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Abstract

Dose selection is a key feature of clinical development. Poor dose selection has been recognized as a major driver of devel-
opment failure in late phase. It usually involves both efficacy and safety criteria. The objective of this paper is to develop
and implement a novel fully Bayesian statistical framework to optimize the dose selection process by maximizing the
expected utility in phase III. The success probability is characterized by means of a utility function with two components,
one for efficacy and one for safety. Each component refers to a dose-response model. Moreover, a sequential design (with
futility and efficacy rules at the interim analysis) is compared to a fixed design in order to allow one to hasten the decision
to perform the late phase study. Operating characteristics of this approach are extensively assessed by simulations under
a wide range of dose-response scenarios.
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1 Introduction

Until today, estimation of the right dose remains a key problem in drug development. It is now well documented that
poor dose selection is a root cause for failures or delays in drug approval1 (see also2 guidelines). It is now also well ac-
cepted that finding the right dose should be rather considered as an estimation problem3 than a multiple testing problem.
This latter traditional approach, as well as the more recent Multiple Comparison Procedure and Modeling (MCP-Mod)
methodology4, 5, 6 generally consider efficacy and safety sequentially: doses associated with statistically significant differ-
ences versus the control, for the multiple testing approach, or doses with clinically relevant difference versus control, for
the MCP-Mod approach, are identified first and then the highest dose amongst them considered as ”well tolerated” is
generally chosen. An alternative approach should rather rank the doses using efficacy and safety assessments simulta-
neously. On the other hand, in many settings the dose selection is mainly driven by efficacy only. In absence of safety
considerations one typically searches for the dose which is near the plateau, e.g. the dose reaching 90% or 95% of the
maximal efficacy denoted by ED90 and ED95. This holds for monotonic dose-responses. Higher doses will unduly expose
the patients to potential toxicity issues while lower doses may represent a substantial loss of efficacy. Another dose of in-
terest is the Minimum Effective Dose (MED), i.e. the smallest dose associated with a statistically significant and clinically
relevant effect. The range of doses between the MED and the ED90/ED95 constitutes the interesting dose zone7. When
serious safety issues arise within this interesting zone, the dose selection becomes more challenging and involves multiple
criteria. Additional toxicity may counterbalance a gain of efficacy and one needs to introduce some utility score balancing
both efficacy and safety.

This paper proposes a two-component utility-based approach to optimize the dose selection process in order to maxi-
mize the expected utility in phase III. The first component is for efficacy and the second component is for safety. The
choice of the utility function approach was driven by Decision Theory8 that claims that utility functions are the most nat-
ural and consistent way to describe and rank preferences or decisions.

More precisely, we consider a dose-ranging trial (phase IIb) comparing J doses of a new product versus placebo followed
by a pivotal phase III trial with a single dose selected versus placebo. Efficacy is characterized by a unique continuous
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endpoint which is supposed to be the same in phase II and in phase III. Safety is modelled using a binary endpoint, with
”0” denoting no toxicity and ”1” denoting the presence of toxicity.

This paper aims to describe and implement a novel utility-based Bayesian framework in order to select the optimal dose.
The impact of the the phase IIb study sample size on the quality of dose selection and the chances of successful develop-
ment is assessed, the phase III sample size being fixed.

We also evaluate the interest of performing an interim analysis when half of the patients are enrolled (sequential de-
signs). The purpose is then to assess whether or not, for large phase II trials, allowing the possibility of choosing the dose
in the middle of the study and continuing the study to the end if the interim analysis is not conclusive, could reduce the
size of the phase II trial while preserving the relevance of the final dose choice9.

The paper is organized as follows. In Section 2, mathematical formalization of the dose-response modelling approach will
be presented, along with the decision-making framework including efficacy Probability of Success (PoS) computations
(Success being defined as significant comparison of the selected dose versus placebo in the phase III trial), the sponsor’s
strategy to choose the optimal dose, the Go/NoGo decision rules and the decision criteria/rules to stop at the interim
analysis for futility. At the end of Section 2, we display our simulation protocol, followed by the proposed dose-response
simulation scenarios. Section 3 is dedicated to results assessment and interpretation. Finally, Section 4 summarizes our
Bayesian decision-making framework, addressing the proposed method, and discussing the choice of the utility function,
thresholds related to decision rules, and decision criteria for interim analysis. Some perspectives are highlighted at the end
of Section 4, suggesting prior assessment to guide the sponsor and improve the decisions, and advocating a re-evaluation
of the choice of dose-response models, in terms of robustness, with the possibility to perform a model averaging approach.

2 Materials and Methods

Utility functions are generally introduced and defined within the decision theory framework. Utility describes the prefer-
ences of the decision maker and classifies/orders decisions. A decision theory result suggests that, in a risky environment,
all decision rules can be compared and classified using the expectation of a certain function, called the utility function.
This utility approach is flexible because it enables to account for: safety issues, economical/financial aspects, etc. In the
literature, utility functions defined by economical/financial quantities have been considered by several authors. Some-
times, under the names of ”Expected Net Present Value (ENPV))”, these criteria have been used to evaluate and classify
various dose selection methods, see10, 11 for example; but, in these works, they have not been used to select the doses
themselves. Similar utility functions have been defined and used for design optimization of an early phase clinical trial,
see12, or to optimize (in terms of sample size and Go/NoGo decisions) a phase II/III program in an oncology context
and time-to-event (death) as efficacy criterion, see13. Utility functions have also been used to monitor adaptive designs.
In14, the authors considered a Bayesian framework and defined trial stopping rules based on the posterior probability of a
given arm to be the best arm, with respect to some utility function. Those stopping rules are similar to the one we propose
in this work, but they are not focused on the dose selection problem in a dose finding trial.

