , Domi-
nation criterion 1, or Domination criterion 2), then stop 
the study, and choose the optimal dose d*;
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2. otherwise we continue to the final analysis with 500 
patients. Design 4: 500 patients in phase II.

Our aim here is to obtain a simulation-based comparison 
between the following four utility expectations:

E(U(Design 1)), E(U(Design 2)), E(U(Design 3)) and E(U(Design 
4)).

Since the utility increases with the sample size, we know that 
E(U(Design 1)) < E(U(Design 2)) < E(U(Design 3)) < E(U(Design 
4)). But we hope to illustrate that Design 2 or Design 3 leads to 
quite similar expectation as Design 4, even if they are slightly less 
efficient (in terms of expected utility) than the latter one. Moreover, 
for situations where there is a dose that is clearly different/
distinguished from others, we hope to stop often at 100 patients 
or at 250 patients, and these designs will be more economical than 
Design 4.

Regarding futility rules at the interim analysis (i.e. stop at 
interim and ’NoGo’), the same rules are applied as those for the 

fixed design (i.e. ’NoGo’ at interim if ( )( )* . 2MCMCmean PoS d thershold eff>  
and ( )( )( )* . 2MCMC obsmean tox d s thershold safeΡ ≤ > ).

Simulation protocol and scenarios

A placebo denoted by d = 0 and four active doses denoted by d = 
2, 4, 6, 8 are considered (to explore the impact of number of doses 
and dose spacing on the properties of the decision rules, we also 
add a new scenario with only 3 doses in addition to the placebo: d 
= 2, 4, 8). The residual variability σ  is set to the value of 0.5 in the 
simulations. This value has been chosen in order to have, for one 
of our most important scenarios, named ”Sigmoid” (defined in the 
following), an effect size of 0.25 for the highest dose of our design.

We consider weakly informative priors for 1θ  and 3θ , and 
non-informative prior for 2θ : 1θ  follows a standardized Normal 
distribution N(0, 1), 2θ  follows a Normal distribution N(0, 100), and 

3θ  follows a Uniform distribution U[1,10].

The following weakly informative prior distributions for the 
parameters of the Probit model are considered: intercept 1λ  follows 
a Normal distribution N(q0.05, 0.102), where 0.05 1.65q −  is the 
normal distribution quantile which corresponds to 5% of toxicity 
in placebo arm, and dose effect 2λ  follows a Uniform distribution 
U[0, 1].

Concerning the choice of the threshold value related to the 
toxicity component of the utility function, we choose s = 0.15. We 
consider h = 1 and k = 2. Regarding efficacy and safety thresholds, 
we consider threshold.eff1=0.30, threshold.safe1=0.30, threshold.
eff2=0.30 and threshold.safe2=0.50, for both fixed and adaptive 
designs. Regarding interim analysis, we compare simulation results 
for l = 0.80, l = 0.90, X = 0.10 and X = 0.20. All these values should 
be considered as examples rather than recommendations and the 
clinical team should wisely choose those values in practice, based 
on the project and indications.

We consider two main efficacy scenarios assumed to reflect the 
true efficacy dose-response:

•	 Sigmoid scenario: this scenario is monotonic, that is, the 
mean response is strictly increasing as a function of the 
dose; for this scenario, the true efficacy model parameters 
values are: ( )max 50 0, ,E ED E =(0.22, 6, 0).

•	 Plateau scenario: this scenario begins with an almost 
linear growth, followed by an inflection, and then 
stabilizes at the end, which means that the last two doses 
have the same efficacy; for this scenario, the true efficacy 
model parameters values are: ( )max 50 0, ,E ED E =(0.14, 
0.9, 0).

We also consider two main toxicity scenarios assumed to reflect 
the true safety dose-response:

•	 Bad safety profile (scenario with a progressive toxicity); 
for this scenario, the true toxicity model parameters 
values are: (a,b)=(-1.645, 0.100), and the theoretical 
toxicities for doses d = 0, 2, 4, 6, 8 are: 0.05, 0.07, 0.11, 
0.15, 0.20 respectively.

