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a b s t r a c t

Max-stable processes play a fundamental role in modeling the spatial dependence of
extremes because they appear as a natural extension of multivariate extreme value
distributions. In practice, a well-known restrictive assumption when using max-stable
processes comes from the fact that the observed extremal dependence is assumed to be
related to a particular max-stable dependence structure. As a consequence, the latter is
imposed to all events which are more extreme than those that have been observed. Such
an assumption is inappropriate in the case of asymptotic independence. Following recent
advances in the literature, we exploit a max-mixture model to suggest a general spatial
model which ensures extremal dependence at small distances, possible independence
at large distances and asymptotic independence at intermediate distances. Parametric
inference is carried out using a pairwise composite likelihood approach. Finally we apply
our modeling framework to analyze daily precipitations over the East of Australia, using
block maxima over the observation period and exceedances over a large threshold.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The last decade has registered a considerable effort to model extremes of data collected through a collection of sites and
the interested reader is referred to Bacro and Gaetan (2012) and Davison et al. (2012) for recent reviews.

If themain interest is producing return level maps, themodeling issue is mainly concentrated on relating the parameters
of the marginal distributions in each site to geographical covariates. In case of a residual dependence, uncertainty of the
estimates can be further adjusted (Fawcett and Walshaw, 2007). Additionally, this modeling approach can be extended to
be hierarchical adding a layer for incorporating spatial dependence through a spatial random process (Casson and Coles,
1999; Cooley et al., 2007; Gaetan and Grigoletto, 2007; Sang and Gelfand, 2010).

If we are interested in modeling the joint occurrence of extremes over a region, then the dependence structure
of a multivariate variable needs to be explicitly stated. In this case the usual modeling strategy consists in two steps
(1) estimating the marginal distribution and (2) characterizing the dependence via a model issued by the multivariate
extreme value (MEV) theory (see for example Beirlant et al., 2004, and the references therein). These two steps can be
integrated in a proper inferential analysis (Padoan et al., 2010; Ribatet et al., 2012).

TheMEV theory deals with the tail behavior of a multivariate distribution fromwhich we pretend that a sample is drawn
and distinguishes three different forms of extremal dependence: asymptotic dependence, asymptotic independence and
exact independence.
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Asymptotic independence and dependence between a pair of random variables Z1 and Z2, with marginal distributions F1
and F2, can be defined in terms of

χ = lim
u→1−

Pr(F1(Z1) > u|F2(Z2) > u), (1)

where χ = 0 and χ > 0 represent asymptotic independence and dependence, respectively.
An example of a multivariate distribution which is asymptotically independent is given by the multivariate Gaussian

distribution when the components are not perfectly correlated (Sibuya, 1960).
However the multivariate framework is inadequate for predicting or simulating values at unobserved sites. Therefore in

the last years there was a general consensus in representing extreme spatial variability by max-stable processes (de Haan,
1984; Smith, 1990; Schlather, 2002; Kabluchko et al., 2009; Opitz, 2013) that are an infinite dimensional generalization of
multivariate distributions for themaxima. The drawback of these processes is that they admit only two types of dependence
structures in their finite dimensional distributions: asymptotic dependence or exact independence. This restriction is
constraining when we model the tail behavior of the multivariate distribution of the data because it is difficult to assess
in practice whether a data set should be modeled using an asymptotically dependent or asymptotically independent model
(see Thibaud et al., 2013; Davison et al., 2013, for recent examples of these difficulties).

For coping with dependence structures that have not converged to their limiting form at observable levels, Wadsworth
and Tawn (2012) introduced the hybrid spatial dependence model. The model originates from a max-mixture, namely
Z(s) = max(βX(s), (1 − β)Y (s)) with 0 ≤ β ≤ 1, of an asymptotically dependent process X (a max-stable process,
for instance), and an asymptotically independent process Y .

In applications such as environmental ones different types of extremal dependencies could be present according the
distance between two locations. As motivating example we shall consider winter daily cumulative rainfall, recorded at 31
monitoring sites in the East of Australia (Fig. 3). We quantify the strength of the asymptotic dependence of a pair of random
variables Z(s) and Z(s+h), located at sites s and s+h, assuming the samemarginal distribution F , bymeans of the dependence
measure (Coles et al., 1999)

χ(h, u) = 2 −
log Pr(F(Z(s + h)) < u, F(Z(s)) < u)

log Pr(F(Z(s)) < u)
, 0 ≤ u ≤ 1. (2)

In case of asymptotic independence, χ(u, h) ≃ 0 for u ≃ 1 and χ(h, u) is zero for exactly independent variables for all
u. Discriminating between asymptotic dependence and asymptotic independence by means of the estimates of χ(h, u) or
χ(h), its limit version when u → 1−, is not easy, especially for rainfall extremes (Serinaldi et al., 2014). However the
nonparametric estimates of χ(h, u) (see Fig. 5) suggest that asymptotic dependence is present up to a distance r1 and
asymptotic independence prevails for distances between r1 and r2 whereas for larger distances, exact independence could
also be conjectured (r1 = 500 km and r2 = 1000 km, approximately, in Fig. 5).