Because we think that utility functions defined by economic or financial considerations (such as the cost of phase III,
expected financial reward in case of successful launch of the drug) are difficult to specify with enough confidence or preci-
sion at the beginning of the drug clinical development, we preferred to focus on utility functions only defined by efficacy
and safety considerations. Therefore, we propose a decision-making framework based on a new type of utility function
that, following a phase II study, can drive sponsor’s decision with respect to the continuation, or not, of the drug develop-
ment as well as the selection of the best dose for phase III: a utility function considering simultaneously and explicitly the
efficacy and safety drug profiles.

2.1 Dose-response modeling

In this paper, we chose to model efficacy via an Emax model, and safety via a Probit model. Note that in dose-finding
framework, the most frequently used model for efficacy is the Emax one15, 16, 7. This model assumes a monotonic (either
increasing or decreasing) dose-response. It is parameterized via the placebo effect, the maximum asymptotic effect over
placebo and the ED50 dose (i.e. the dose associated to half of the maximum effect). On the other hand, we use a Probit
model for safety, it directly follows from (multivariate) dichotomization of normally distributed data.

Here is the mathematical formalization of our modelling approach with all the necessary notations and calculations; as-
suming J dose values d to consider:

2



(i) The dose values d are denoted by dj, j = 1, ..., J.

(ii) Yd,i represents the random efficacy response of patient i in dose d arm, with i = 1, ..., nd, where nd is the number of

patients for the dose d in phase II study. It is assumed that Yd,i
iid∼ N(m(d; θ), σ2) where m(d; θ) is the expected mean

effect of dose d, and σ is the residual variability (standard deviation of residual error). The empirical mean responses
in dose d and placebo are denoted by Ȳd and Ȳ0 respectively.

(iii) N2 and N3 denote the phase II and planned phase III sample sizes respectively. N3 is assumed to be constant.

(iv) For safety, we used the following Probit model: π(d, λ) = P(W = 1|d, λ) = Φ(a + b× d), λ = (a, b)t, where a is the
intercept parameter, b is the dose effect, W is the binary toxicity outcome for one patient, 1 for toxicity and 0 if no
toxicity, and Φ is the Cumulative Distribution Function (CDF) of the standard normal distribution.

(v) For efficacy, we used the following Emax model: m(d; θ) = θ1 +
θ2 × d
θ3 + d

, θ = (θ1, θ2, θ3)
t is the parameter vector,

where θ1 = E0 is the placebo effect, θ2 = Emax is the maximum effect compared with placebo and θ3 = ED50 is the
dose with half of the maximum effect.

(vi) Let ∆(d) and ∆̄(d) be the expected mean difference versus placebo and its estimate, respectively. We then have
∆(d) = m(d; θ)−m(0; θ), ∆̄(d) = Ȳd − Ȳ0 and E(∆̄(d)) = ∆(d).

2.2 Decision-making framework

In the following, we will discuss our proposed utility function, as well as computations of its efficacy and toxicity compo-
nents.

2.2.1 Utility function

Several utility function types can be proposed and explored through simulation scenarios (see17). For the specific analysis
of phase II, we thought it would be interesting to consider utility functions of the following form U = (e f f icacy)h ×
(sa f ety)k. Efficacy is an increasing component of the dose, this term depends on the efficacy of doses, particularly on
effect sizes. We chose to characterize the efficacy component as a function of the PoS, the power of a phase III trial with a
fixed sample size of N3 patients: it has the advantage of normalizing this component, ranging between 0 and 1 whatever
the efficacy criterion (quantitative, binary, time to event, etc.).

The PoS can be computed using standard calculations. For the case of a balanced phase II trial, efficacy is tested as:

Z =
∆̄(d)√
2SE2

, with SE2 = σ2/(N3/2) = 2σ2/N3 at level α, and the power results in:

PoS(d, θ) = PH1 (Z ≥ z1−α) = 1−Φ
(

z1−α −
∆(d)√
2SE2

)
.

Contrarily, the safety component is a decreasing term depending on the dose. This term depends on the toxicity of the
doses. We chose to express it according to the probability of observing a toxicity rate (i.e. the percentage of patients hav-
ing an adverse event) lower than or equal to a threshold t in the dose arm, during a phase III trial of N3 patients in total:
this also has the advantage of ”normalizing” this component by varying it between 0 and 1. Note that we are evaluating
here the toxicity of the dose (commonly used approach in oncology), but the method can be easily adapted to a pairwise
comparison on safety between placebo and the selected dose (with some ’t’ non-inferiority margin for instance). The num-
ber of patients having a toxicity is a binomial distribution of parameters N3/2 and π(d, λ), where π(d, λ) represents the
probability of toxicity corresponding to dose d as defined in (iv), Section 2.1.

We considered then utility functions of the form: U(d, θ, λ) = PoS(d, θ)h × P(toxobs(d, λ) ≤ t)k, where h and k are pa-
rameters reflecting the respective contributions of efficacy and safety to the utility function: the higher the k (resp. h),
the higher the penalty for safety (resp. efficacy). An alternative definition would be to set a fixed parameter, say s,
such that s = h + k, or, equivalently, define an additional parameter w with the following two components: h = w× s,
k = (1− w)× s; in this latter case, both parts of the utility would have some common grounds and parameter ’w’ could
be used as a weight on the less relevant endpoint. Parameter t is a safety parameter controlling over toxicity in phase III.