•	 Good safety profile (low toxicity scenario); for this 
scenario, the true toxicity model parameters values 
are: (a,b)=(-1.645, 0.045), and the theoretical toxicities 
for doses d = 0, 2, 4, 6, 8 are: 0.05, 0.06, 0.07, 0.08, 0.10 
respectively.

Results
Comparison of decision rules

In the following, the relative utility loss graph and the 
simulation results are given for Sigmoid scenario with progressive 
toxicity scenario (and toxicity of highest dose = 0.20), for each of 
the decision rules defined in the previous section, see Figure 2 and 
Table 1. A graph displaying the corresponding theoretical curves is 
plotted (see Figure 1), where the black curve represents the PoS, 
the purple curve represents the toxicity probability, the ’Toxicity 
penalty’ red curve represents the probability of observing more 
than 15% of toxicity in phase III, and the green curve represents 
the utility.

Based on Figure 1, the optimal dose is the dose d = 4 and the 
true associated PoS and utility are both approximately equal to 0.8 
(Figure 1).

The relative utility loss functions corresponding to the five 
decision rules we considered are presented in Figure 2. 

In Figure 2, and its related table (Table 1), we can see that 
Decision rule 1, Decision rule 1* and Decision rule 2 are consistently 
better than Decision rule 3 and Decision rule 4 for all values of the 
sample size, but the difference between Decision rule 1, Decision 
rule 1* and Decision rule 2 versus Decision rule 3 and Decision rule 
4 is particularly important for the sample size between 200 and 
400 patients.
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Figure 1: Theoretical curves, Sigmoid scenario with progressive toxicity scenario (and toxicity of highest dose = 0.20).

Figure 2: Relative utility loss graph comparing the five decision rules.

Table 1: Values of the relative utility loss depending on N2.

N2 Decision Rule 1 Decision Rule 1* Decision Rule 2 Decision Rule 3 Decision Rule 4

50 0.58 0.58 0.47 0.62 0.62

100 0.40 0.40 0.37 0.51 0.51

150 0.32 0.32 0.30 0.44 0.45

200 0.27 0.27 0.26 0.40 0.41

250 0.24 0.24 0.22 0.35 0.37

300 0.21 0.22 0.20 0.32 0.33

350 0.19 0.20 0.18 0.30 0.32

400 0.18 0.19 0.17 0.27 0.29
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450 0.17 0.18 0.15 0.25 0.28

500 0.15 0.16 0.14 0.23 0.25

550 0.14 0.15 0.13 0.21 0.24

600 0.13 0.14 0.12 0.20 0.22

650 0.12 0.13 0.12 0.19 0.21

700 0.11 0.12 0.10 0.18 0.20

750 0.10 0.11 0.10 0.16 0.18

800 0.09 0.10 0.09 0.14 0.16

850 0.09 0.10 0.10 0.14 0.16

900 0.08 0.09 0.08 0.14 0.16

950 0.07 0.08 0.07 0.13 0.14

1000 0.07 0.08 0.07 0.12 0.14

The Decision rule 2 is consistently better than Decision rule 1* 
and Decision rule 1, but the difference is small and almost negligible 
for the largest sample size (N2 > 700). However, Decision rule 2 (as 
well as Decision rule 3 and 4) does not take into account uncertainty. 
Here, the uncertainty is the same for all doses due to the balanced 
treatment groups, but in case of an unbalanced design or patients 
dropouts, this property will no longer be valid for Decision rule 2. 
Decision rule 1 or Decision rule 1* will then be more robust and 
more effective. Based on the graph and the table, Decision rule 1 is 
slightly better than Decision rule 1* (Table 1).