In Wadsworth and Tawn (2012) the authors discuss the idea of having asymptotic dependence present up to a finite
lag but in the reported examples asymptotic dependence or asymptotic independence are present for any distance, even
if it is dimming with the distance. Following their idea, the contribution of the present paper is to consider examples
of max-mixture between a max-stable process, that yields exact independence between maxima after a finite spatial lag
and an asymptotically independent process that may or not yield exact independence between observations after that
lag.

The max-stable process stems from the construction in Schlather (2002, p. 39) and, as example, we use the truncated
Extremal Gaussian process (see also Davison and Gholamrezaee, 2012). For the asymptotically independent process we can
consider stationary spatial processeswith bivariate distributions satisfying only a general condition on the bivariate survivor
functions (Ledford and Tawn, 1996, 1997). We exemplify our construction by means of a marginal transformed Gaussian
process with possible finite range covariance function and of an inverse truncated Extremal Gaussian process.

The paper is organized as follows. In Section 2 we briefly introduce the max-stable and asymptotically independent
processes and some classical extremal dependence measures. Our modeling proposal and its main properties are detailed
in Section 3 and a pairwise likelihood approach is presented for the statistical inference. In Section 4 we show, by means
of a simulation study, that this approach seems effective in order to identifying different max-mixture models. Section 5 is
devoted to illustrate themodeling issues related to our motivating example. Concluding remarks and some perspectives are
addressed in Section 6.

2. Spatial extremes modeling

2.1. Models for asymptotic dependence

Max-stable processes (de Haan, 1984) are an infinite-dimensional generalization of multivariate extreme value theory.
The stochastic process X = {X(s), s ∈ D}, where D is a spatial domain, is a max-stable process if and only if there exist
functions an(·) > 0 and bn(·) on R such that

max
1≤i≤n

Xi(s)− bn(s)
an(s)

d
= X(s)
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where X1, X2, . . . are independent copies of X . In the sequel andwithout loss of generality,D is a subset of R2 and univariate
margins of max-stable processes are assumed to be unit Fréchet, i.e. Pr(X(s) ≤ x) = exp(−1/x), x > 0.

Amax-stable process has a spectral representation (de Haan, 1984; Schlather, 2002). Assume that ri, i ≥ 1, are points of a
Poisson process on (0,∞)with intensity dr . LetWi, i ≥ 1, be independent and identically distributed (i.i.d.) copies of a real
valued continuous random function W = {W (s), s ∈ D}, independent of the {ri} and such that E[W+(s)] = µ ∈ (0,∞),
where W+(s) = max(W (s), 0). Then

X(s) = µ−1 max
i≥1

W+

i (s)/ri (3)

is a max-stable process with unit Fréchet margins.
Choosing a particular expression for Wi leads to known examples of max-stable processes: the Gaussian extreme value

process (Smith, 1990), the extremal Gaussian process (Schlather, 2002), the Brown–Resnick process (Kabluchko et al., 2009)
and the extremal t process (Opitz, 2013).

In the sequel we focus on a particular instance of a max-stable process: the Truncated Extremal Gaussian (TEG) process.
The TEG process has been introduced by Schlather (2002) and has been exemplified by Davison and Gholamrezaee (2012).
As in the extremal Gaussian model the model derives from an underlying Gaussian process censored on a compact random
set.

Let ri, i ≥ 1, be defined as previously and consider Wi(s) = c max(0, εi(s))IBi(s − Ui) with εi independent copies of a
stationary Gaussian process ε = {ε(s), s ∈ D}with zeromean, unit variance and correlation function ρ(·), IB is the indicator
function of a compact random set B ⊂ D , of which Bi are independent replicates andUi are points of a homogeneous Poisson
process of unit rate on D , independent of the εi. Choosing the constant c such that c−1

= E

max{Wi(s), 0}IBi(x − Ui)


, the

TEG process is defined as

X(s) = max
i≥1

Wi(s)
ri

. (4)

The marginal distribution of X is unit Fréchet and the bivariate one is given by

Pr (X(s) ≤ t1, X(s + h) ≤ t2)

= exp


−


1
t1

+
1
t2


1 −

α(h)
2


1 −


1 − 2

(ρ(h)+ 1)t1t2
(t1 + t2)2

1/2


(5)

where α(h) = E[|B ∩ (h + B)|]/E[|B|]. If B is a disk of fixed radius r , α(h) can be approximated by

α(h) ≃ (1 − ∥h∥/(2r)) I[0,2r](∥h∥). (6)

2.2. Models for asymptotic independence

A multivariate vector is asymptotically independent (AI) if and only if all its pairs of components are AI (de Oliveira,
1962). As a consequence, if all the bivariate distributions of a stochastic process are AI, the stochastic process is said to be
AI.