A specific characteristic of the proposed utility function (as compared to the ones proposed in10 or14 for instance) is that
both its efficacy and safety components depend on the sample size of the phase III study. This choice is intended to reflect
real life conditions where Go/NoGo decisions and dose selection at the end of phase II always relate to the sample size the
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sponsor can afford for a superiority phase III trial. This can be viewed as a pragmatic choice. Moreover, unlike the addi-
tive form of the utility function proposed in14, where a utility function is defined as a linear combination of Response and
Quit rates, the utility form in this paper considers both efficacy and safety components in a multiplicative way. This form
reduces the risk of compensation between a very bad safety profile by a very good efficacy one; with such multiplicative
utility form, a good profile is required on both aspects, and efficacy/safety balance is better ensured.

For the sake of simplicity, and in order to facilitate the reading, we will drop in the following of this paper the parameters
in the notations of the quantities of interest when there is no ambiguity. For instance, we will note PoS(d) instead of
PoS(d, θ), U(d) instead of U(d, θ, λ), etc.

2.2.2 Optimal dose and decision rules

We propose a decisional framework based on a Bayesian approach: the sponsor defines priors for the parameter estimates
of both efficacy and toxicity dose-response models and define decision rules based on posterior (following analysis of the
dose-finding study data) distributions of quantities of interest.

We use a MCMC approach18, 19, particularly a Metropolis-Hastings algorithm to capture the posterior of the model param-
eters and key quantities of interest: utility, PoS, etc. For instance, samples from the posterior of the PoS can be obtained
from MCMC iterations:
P̂OSi(d) = Φ

((
m(d; θ(i))−m(0; θ(i))− 1.96×

√
2SE2

)
/
√

2SE2
)

, where θ(i) is the vector of efficacy model parameters
θ simulated at iteration i. The advantage of Bayesian framework over a purely frequentist approach lies in its ability to
account for the uncertainty in parameter values in the decisional process and also, in allowing greater flexibility in the
definition of the decision rules.

Likewise, a posterior distribution of toxicity model parameters is obtained using a MCMC approach, where λ(i) is the
simulated value of the toxicity model parameter vector λ obtained at iteration i.

For each study, the sponsor makes two decisions:

(i) Identification of the recommended dose: at each MCMC iteration, one identifies the best dose as the dose with the
highest utility score: for all doses dj, we compute an MCMC estimation of Ppost(dj has the highest utility), denoted
as P̂post(dj = optimal dose|data). The recommended dose d∗ for phase III is the dose for which this probability is the
highest one, i.e. the dose being the most often identified as the best one among all MCMC iterations. The details of
computational aspects related to the choice of the optimal dose are given in the Supporting Information section 2. In
(the unlikely) case two doses have exactly the same probability of being the best dose, the lower dose is chosen and
recommended for phase III. We also compared alternative decision rules for dose selection, but the one suggested in
this paper appeared to provide the best performance in terms of decision quality, see20 for further details.

(ii) Go / NoGo decision: the sponsor computes the posterior expected PoS, denoted by τ = meanMCMC(P̂oS(d∗)), and
the posterior expected toxicity probabilities of the recommended dose d∗, denoted by υ = meanMCMC(P̂(toxobs(d∗) ≤
t)), separately. The ’Go’ for phase III is then decided if τ and υ pass prefixed efficacy and toxicity thresholds denoted
by threshold.eff and threshold.safe respectively. In other words, the sponsor chooses ’Go’ if τ > threshold.eff and
υ > threshold.safe. These thresholds are at the study level, they depend on the therapeutic area and the objectives
of the study.

2.2.3 Sequential design

We consider also the case of a sequential design and propose an adapted utility-based decisional framework. The sequen-
tial design consists in performing an interim analysis when a fraction (for instance half, as in the simulations we pre-
formed) of the total sample size has been enrolled: following the interim analysis, the sponsor might decide to terminate
the study or to continue until the total planned sample size is enrolled. Regarding the interim analysis, we propose a sim-
ple and intuitive method: one stops at the interim analysis for efficacy if P̂[U(d∗) > U(dj) f or all the other doses dj|data] ≥
l, where l ∈ [0, 1]. This threshold should be high enough to guarantee accuracy of the dose choice, but not too high, oth-
erwise frequency of early termination will be decreased and studies will be rarely terminated at interim. Details related to
the computational aspects of this interim analysis criterion are given in the Supporting Information section 2. Note that
an early termination of the trial at the interim analysis is not necessarily a positive outcome: we can also stop the analysis
for futility, i.e. we stop at interim and we do not Go to phase III, with the same decision criteria as the ones for the fixed
design (if τ < threshold.eff or υ < threshold.safe at interim).
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2.2.4 Optimal dose estimation method: Batching approach

When implementing a MCMC approach, a subsampling method (also known as thinning) is usually adopted to remove
autocorrelations, or a batching method21, 22, 23, 19 to avoid information loss and ensure convergence, and to possibly esti-
mate the variance of the MCMC estimator (the latter issue was not particularly the purpose of implementing this method
in this paper). Here, a batching method is implemented for a different purpose: govern the dose selection process in
refining the dose selection rule mentioned in the previous section. Indeed, the main idea is to select the dose d∗ = dj such
that P̂post(dj = optimal dose|data) has the highest value amongst all doses. Instead of simply computing standard MCMC
estimates of those posterior probabilities (i.e. P̂post(dj = optimal dose|data) for all doses dj), we will apply a batching
method fully described in the Supporting Information section 2: it consists in computing, first, partial sums of the MCMC
utilities iterates over batches of a sufficiently large length. With the latter method, smoother and more concentrated pos-
terior distributions are obtained and therefore, two aspects are ensured: reducing variability and avoiding information
loss within the chain. For completeness, this approach is compared, through simulations, to a traditional subsampling
approach in Supporting Information section 7.4.