In order to confirm these results, we made, in the following, 
a more advanced comparison of these five decision rules, based 
on the 1000 simulated phase II studies. Tables summarizing the 
results over all simulated studies are given thereafter (see Tables 
2-4). These tables contains the following: ’E(U)’ representing 
the empirical utility expectation of the chosen dose for the 1000 
simulated phase II studies among ’Go’ and ’NoGo’ decisions 
(utility is set to 0 when it is a ’NoGo’ decision), ’Prob(choose(Go))’ 
representing the probability of going to phase III with the chosen 
dose, ’Distribution selected doses (Conditional to ’Go’)’ representing 
probabilities of choosing the d=2, 4, 6 and 8 dose respectively among 
the ’Go’, ’POS(conditional to ’Go’)’ representing the PoSs mean 
among the ’Go’ with the chosen dose, and ’Power’ representing 
the global power for the combined phase II / phase III program, 

defined as the product of  ’Prob(choose(Go))’× ’POS(conditional to 
’Go’)’. Moreover, to explore the impact of number of doses and dose 
spacing on the properties of the decision rules, we added a new 
scenario with only 3 doses in addition to the placebo: d = 2, 4 and 
8. These results are given in blue in the following table columns, 
with Decision rule 1 as an example. The ’x’ symbol designates the 
missing dose d = 6 in the design considered for the exploratory 
analysis (Tables 2-4).

Based on Tables 2-4, we can see that with Decision rule 2, 
the dose choice is slightly better compared to Decision rule 1 
and Decision rule 1*: one chooses d = 4 a bit more often (which 
is the true optimal dose according to theoretical curves), but the 
difference is small. However, results are quite similar in terms 
of expected utilities, probabilities of going to phase III, PoSs and 
global powers. Decision rule 1 is slightly better than Decision rule 
1* in terms of expected utilities and dose choice. Decision rule 3 is 
clearly worse than Decision rule 1, Decision rule 1* and Decision 
rule 2. A possible explanation could be that the extreme values of 
the parameter estimates have an impact on the mean values used 
and accentuate an estimation bias. However, when considering the 
estimates median rather than estimates mean (Decision rule 4), we 
can see that results are very close to those obtained with the mean, 
even slightly worse.

Table 2: Simulation results, N2 = 250, comparison of five decision rules for dose selection.

For N2 = 250 Decision Rule 1 Decision Rule 1* Decision Rule 2 Decision Rule 3 Decision Rule 4

E(U) 0.61 0.62 0.61 0.62 0.51 0.50

Prob(choose(Go)) 0.84 0.83 0.85 0.85 0.78 0.77

Distribution selected doses 
(Conditional to ’Go’)

0.09 0.84 0.07 0.00 
0.08 0.90 x 0.02 0.07 0.84 0.06 0.04 0.08 0.85 0.06 0.00 0.05 0.73 0.18 0.04 0.05 0.72 0.19 0.05

POS (conditional to ’Go’) 0.77 0.77 0.78 0.78 0.81 0.81

Power 0.65 0.64 0.66 0.66 0.63 0.62

Table 3: Simulation results, N2 = 500, comparison of five decision rules for dose selection.

For N2 = 500 Decision Rule 1 Decision Rule 1* Decision Rule 2 Decision Rule 3 Decision Rule 4

E(U) 0.68 0.69 0.67 0.68 0.61 0.60

Prob(choose (Go)) 0.90 0.89 0.90 0.90 0.86 0.85

Distribution selected doses 
(Conditional to ’Go’)

0.02 0.92 0.06 0.00 
0.02 0.98 x 0.01 0.01 0.89 0.09 0.00 0.01 0.93 0.06 0.00 0.01 0.84 0.15 0.00 0.01 0.81 0.17 0.01

POS (conditional to ’Go’) 0.80 0.80 0.80 0.80 0.81 0.82

Power 0.72 0.71 0.72 0.72 0.70 0.70
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Table 4: Simulation results, N2 = 1000, comparison of five decision rules for dose selection.

For N2 = 1000 Decision Rule 1 Decision Rule 1* Decision Rule 2 Decision Rule 3 Decision Rule 4

E(U) 0.74 0.75 0.73 0.74 0.70 0.68

Prob(choose(Go)) 0.95 0.95 0.96 0.95 0.93 0.92

Distribution selected doses 
(Conditional to ’Go’)

0.00 0.96 0.04 0.00 
0.00 1.00 x 0.00 0.00 0.94 0.06 0.00 0.00 0.96 0.04 0.00 0.00 0.91 0.09 0.00 0.00 0.90 0.10 0.00

POS (conditional to ’Go’) 0.80 0.80 0.80 0.80 0.81 0.81

Power 0.76 0.76 0.77 0.76 0.75 0.75

Regarding the exploratory analysis, results are quite similar 
when considering a smaller number of active doses and a different 
spacing: the loss of a non-optimal dose (we removed dose d = 6 
which is not the optimal dose) did not decrease the decision and 
dose selection qualities. Globally, Decision rule 1, Decision rule 
1* and Decision rule 2 lead to almost similar results and are con-
sistently better than Decision rule 3 and Decision rule 4. Note that 
this result is also visually established by Figure 2.