For modeling AI we assume a specific model for bivariate joint tails as described in more detail in Ledford and Tawn
(1996).

We assume that {Z(s), s ∈ D} is a stationary spatial process with unit Fréchet margins. Under weak conditions, Ledford
and Tawn (1997, 1998) showed that the bivariate tail distribution of a pair of observations at s and s + h admits an
approximation such that

Pr(Z(s) > z1, Z(s + h) > z2) ∼ z
−c(1)h
1 z

−c(2)h
2 L′

h(z1, z2)

for z1 and z2 simultaneously large, where 0 < 1/(c(1)h + c(2)h ) ≤ 1 and L′

h ≠ 0 a bivariate slowly varying function (Bingham
et al., 1987, Appendix 1)with limit function gh such that for all x > 0, y > 0 and c > 0, gh(x, y) = limt→∞ L′

h(tx, ty)/L
′

h(x, y)
and gh(cx, cy) = gh(x, y). The homogeneity property of gh implies that gh(x, y) = g∗

h (w)withw = x/(x+ y) ∈ [0, 1] where
the function g∗

h , often called the ray dependence function, is assumed to be a slowly varying function at 0 and 1.
Assuming z1 = z2 = z leads to the Ledford–Tawn (LT) model for bivariate joint tails (Ledford and Tawn, 1996):

Pr(Z(s) > z, Z(s + h) > z) ∼ z−1/η(h)Lh(z) for z → ∞ (7)

where Lh(·) is a univariate slowly varying function. The coefficient η(h) varies between 0 and 1 and determines the decay
rate of the bivariate tail probability Pr(Z(s) > z, Z(s + h) > z) for large z. Despite its simplicity, Eq. (7) appears as a very
general model for bivariate joint tails which can provide, as detailed below, a measure of the extremal dependence between
Z(s) and Z(s + h) through the coefficient η(h). Asymptotic independence corresponds to η(h) < 1 and in such a case, η(h)
measures the degree of dependence in the asymptotic independence at h, where η(h) > 1/2 and η(h) < 1/2 indicate
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positive and negative association, respectively. When the variables Z(s) and Z(s + h) are independent η(h) = 1/2. There
are few examples of AI processes in the literature. In the sequel three asymptotically independent processes are considered
with explicit expressions of (7).
Example 1: Stationary Gaussian process

Let {Y (s), s ∈ D} be a stationary Gaussian process with zero mean, unit variance and correlation function ρ(h). Because
bivariate Gaussian variables are AI provided that they are not perfectly correlated (Sibuya, 1960), the spatial process
Z ′(s) = −1/ log(Φ(Y (s))) has unit Fréchet margins and verifies (Ledford and Tawn, 1996)

Pr(Z ′(s) > z, Z ′(s + h) > z) ∼ Chz−2/{1+ρ(h)}(log z)−ρ(h)/{1+ρ(h)}

with Ch = (1 + ρ(h))3/2(1 − ρ(h))−1/2(4π)−ρ(h)/{1+ρ(h)}. So η(h) = {1 + ρ(h)}/2.
Example 2: Inverse max-stable process

The inversemax-stable process (Wadsworth and Tawn, 2012) is obtained by simply inverting amax-stable process. More
precisely, let {X(s), s ∈ D} be a max-stable process defined as in (3). Then the process

Z(s) = −1/ log[1 − exp{−1/X(s)}]

is an AI process with Fréchet margins. For any fixed h, the tail dependence coefficient is η(h) = 1/θ(h) where θ(h) is the
extremal coefficient of the max-stable process.
Example 3:Max-Gaussian ratio process

Recently Padoan (2013) introduced a new family of spatial processeswhose univariate limit distributions are unit Fréchet
and bivariate distributions are able to cope with different levels of dependence according to the magnitude of extreme
events. Such processes, called max-Gaussian ratio processes, are obtained as pointwise maxima of samples from a ratio of
Gaussian processes with common correlation function. For every n ∈ N, let {Un(s), s ∈ D} and {Vn(s), s ∈ D} be two
independent Gaussian processes on D with mean zero, unit variance and common correlation function, ρn(h), such that

ρn(h) = 1 −
λ(h)2

2n2
+ o


n−2 , as n → ∞.