2.3 Simulations

In the following, we describe our simulation protocol and our chosen efficacy/safety dose-response scenarios. Note that
all the chosen values stated thereafter are applied for the analysis of each simulated phase II trial and are the same in each
scenario.

2.3.1 Simulation protocol

We simulated 1000 phase II studies in total. Robustness of the results was checked, by simulating 5000 phase II studies for
some scenarios: simulation results were similar to those obtained with only 1000 phase II studies, which implies that the
latter number of simulated studies is sufficient to guarantee precise/robust results. For each simulated trial, we made the
following assumptions.

Indeed, our models can be applied to different numbers of doses (or even different dosages) but for our simulations,
we consider four active doses with the following values, d = 2, 4, 6, 8, and one placebo with the following value, d = 0.

We consider informative priors for E0 and ED50, and non-informative prior for Emax: Emax ∼ N(0, 100), ED50 ∼ U[1, 10]
and E0 ∼ N(0, 1). Regarding ED50, we considered this prior as it is consistent with the fact that at this stage of drug devel-
opment, phase II or phase IIb, the sponsor has quantitative information (based on pre-clinical or phase I/pharmacodynamic
studies) about the relevant dose range and that this reflects in design doses. Regarding the prior for E0, we assume that,
similarly, the sponsor has some information on the range of placebo effect.

The following informative prior distributions for the parameters of the Probit model are considered in this paper: in-
tercept a ∼ N(q0.05, 0.102), where q0.05 ' −1.65 is the normal distribution quantile which corresponds to 5% of adverse
event in placebo arm, and dose effect b ∼ U[0, 1]. The sponsor is considered here to have information on the percentage of
toxicity in the placebo group (from epidemiological data, for instance), so the Probit model parameter a is centred around
its true value and with limited variability: a coefficient of variation (i.e. ratio between standard deviation (0.10) and mean
(−1.65) roughly equal to 6%). In real life, these choices are never completely non-informative, we often have an idea on
the incidence of adverse event in the placebo arm. Concerning the slope, b, the choice of the prior was motivated by a
conservative approach, assuming that the incidence of toxicity was necessarily increasing with the dose.

Sensitivity analyses were conducted in order to examine the performance of the designs with respect to different pri-
ors (by considering non informative priors for all model parameters for instance). Results were consistent with the ones
obtained with the chosen priors in this paper, but needed more patients to reach similar properties and decision rule
qualities (see Supporting Information section 7.1 for details). Some additional guidelines for prior elicitations are given in
Section 4. Density plots of our prior dose-response distributions are also given in Supporting Information section 1.

We consider N3 = 1000. In practice, phase III sample size is usually set to achieve a statistical power between 80%
and 95%. It should be defined based on our understanding of the endpoint, relevant effect and what the drug might
achieve. In case overwhelming efficacy is expected by the project team, a smaller phase III sample size can be envisaged
as well.

Efficacy and toxicity are modelled and simulated as independent random variables to limit autocorrelation problem. Let
niter be the total number of MCMC iterations: we simulate niter = 150000 safety and niter = 150000 efficacy parameters
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separately, and then we combine both datasets in order to build the utility score for each dose / iteration. Among these
iterations, we discarded an initial portion of the Markov chain sample so that the effect of initial values on the posterior
inference is minimized: burn- in=150000/2=75000 first iterations.

PoS, toxicity component and utility are computed at each MCMC iteration level. Once utilities are estimated based on
each θ(i) and λ(i) (75000 estimated utilities after burn-in process, see Supporting Information section 3 for further details),
we implement the batching method to compute posterior probabilities based on the estimated utilities. We consider a
batch length, B = 150 (the choice of this value is also discussed in the Supporting Information section 3). In the final
output, we will then have: n = 75000/150 = 500 batches, each batch representing the posterior partial mean of the utility
for each dose. Sponsor will use these partial means to rank doses according to utility scores and choose the optimal one as
explained in Section 2.2.2. Tables summarizing simulation results of the 1000 simulated studies are presented in Section 3,
each result is an average value calculated over all phase II studies.

Regarding the Go/NoGo decision (for the fixed design), we have proposed the decision criteria based on threshold values
for the PoS and for the probability of observing a toxicity rate lower than or equal to t in phase III. These values will de-
pend on the therapeutic area and the objectives of the study; for efficacy, it could be equal to 0.30 in oncology for instance,
see24; we tested threshold.eff = 30%, and it turned out to be too weak and not strict enough (see simulation results in
Supporting Information section 5), we also tested threshold.eff = 90% which, as expected, was too restrictive and with this
threshold we do not go often enough to phase III (see simulation results in Supporting Information section 6); we finally
kept an intermediate threshold (moderate and reasonable) between the two (threshold.eff = 60%). So in simulations, we
finally retained an efficacy decision criterion for the PoS, with 60% set as lower bound, and a safety decision criterion for
the probability of observing a toxicity rate lower than or equal to t, with 50% set as lower bound. For simplicity purposes,
the same threshold values are retained for the interim analysis.