We retained Decision rule 1 for the next subsections of this 
paper: the difference is small between Decision rule 1, Decision 
rule 1* and Decision rule 2, but, the Decision rule 1 (or Decision 
rule 1*) is easily understandable/interpretable by a clinical team, 
it better accounts for uncertainty in parameter values, and it fits 
well to a suitable rule for interim analysis. The reason why Decision 
rule 1 is retained, in the following subsections, in preference to 
Decision rule 1*, is discussed in more detail in the Discussion and 
Conclusions section.

Influence of phase II sample size

Below are the results of the sample size determination based 
on the utility criterion (relative utility loss) previously defined, with 

Decision rule 1. In Figures 3, 4, 5 and 6, the values of 0.2 and 0.1 
(pointed out by red lines) correspond to a relative utility loss of 
20% and 10%, respectively. So we will assess in the following, the 
number of patients required to reach 80% and 90% respectively of 
the maximal utility (Figures 3-6).

One could of course develop or imagine other combinations 
of efficacy/safety scenarios. Regarding the bad Safety profile 
(progressive toxicity scenario, and toxicity of highest dose =0.20), 
we have the following simulation results.

Sigmoid scenario (Figure 3):

•  350 patients are required in phase II to reach 80% of 
maximal utility

PowerphaseII (2) = 0.16, PowerphaseII (4) = 0.27, PowerphaseII (6) = 
0.37, and PowerphaseII (8) = 0.44

•  700 patients are required in phase II to reach 90% of 
maximal utility

PowerphaseII (2) = 0.23, PowerphaseII (4) = 0.43, PowerphaseII (6) = 
0.58, and PowerphaseII (8) = 0.68

Figure 3: Relative utility loss, Sigmoid scenario - Bad safety (progressive toxicity scenario (and toxicity of highest dose = 0.20)).
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Plateau scenario (Figure 4):

•  280 patients are required in phase II to reach 80% of 
maximal utility

PowerphaseII (2) = 0.27, PowerphaseII (4) = 0.33, PowerphaseII (6) = 
0.36, and PowerphaseII (8) = 0.38

•  700 patients are required in phase II reach 90% of 
maximal utility

PowerphaseII (2) = 0.49, PowerphaseII (4) = 0.61, PowerphaseII (6) = 
0.65, and PowerphaseII (8) = 0.68

Regarding the good safety profile (low toxicity scenario), we 
have the following simulation results.

Figure 4: Relative utility loss, Plateau scenario - Bad safety (progressive toxicity scenario (and toxicity of highest dose = 0.20)).

Sigmoid scenario (Figure 5):

•  200 patients are required in phase II to reach 80% of 
maximal utility

PowerphaseII (2) = 0.12, PowerphaseII (4) = 0.20, PowerphaseII (6) = 
0.25, and PowerphaseII (8) = 0.30

•    420 patients are required in phase II to reach 90% of 
maximal utility

PowerphaseII (2) = 0.18, PowerphaseII (4) = 0.31, PowerphaseII (6) = 
0.41, and PowerphaseII (8) = 0.49

Figure 5: Relative utility loss, Sigmoid scenario - Good safety profile (low toxicity scenario).
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Plateau scenario (Figure 6):

•  140 patients are required in phase II to reach 80% of 
maximal utility

PowerphaseII (2) = 0.11, PowerphaseII (4) = 0.16, PowerphaseII (6) = 
0.21, and PowerphaseII (8) = 0.24

•  400 patients are required in phase II reach 90% of 
maximal utility

PowerphaseII (2) = 0.17, PowerphaseII (4) = 0.30, PowerphaseII (6) = 
0.40, and PowerphaseII (8) = 0.48

Figure 6: Relative utility loss, Plateau scenario - Good safety profile (low toxicity scenario).