We choose l = 0.80 for the interim analysis criterion, that is we stop at interim if:
P̂[U(d∗) > U(dj) f or all the other doses dj|data] ≥ 0.80.

The choice of this threshold is discussed in Section 7.4 (l = 0.90 is tested in Supporting Information section 6). We compare
fixed designs (N2 = 250, N2 = 500 and N2 = 1000 patients) with sequential designs with an interim analysis when half of
the patients are enrolled (N2 = 500 and N2 = 1000 patients with an interim analysis at N′2 = 250 and N′2 = 500 patients
respectively). Note that we also examined the performance of the designs with smaller sample sizes such as 100 patients
for instance, but results related to those designs are not given in this paper (see Supporting Information section 7.4).

Here, we arbitrarily chose t = 0.15. Note that t value usually depends on the therapeutic area. For instance, a thresh-
old of 0.30 (or 0.40) is more common in oncology and may vary in other areas; see Supporting Information section 7.3 for
sensitivity analysis related to the choice of this threshold.

In the following, we consider h = 1 and k = 2. The choice of these parameter values is discussed in Section 4. A
sensitivity analysis related to these choices is conducted in Supporting Information section 7.2.

The residual variability σ is assumed to be known and set to the value of 0.5 in the simulations. This value has been
chosen in order to have, for one of our most important scenarios, named ”Sigmoid” (defined in the following Section
2.3.2), a standardized effect of 0.25 for the highest dose (d = 8) of our design.

For each simulated phase II trial, the decision framework can be described by Figure 1.
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 CHOOSE d*  CHOOSE d* 

Fixed design Sequential design 

If PoS(d*) > 0.60 and 

P(tox≤0.15) > 0.50 

If PoS(d*) < 0.60 or 

P(tox≤0.15) < 0.50 

   GO 
with d* 

  NO GO 

If 
P[U(d*)>U(dj)] 

> 0.80 

   With N2’ patients 

If 
P[U(d*)>U(dj)] 

< 0.80 

STOP AT 
INTERIM 

DO NOT STOP 
AT INTERIM 

Final analysis 
N2 patients 

If PoS(d*) > 0.60 and 

P(tox≤0.15) > 0.50 

If PoS(d*) < 0.60 or 

P(tox≤0.15) < 0.50 

     GO  
 with d* NO GO 

 

  N2’ patients 

Figure 1: Schematically presentation of the decision-making framework.

2.3.2 Simulation scenarios for efficacy and toxicity

We assessed various efficacy and toxicity scenarios but for sake of simplicity, only some particular scenarios of interest are
presented in this paper (see Supporting Information section 4 for additional simulation scenarios and related results).

We consider two main efficacy scenarios assumed to be the true ones reflecting the real dose-response (see Figure 2):

(i) No activity scenario: it is considered to evaluate the type I error.

(ii) Sigmoid scenario: this scenario corresponds to a smooth increase of the effect over the dose range of the design:
plateau effect barely reached for the highest design dose.
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Figure 2: Overview of efficacy scenarios: mean responses as a function of d.

We also consider one main toxicity scenario (see Figure 3):
Scenario with a progressive toxicity, where the toxicity probability of the highest dose is equal to 0.20 (strictly higher than
t = 0.15).

Figure 3: Overview of toxicity scenario: toxicity probability as a function of d.

8



3 Results

Denoting a simulation scenario by the combination of the associated efficacy and toxicity scenarios, two simulation sce-
narios are considered: no activity scenario × scenario with progressive toxicity (and toxicity of highest dose = 0.20), and
Sigmoid scenario × scenario with progressive toxicity (and toxicity of highest dose = 0.20). For each simulation scenario,
a graph highligting the corresponding theoretical curves is drawn (Figures 4 and 5), where ’Toxicity penalty’ red curve
represents the probability of observing more than 15% of toxicity in phase III. All the results are summarized in Tables 1
and 2. Each table contains the following:

(i) ’E(U)’ is the empirical utility expectation of the chosen dose for the 1000 simulated phase II studies among ’Go’ and
’NoGo’ decisions (utility is set to 0 when it is a ’NoGo’ decision)

(ii) ’Prob(choose(Go))’ is the empirical probability of going to phase III with the chosen dose

(iii) ’Distribution selected doses (Conditional to ’Go’)’ represents the empirical probabilities of choosing the d=2, 4, 6 and
8 dose respectively among the ’Go’

(iv) ’Distribution selected doses (Conditional to ’Go’) at interim analysis’ is the empirical distribution of the chosen doses
if we choose ’Go’ for the interim analysis

(v) ’Distribution selected doses (Conditional to ’Go’) at final analysis’ is the empirical distribution of the chosen doses if
we continue to the final analysis and we choose ’Go’

(vi) ’POS(conditional to ’Go’)’ is the empirical mean of PoSs conditional to ’Go’ with the chosen dose

(vii) ’Prob(Stop at interim)’ is the empirical probability of stopping at the interim analysis

(viii) ’% Stop for futility’ is the empirical probability of stopping for futility at interim (so this percentage is included in
(vii))

(ix) ’Mean(N2)’ is the mean sample size of the sequential plan

(x) ’Power’ is the global power of the combined phase II / phase III program, defined as the product (ii)×(vi)

3.1 No activity scenario with progressive toxicity scenario (and toxicity of highest dose = 0.20)

We started by considering a scenario with no activity to evaluate the type I error: the idea is to verify that the clinical trial
stops for lack of activity, and not because of excessive toxicity. The utility function is illustrated in Figure 4 and results are
given in Table 1.
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Figure 4: Theoretical curves, no activity scenario with progressive toxicity scenario (and toxicity of highest dose = 0.20).

Table 1 Simulation results, no activity scenario with progressive toxicity scenario (and toxicity of highest dose = 0.20).

In this scenario, the sponsor should not decide to go to phase III since no dose is efficacious as compared to placebo. In
terms of probability of wrong decision (decide to go to phase III), it is quite high (' 11%) with a phase II study with
N2 = 250 patients. But, as expected, the probability of wrong decision decreases as the sample size increases, reaching
the value of approximately 2% for the largest phase II study (N2 = 1000 patients). In the unfavourable case of wrong
decision to go into phase III, the chosen dose is most often d = 4. This is due to the fact that the analysis conducted by the
sponsor identifies the second dose as the highest ”well tolerated” dose (based on the probability of observing more than
15% of toxicity in the phase III study). In such a scenario, the usefulness of conducting an interim analysis when half of
the patients are enrolled is debatable. Indeed, the probability of stopping at interim analysis is not negligible (it is around
25% and 29% for sample size of 250 and 500 at interim, respectively) this leads to a decrease of the mean sample size of
the phase II study of around 12% and 14% as compared to a fixed sample size design of 500 and 1000 patients respectively.
But at the same time, even though the probability of interrupting the study and choose to go directly in phase III is small,
conducting an interim analysis inflates the risk of wrongly choosing to go in phase III as compared to the fixed sample
size design (risk increases from 6% to 8% with the phase II study with 500 patients and the risk increases from 2% to 5%
with the phase II study with 1000 patients).
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Note that if the sponsor wants to control the false go rate, it must conduct some simulations in order to adapt the de-
cision rule so that the false go rate is maintained below an upper bound (5% or 10% for instance).

3.2 Sigmoid scenario with progressive toxicity scenario (and toxicity of highest dose = 0.20)

Figure 5: Theoretical curves, Sigmoid scenario with progressive toxicity scenario (and toxicity of highest dose = 0.20).

Table 2 Simulation results, Sigmoid scenario with progressive toxicity scenario (and toxicity of highest dose = 0.20).

In this scenario, the optimal dose is the second one (d=4) and the true associated PoS and utility are both approximately
equal to 0.8 (see Figure 5). With this scenario we can see that the probability of making the good decision (go to phase
III with the second dose) is clearly dependent on the sample size of the phase II study, the probability of good decision
increasing significantly with the phase II sample size. When it is equal to 250 the sponsor decides to go to phase III with
a probability approximately equal to 56%, whereas the global power is equal to 42%: this sample size does not seem
large enough for a sufficiently accurate estimation of both efficacy and safety models to allow good decisions. With 1000
patients, i.e. the largest phase II study, the probability of choosing to go to phase III significantly increases and reaches
70%: concomitantly, when the sample size is increased from 250 to 1000 patients, the mean utility and the global power
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relative increase is approximately equal to 15% .
In terms of choice of dose, the best dose (d=4) is the selected one in most of the cases, even with only 250 patients (chosen
with probability equal to 83%). But again, increasing the sample size significantly improves further the dose selection:
with 500 patients in the phase II study, the best dose is selected for phase III with a probability approaching 95%.
In this scenario, performing an interim analysis when half of the patients are recruited has some interest: the probability of
stopping at interim analysis is quite high (but the probability of wrong stop for futility is not negligible, equal to 13% and
20% for the interim analyses at 250 and 500 patients respectively) which leads to relative decrease of the mean sample size
of 20% and 33% as compared to the fixed sample size design with 500 and 1000 patients respectively. This is interesting
because this reduction of sample size does not degrade the properties of the design: considering either the probability of
going to phase III, the mean utility, the selected doses or the global power, the design with an interim analysis with half
patients has very similar properties as the fixed sample size design.

4 Discussion and Perspectives

4.1 Discussion

In this work, we have attached a utility value to each dose, using the utility function defined as the product of a measure
of the dose efficacy and a measure of the dose toxicity. We do not claim that this utility function is necessarily the best one,
but in addition to the necessary properties that should have utility functions (increase when efficacy increases while safety
is fixed and decrease when toxicity increases while efficacy is fixed), it has some desirable properties: it is a smooth and a
concave function (at least around the maximum of utility), this guarantees the existence of an optimal dose. Therefore, in
practice, choosing a utility function U(d) of the form U(d) = (e f f icacy term(d))h × (sa f ety term(d))k, with both efficacy
and safety terms ranging from 0 to 1, is a pragmatic option. The choice of exponents h and k, enables to give more or
less weight to the efficacy and safety terms: large values of the exponents put more constraint to the corresponding term
(for instance, for a large value of h, an optimal dose should show a very high efficacy). For example, for a rare disease
indication for which there is a clear unmet medical need, there should be less constraint on safety: therefore low values of
k should be chosen. On the contrary, for a very competitive therapeutic area, more constraint should be put on the safety
side, therefore large values of k should be chosen. In principle, a good option for the sponsor for choosing the utility
function, could be to gather some experts that would rank some typical efficacy/safety profiles, those reference rankings
being then used by the sponsor to choose a consistent utility function. A possible way to calibrate these values is to adopt
the Delphi method25, which is a forecasting process framework based on the results of several rounds of questionnaires
sent to a panel of experts. Several rounds of questionnaires are sent out, and the anonymous responses are aggregated
and shared with the group after each round.