In those examples, the sample sizes proposed appear quite 
small, as compared to those necessary to reach the standard 80% 
or 90% of the classic phase II power. But one should keep in mind 
that selecting a dose for phase III (showing a favourable trade-off 
between efficacy and safety) is a totally different objective from that 
of searching for statistical significance. In fact reaching statistical 
significance is not the main objective of phase II (it is an objective 
for phase III), it is rather to propose the most appropriate dose for 
phase III.

Interim analysis

Regarding interim analysis, we consider the following 
combination of efficacy and safety scenarios: Sigmoid scenario with 
progressive toxicity scenario (and toxicity of highest dose = 0.20). 
Here also, the choice of the dose is governed by Decision rule 1. In 
the following tables (Tables 5-7), two additional columns are added 

as compared to the ones given previously:

(i) ’Prob(Stop at interim)’ representing the probability of 
stopping at the interim analysis

(ii) ’Mean(N2)’ representing the mean size for the adaptive 
plan (Table 5).

Based on Table 5, we can see that the utilities are well ordered 
(the larger the N2, the larger the empirical expectation E(U)). 
The interim analysis with l = 0.80 is effective, with a significant 
probability of stopping at interim (around 30% for both adaptive 
designs with 100 and 250 patients at interim analysis respectively). 
However, the interim analysis with l = 0.90 is not very useful: 
allowing ourselves to make a decision before the final analysis is a 
loss in the quality of the decision (compared to systematically wait 
for the final analysis) with such a restrictive threshold.

Table 5: Simulation results, stop at the interim analysis if ( )* is the best dose|data ,d lΡ ≥  0.80,0.90,l =  interim at 2N ′  = 100 and 2N ′ = 250.

Sigmoid Progressive toxicity 
scenario Tox(d=8)=0.20   

Threshold.eff1=0.30  
Threshold.safe1=0.30  
Threshold.eff2=0.30  

Threshold.safe2=0.50 

N2=100

N2=500 interim at 
2N ′ =100; stop if: 

P(best dose|data) 
≥ 0.80

N2=500 interim at 
2N ′ =100; stop if: 

P(best dose|data) 
≥ 0.90

N2=500 interim at 
2N ′ =250; stop if: 

P(best dose|data) 
≥ 0.80

N2=500 interim 
at 2N ′ =250; 

stop if: P(best 
dose|data) ≥ 

0.90

N2=500

E(U) 0.476 0.533 0.607 0.619 0.640 0.666

Prob(choose(Go)) 0.789 0.757 0.824 0.831 0.857 0.900

Distribution selected doses 
(Conditional to ‘Go’)

0.240 0.640 
0.000 0.120

0.090 0.820 0.070 
0.030 

0.030 0.880 0.080 
0.000

0.020 0.900 0.070 
0.010 

0.010 0.910 0.090 
0.000

0.010 0.890 
0.090 0.000 

POS (conditional to ‘Go’) 0.725 0.776 0.794 0.800 0.804 0.803
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Prob (Stop at interim)  - 0.313 0.129 0.339 0.111  -

Mean(N2)=N2x(1-prob(interim
))+N2’xprob(interim)  - 375 448 415 472  -

Power=Prob(choose(Go))x 
POS (conditional to ‘Go’) 0.572 0.587 0.654 0.664 0.689 0.723

On the other hand, we can clearly see that E(U(Design 1)) < 
E(U(Design 2)) < E(U(Design 3)) < E(U(Design 4)), for both values 
of l. But E(U(Design 3)) is much closer to E(U(Design 4)) than 
E(U(Design 2)), and the best dose is clearly different/distinguished 
from others with this design (the probability of choosing d = 4 dose, 
which is the optimal dose according to theory, is higher with Design 
3 compared to Design 2), which makes it more economical and 
more beneficial than Design 4.