In this work, we have considered the Bayesian framework for the statistical analysis of the phase II data. We advocate
for a Bayesian approach as we think it is a more flexible framework for specifying the decision rules. We have proposed
a sponsor’s decision rule based on the posterior probabilities of the doses to be the optimal one: the chosen dose being
the one that maximizes this posterior probability; we think that such a rule better accounts for the uncertainty in the
parameter values than criteria based on the ordering of numerical ”estimates” of the utilities (like the posterior mean of
the utilities for instance). Efficacy and toxicity were modeled and simulated as independent random variables: in fact,
in most of applications, at least apart from oncology indications, efficacy and safety variables are analysed separately,
implicitly assuming weak or no correlation between the two. However, even though the utility function is defined as
the product of an efficacy component and a safety component, the Bayesian analysis of the efficacy and safety variables
can be jointly conducted, introducing some correlations in the posterior distributions of the efficacy and safety parameters.

Apart from the identification of the best dose, the choice to continue to phase III is a key decision. We have proposed
criteria based on threshold values for the PoS, with 60% set as lower bound, and for the probability of observing a toxicity
rate lower than or equal to t, with 50% set as lower bound. These thresholds have to be determined by the sponsor: for the
proposed scenarios, they appeared as a good compromise between the probability of stopping in case of non interesting
profile and the probability of going to phase III in case of favourable profile. In practice, to apply the methodology, the
sponsor should conduct some simulations to identify the most relevant efficacy and safety thresholds for the targeted, or
expected, drug profile.

In order to assess the properties of the sponsor’s decision-making process mentioned above, we have conducted some
simulations (1000 study replicates) under various safety and efficacy profiles and several sample sizes of the phase II
study (250, 500 and 1000 patients). The quality of the decision rules were assessed in the light of the frequency, amongst
the 1000 study replicates, of the good decisions either for the Go/NoGo decision or the choice of the dose for the phase
III. The simulations show that estimating an optimal dose is a difficult and demanding task. For instance, for most of the
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scenarios with a satisfactory efficacy profile, the probability of making the choice of going to phase III following a phase
II study with 250 patients was always less than 60%, except in the scenario in which the drug shows almost no toxicity.
This is due to the fact that, with this sample size, the posterior distributions of the utilities, for each of the doses, are
not sufficiently concentrated around the true utility values. This leads, often, to imprecise estimations of the posterior
probabilities of the dose with the highest utility score (computed for all doses dj), which are the quantities used for dose
selection, and then to wrong selection of the optimal dose. As expected, these probabilities of making the good decision
increase with the sample size, but even with the largest sample size, the probability of making the good decision with a
large phase II study of 1000 patients only reaches 80% when the drug does not show any toxicity: this is related to the
Go/NoGo decision rule, and in this case, the sponsor should be aware of the low toxicity via simulations and should
therefore adjust the efficacy and/or toxicity thresholds to increase the probability of making the good decision with fewer
patients. The simulations clearly show that, regardless of time and budget constraints, the sponsor has always interest
in running large phase II studies to make accurate decisions regarding the termination of the development program or
the selection of the dose. But, in practice, the sample size of the phase II study is necessarily limited by budget and time
constraints: those simulations show that for some efficacy and safety profiles, for phase II study of reasonable size (i.e. 250
patients), the probability of making erroneous decision (like wrongly terminate the drug development in phase II) is not
negligible (varies between 35% and 44%), especially if inadequate choices of efficacy/toxicity thresholds are made, as it is
the case here.

Concerning the dose selection, the probability of selecting the right dose (conditional on sponsor’s decision to go to phase
III) also increases as the sample size increases. For those efficacy and safety profiles that show a clear peak of utility value
for one given dose, accurate dose selection can be achieved with limited sample size. In case several adjacent doses show
similar utility values, the identification of the optimum dose is more challenging and requires more patients.

An important point is the assessment of the type I error, in order to verify that the clinical trial stops for lack of activ-
ity, and not because of excessive toxicity. It appears that this probability can be as high as 11% for the smallest phase
II study of the fixed design (see Table 1). But again, this probability of false decision decreases as the sample size in-
creases. Regarding the sequential designs, this probability does not exceed 8% when an interim analysis is conducted
with N′2 = 250 patients, and only reaches 5% at most, when an interim analysis is conducted with N′2 = 500 patients,
which globally implies a stricter control of the type I error. The efficacy and safety thresholds we have used to specify the
utility functions and decision rules can be determined and calibrated by the sponsor in order to maintain the type I error
below a desired level. In order to improve this type I error, the sponsor should conduct some simulations to identify the
most relevant efficacy and safety thresholds for the targeted, or expected, drug profile, as previously discussed. In fact, a
bad choice of these thresholds can lead to an undesired increase in the type I error.

We have seen that for some safety and efficacy profiles, it is necessary to run a large phase II study to make good de-
cisions, whereas for others, a phase II study of moderate sample size is sufficient to make decisions with acceptable risk
of mistakes (including type II error), between 25% and 35%, in other words, with acceptable phase II power, between
65% and 75% (success rate of phase II is usually between 40%-50%). An appealing strategy could be to plan upfront a
large sample phase II study and perform an interim analysis, when half of the patients are enrolled, and try to make
the selection at this stage. For some scenarios, in particular when the best dose shows a clear benefit in utility as com-
pared to the others, this approach has good properties: with a quite large probability of study termination at interim
analysis, it enables to reduce the sample size while maintaining the properties of the fixed large sample size design. For
some other scenarios, it is less useful as the study is rarely terminated at the interim analysis, the sponsor being unable
to clearly identify the best dose at interim analysis. This could be seen as a safe approach aiming to choose the opti-
mal dose when half of the patients are enrolled, only if these analyses are reliable and clearly identify this dose as the
best one among the others. In all the chosen scenarios, the sponsor decides to stop the trial when at interim analysis,
P̂[U(d∗) > U(dj) f or all the other doses dj|data] ≥ l. This threshold of l has to be chosen by the sponsor: we tested
several values and the threshold of l = 0.80 seemed to show the best compromise between quality of dose selection (with
a high threshold the choice of dose is more accurate) and frequency of early termination (with a too high threshold the
studies are rarely terminated at interim analysis which reduces the interest of the method). Also, in our simulations, we
concluded that those interim analyses only slightly increased the risk of wrongly taking the decision to go to phase III. For
the Sigmoid scenario with a progressive toxicity profile for instance, the probability of taking the wrong decision with an
interim analysis at N′2 = 250 only increased by 0.2% compared to the fixed design with N2 = 500 (see Table 2).

4.2 Perspectives

We highly recommend further development related to the way the Bayesian analyses are conducted. Risks of wrongly
taking the decision to go to phase III are illustrative of the technical difficulty of simultaneously estimating two complex
dose-response models with enough accuracy to properly rank doses using a utility function combining the two. In our
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simulation example, the sponsor’s approach is Bayesian using informative and non-informative priors for efficacy (and
informative priors for toxicity) as it is usually the case in such context. This choice was driven by the will to have a ”con-
servative” approach leading to choose priors that minimizes ”subjectivity” as compared to the information included in the
data. But in practice, as long as those analyses are made for internal decision-making, the sponsor could try to leverage
the information available before the phase II was conducted to improve decisions. Maybe, for further development, it
would be interesting to assess (through simulations) what level of information brought by the prior would be sufficient to
improve the decisions; those considerations could guide the sponsor with respect to the nature of information to collect, in
pre-clinical development or phase I studies, to inform those priors and then improve the utility-based decisions and dose
selections. This could be done by using more informative priors related to the available information:

(i) For efficacy, based on previous studies (like a proof of concept phase IIa trial) some information could be available
related to the Emax parameter for instance: a prior N(Emax, σ2

Emax
) not centred on 0, with a not too much inflated

variability could be used

(ii) For the safety, some precise knowledge could be available such as the probability of occurrence of toxicity in the
control group information that can be translated in an informative prior on the intercept of the Probit model

In our work, the interim and final analyses are conducted the same way. But in fact, according to sponsor’s objectives
related to the interim analysis, they could be conducted completely differently. For instance, if the aim of the interim
analysis is to assess whether the drug shows some efficacy or not (with no further objective to identify the optimal dose),
then a specific decision rule could be built in relation to the efficacy of the largest dose only (for example, the decision rule
could be defined as a minimal PoS in phase III for the largest dose; studies would be stopped if efficacy of the largest dose
is insufficient). In that case, studies would be stopped only for futility (we only stop for failure, never for success).

On the other hand, one can (numerically) optimize a phase II design, according to other decision criteria, in different
contexts, based on different dose-response models: Linear, Emax (Sigmoid or not), Logistic, and even work on what hap-
pens when the sponsor computes the utility, chooses the dose with the bad dose-response model: are there more robust
models than others? Is the Model Averaging approach more interesting?

An interesting perspective to work on is to transpose our proposed utility-based approach to oncology, for a phase I/phase
II clinical development. However, applying a similar approach to oncology would require some significant modification
of the methodology. In general, the efficacy criterion used in phase II is different from the efficacy criterion used in
phase III. Very often, Best Overall Response is the phase I or phase II criterion whereas the phase III criterion is the
Progression Free Survival and/or the Overall Survival. Therefore, unless basing calculations on strong assumptions,
it would be difficult to assess the PoS of a dose in phase III only based on a phase I/phase II study. Phase II oncol-
ogy studies with parallel group designs (including various doses or often various dose regimen) exist, but they are rare:
very often the choice of dose is based on phase I dose escalation studies. Accordingly, an interesting application of our
approach would be to guide the dose escalation (choice of the next dose cohort) using a utility-based approach (note
that similar approaches have been considered in bivariate toxicity/efficacy Continual Reassessment Methods in26). A
possible approach for a phase I dose escalation study would be to define a utility function having the following form
U(d) = P(Response rate(d) ≥ π1)

hP(Toxicity rate(d) ≤ π2)
k. Then, after each cohort is enrolled, an optimal dose would

be chosen, and would be the dose of the next cohort (other complementary safety rules could be taken into account in
addition). Such a definition of utility is only applicable if we can define probability distribution for the model parameters:
the Bayesian framework is the most suitable for this purpose.
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