So we have concluded that:

•	 l = 0.90 is too restrictive (not enough stops at interim 
analysis)

•	 l = 0.80 is economically more interesting: we stop more 
often at interim analysis, and consequently, we save 
patients (the average sample size of the phase II trial is 
reduced)

•	 In this example, Design 2 (design with 2N ′  = 100), under-
performs Design 3 (design with 2N ′  = 250), for both values 
of l, 100 patients is not enough and yet we stop too often, 
which consequently leads to bad decisions

•	 Design 3 with l = 0.80 is beneficial because we stop quite 
often at interim (so we save patients) while maintaining 
the properties of Design 4 (fixed design with N2 = 500).

Table 6: Simulation results, utility mean differences criterion: Domination criterion 1 with X= 0.10, 0.20.

Sigmoid Progressive toxicity 
scenario Tox(d=8)=0.20   

Threshold.eff1=0.30  
Threshold.safe1=0.30  
Threshold.eff2=0.30  

Threshold.safe2=0.50 

N2=100

N2=500 interim at 
2N ′ =100; stop if: 

E(U(d*)-U(other 
dose)) ≥0.10

N2=500 interim at 
2N ′ =100; stop if: 

E(U(d*)-U(other 
dose)) ≥0.20

N2=500 interim at 
2N ′ =250; stop if: 

E(U(d*)-U(other 
dose)) ≥0.10

N2=500 interim 
at 2N ′ =250; 

stop if: E(U(d*)-
U(other dose)) 

≥0.20

N2=500

E(U) 0.476 0.639 0.607 0.680 0.668 0.666

Prob(choose(Go)) 0.789 0.919 0.909 0.918 0.905 0.900

Distribution selected doses 
(Conditional to 'Go')

0.240 0.640 
0.000 0.120

0.140 0.770 0.080 
0.000 

0.080 0.820 0.090 
0.000

0.040 0.890 0.070 
0.000

0.020 0.890 0.090 
0.00 

0.010 0.890 
0.090 0.000 

POS (conditional to 'Go') 0.725 0.753 0.776 0.790 0.799 0.803

Prob(Stop at interim) - 0.214 0.064 0.499 0.034  -

Mean(N2)=N2x(1-prob(interim
))+N2'xprob(interim)  - 414 474 375 492  -

Power=Prob(choose(Go))
xPOS(conditional to 'Go') 0.572 0.692 0.705 0.725 0.723 0.723

In Table 6, we used the utility mean differences criterion 
(Domination criterion 1), with X = 0.10, 0.20 (Table 6).

Results with the utility median differences criterion 
(Domination criterion 2), with X = 0.10, 0.20, are given in Table 7.

Table 7: Simulation results, utility median differences criterion: Domination criterion 2 with X= 0.10, 0.20.

Sigmoid Progressive toxicity 
scenario Tox(d=8)=0.20   

Threshold.eff1=0.30  
Threshold.safe1=0.30  
Threshold.eff2=0.30  

Threshold.safe2=0.50 

N2=100

N2=500 interim 
at 2N ′ =100; stop 
if: med(U(d*))-
med(U(other 
dose)) ≥0.10

N2=500 interim 
at 2N ′ =100; stop 
if: med(U(d*))-
med(U(other 
dose)) ≥0.20

N2=500 interim 
at 2N ′ =250; stop 
if: med(U(d*))-
med(U(other 
dose)) ≥0.10

N2=500 interim 
at 2N ′ =250; stop 
if: med(U(d*))-
med(U(other 
dose)) ≥0.20

N2=500

E(U) 0.476 0.654 0.660 0.686 0.684 0.666

Prob(choose(Go)) 0.789 0.928 0.924 0.923 0.920 0.900

Distribution selected doses 
(Conditional to 'Go')

0.240 0.640 
0.000 0.120

0.130 0.790 0.080 
0.000 

0.100 0.820 0.080 
0.000

0.040 0.890 0.060 
0.000

0.030 0.900 0.070 
0.000

0.010 0.890 
0.090 0.000 

POS (conditional to 'Go') 0.725 0.755 0.767 0.790 0.795 0.803

Prob(Stop at interim) - 0.310 0.205 0.489 0.325 - 

Mean(N2)=N2x(1-prob(interim
))+N2'xprob(interim)  - 376 418 378 419  -

Power=Prob(choose(Go))
xPOS(conditional to 'Go') 0.572 0.701 0.709 0.729 0.731 0.723
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The ( ) ( )( )*" doses 0.10"E U d U other− ≥  criterion is quite 
effective based on simulation results given in Table 6, but 
considering a higher threshold (0.20) becomes too restrictive, 
and consequently, not enough stops are recorded at the interim 
analysis. On the contrary, results with the utility median differences 
criterion, given in Table 7, are satisfactory when considering either 
the smaller threshold (0.10) or the higher one (0.20). The frequency 
of stopping at interim analysis decreased with the threshold of 
0.20, but the difference is quite small as compared to the one with 
the first domination criterion (Table 6).

However, these domination criteria proposed above are 
complicated and not too intuitive: the “domination” definition 
is very arbitrary (difference of the medians of the utilities > 0.20 
or 0.30 is very difficult to justify given the abstract nature of the 
utility). But such definition of domination criteria was motivated/
inspired by [17], where authors describe a phase II clinical trial 
for finding optimal dose levels, in a different context: patients 
allocation to doses. They use the following algorithm in order 
to design a sequential clinical trial: they propose a dynamic 
programming rule which consists in doing backward induction, 
and a well detailed algorithm is described in particular, alternating 
sequence of expectation and maximization. Utility-based decisions 
consist of dose selection, within a Bayesian framework, based 
on posterior probabilities: at every stage of the trial, the next 
patient is allocated to the selected dose, the trial may be stopped 
for futility, with no treatment recommendation, and doses may 
be dropped during the trial, if they are judged to be less effective 
than others. However, these doses are not totally excluded from 
the trial and may be reused in randomization, which consists in 
allocating patients to doses within the “non-dominated” set. Here, 
“non-dominated” set refers to the set of superior doses, dominating 
the others. Indeed, dropped doses may dominate other doses 
later on, when the posterior probabilities change: a dose may be 
inferior at a given time point, than superior at another time. Hence 
an adaptive randomization for dose allocation, carried out from 

sequential design, based on expected utility, to define the set of 
“non-dominated” doses.

The proposal based on stopping at the interim analysis if 
( )* is the best dose|data ,d lΡ ≥  is much more intuitive, it is simpler 

to explain to a clinician that phase II is stopped if the dose that 
we found has a probability > l of being the best, than to say that 
the dose ”dominates” the others on two different criteria that are 
rather arbitrary (based on the numerical value of utility, which is a 
very abstract quantity).

Example of Application in a type 2 Diabetes dose-finding 
study

As an illustration, we show thereafter how the method could be 
applied to a real dose-finding study. The results below are inspired 
from a phase II study in type 2 Diabetes. This study included 3 
dose arms (doses=10 mg, 15 mg and 20 mg) plus a placebo arm 
as control. The design was a parallel group design with 60 patients 
per arm. The primary endpoint was the change from baseline in 
HbA1c (%) at week 26 (see Table 8). The safety criterion that was 
considered to compare the doses was the percentage of patients 
that discontinued treatment due to AE (see Tables 8 & 9).
Table 8: Efficacy results, mean (SD) change from baseline in HbA1c at 
Week 26.

Change 
from 

baseline to 
Week 26 

HbA1c

placebo dose=10 dose=15 dose=20

Mean (SD) -0.54 (0.96) -1.40 (0.86) -1.46 (0.92) -1.54 (1.01)

Table 9: Safety Results, % of premature discontinuation of patients due 
to AE.

Discontinuation 
for AE placebo dose=10 dose=15 dose=20

% 3 15.2 16.7 20.3

Figures 7 and 8 show the observed and model predicted efficacy 
and safety profiles. We can notice a quite flat efficacy profile with 
little difference between doses (Figures 7 & 8).

Figure 7: Observed and model predicted (based on posterior means of parameters) change in HbA1c.
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Figure 8: Observed and model predicted (based on posterior means of parameters) % AE.

Concerning the definition of the utility function, in particular 
for the safety component, we decided to keep the exponent value k 
= 2, in order to put a quite high level of constraint on the required 
safety profile. Still on the safety component, the threshold to 
consider, s, is debatable: we propose to use the threshold s = 0.15, 
like in the simulation, as we consider that it is quite a high rate of 
discontinuation for AE. However for sensitivity analysis, we also 
assessed the decision performance when s was set to 0.10 and 0.20. 
For the application of the decision rule (Decision rule 1) the efficacy 
and safety cut-off values that govern the Go/No Go decision must 
be defined: for the safety, we kept the value of threshold.safe2=0.50 
whereas for efficacy, because the standard sample size of typical 
phase III study in type 2 diabetes is rather 500-600 patients than 
1000 patients, we propose to be very demanding in required power 
for the Go/NoGo decision: therefore we have chosen threshold.
eff2=0.90. The results of the application of the decision rules are the 
following: with s = 0.15, the decision is ’Go’ and the selected dose is 
the first dose=10 mg with a posterior mean PoS almost equal to 
1 and a posterior probability to have an observed percentage of 
discontinuation due to AEs ≤ s = 0.15 approximately equal to 0.95. 
As already mentioned, we assessed the decisions under safety 
thresholds of 0.10 and 0.20: with s = 0.10 the decision is ’NoGo’ 
because the best dose is 10mg but the posterior probability to have 
an observed percentage of discontinuation due to AEs ≤ s = 0.15 is 
too small ( 0.27

) even for this lowest dose, whereas for s = 0.20 
the decision is ’Go’ but still the dose=10mg remains the best one.

Discussion and Conclusions
The objective of this paper was to propose specific statistical 

methodologies to analyze the dose-finding study data in order to 
inform the decision rules defined within the proposed decision-
making framework.

We have proposed a sponsor’s decision rule based on the 
posterior probabilities of the doses to be the optimal one (Decision 
rule 1 or Decision rule 1*): the chosen dose being the one that 
maximizes this posterior probability; we think that such a rule 

better accounts for the uncertainty in the parameter values than 
criteria based on the ordering of numerical estimates of the utilities 
(like the posterior mean or median of the utilities for instance, 
as in Decision rules 2, 3 and 4). In addition, it is an intuitive and 
understandable rule, that can be used as the basis to define a 
stopping rule for the interim analysis (rule based on a lower bound 
of probability of the chosen dose to be the optimal one).

Regarding sponsor’s strategy to choose the optimal dose with 
Decision rule 1*, by applying efficacy/safety rules at both MCMC 
and study levels, the sponsor is more restrictive regarding the dose 
choices. When comparing results between putting efficacy/safety 
constraints at both MCMC and study levels (as done with Decision 
rule 1*), and putting efficacy/safety constraints at the study level 
only (i.e. at the Go / NoGo decision level) as with Decision rule 1, 
it seems more reasonable to keep this second approach (Decision 
rule 1). In fact, this approach is preferred not only because it 
showed slightly better results compared to Decision rule 1*, but 
also because thresholds are already arbitrarily predefined with 
Decision rule 1*, and it becomes harder to justify the choice of these 
thresholds values.

Regarding the impact of phase II sample size, we have seen that 
to go from 80% of the maximal utility to 90%, it is quite demanding 
in terms of sample size: we should almost double the number of 
patients, regardless of efficacy/safety profiles. If the dose choice is 
more difficult (when the safety of the high dose is not very good, 
i.e. bad safety profile), it is more demanding in terms of number of 
patients to make good choices. So globally, and as for classic phase 
II power calculation, each incremental probability to achieve the 
study goal is more and more expensive (in terms of sample size). 
But we would recommend, in this case, the smaller sample sizes, 
as they are sufficient to reach 80% of the maximal utility, whereas 
reaching 90% would require to double the sample size and probably 
is not worth the investment. Therefore, we would recommend for 
instance 350 patients for phase II (rather than 700 patients) for the 
Sigmoid scenario combined with a bad safety profile. We think that 
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this new approach is more consistent with the true objective of the 
phase II study (recommending a safe and active dose for phase III 
study).

On the other hand, we conclude that the two domination cri-
teria proposed for the interim analysis addressed in this paper do 
not bring significant improvement compared to the first stopping 
criterion, ( ) ( )* for all the other doses j jU d U d d data l Ρ > ≥  . The lat-
ter criterion is more intuitive and simpler to explain to a clinician, 
than criteria based on the numerical value of utility, which remains 
an abstract quantity.
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