Here λ(h) > 0 for ∥h∥ ≠ 0. Assume also that Yi,n(s) are independent copies of Yn(s) = Un(s)/Vn(s) and define
Mn(s) = maxi=1,...,n Yi,n(s). Then the normalized bivariate asymptotic distribution of (Mn(s),Mn(s + h)) is

Pr(W (s) ≤ w1,W (s + h) ≤ w2) ≡ lim
n→∞

Pr

Mn(s) ≤

nw1

π
,Mn(s + h) ≤

nw2

π


= exp


−Vλ(h)(w1, w2)


where

Vλ(h)(w1, w2) =
1
2

 2
w1

+
2
w2

+ λ(h)+


1
w1

−
1
w2

2

+ λ(h)2 −


1
w2

1
+ λ(h)2 −


1
w2

2
+ λ(h)2

 .
For a given λ(h),

Pr(W (s) > w,W (s + h) > w) ∼


1 +

1
2λ(h)


w−2 as w → ∞

leading to a constant tail dependence parameter η(h) = 1/2. As underlined by Padoan (2013), a general framework based
on Eq. (7) allows for different speeds of convergence to the independence case and could be used for dependence structures
with a slower convergence than that of max-Gaussian ratio processes.

2.3. Pairwise extremal dependence measures

We recall here some measures of extremal dependence for spatial processes. From a theoretical point of view, the
dependence structure of any multivariate extreme distribution is characterized by the exponent measure (see Resnick,
1987, for example). Unfortunately, it is quite difficult to infer this measure from the data. That is why summaries of
extremal dependence based on pairwise measures have been proposed (Coles et al., 1999). For a stationary spatial process
Z = {Z(s), s ∈ D} with univariate cumulative distribution function F , the pairwise extremal dependence between two
sites s and s + h can be characterized using the function

χ(h) = lim
u→1−

Pr(F(Z(s + h)) > u | F(Z(s)) > u)

since we have pairwise asymptotic independence or asymptotic dependence (AD) if and only if χ(h) = 0 or χ(h) ≠ 0,
respectively (Sibuya, 1960). Alternatively χ(h) can be expressed as limit for u → 1− of χ(h, u), defined in (2). The function
χ(h, ·) can be interpreted as a quantile-dependent measure of dependence between two sites separated by h, giving more
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insight if Z(s) and Z(s+h) are positively or negatively associated (Coles et al., 1999). Note also that for a max-stable process
any bivariate distribution is max-stable and then the function χ(h, u) is constant with respect to u for a fixed h.

The extremal coefficient function (Schlather and Tawn, 2003) is a specific measure of the dependence for a max-stable
process X . Given a pair of sites s and s + h the extremal coefficient function θ(h) is defined as

Pr(X(s) ≤ x, X(s + h) ≤ x) = Pr(X(s) ≤ x)θ(h).

Here 1 ≤ θ(h) ≤ 2 and θ(h) = 1 or θ(h) = 2 corresponds to perfect dependence or exact independence, respectively. It is
easy to show that θ(h) = 2 − χ(h).

Special instances of the Gaussian extreme value process (Smith, 1990) or the Brown–Resnick process (Kabluchko et al.,
2009) span the range of possible extremal dependencies from perfect dependence to exact independence provided that
distance ∥h∥ increases indefinitely. Instead the extremal Gaussian process (Schlather, 2002) cannot account for extremes
that become independent after somedistance. Note that the TEGprocess has the feature that its extremal coefficient function

θ(h) = 2 − α(h)

1 − 2−1/2

[1 − ρ(h)]1/2


(8)

reaches the upper value (θ(h) = 2) for ∥h∥ large enough. This specific feature will be exploited later.
Under asymptotic independence, both χ(h) and θ(h) functions are uninformative and of limited interest. Assume again

that Z is a stationary spatial process with univariate cumulative distribution function F , and define

χ̄(h, u) =
2 log Pr(F(Z(s)) > u)

log Pr(F(Z(s)) > u, F(Z(s + h)) > u)
− 1, 0 ≤ u ≤ 1. (9)

The limit χ̄(h) = limu→1− χ̄(h, u), with −1 < χ̄(h) ≤ 1, provides another measure that increases with the extremal
dependence between Z(s) and Z(s + h) (Coles et al., 1999). It turns out that for AD process χ̄(h) = 1, for all h. Moreover
under the condition (7), it is easy to show that χ̄(h) = 2η(h)−1 and the tail dependence coefficient η(h) appears as another
dependence measure of interest (Ledford and Tawn, 1996, 1997; Ancona-Navarrete and Tawn, 2002).

Note that the empirical estimate of (9) provides a useful statistic for inspecting the tail behavior when u < 1. For the
stationary Gaussian process with correlation function ρ(h)we can show that χ̄(h, u) varies with u (Coles et al., 1999, p. 348)
with limit χ̄(h) = ρ(h) and η(h) = (1+ρ(h))/2. For the inverse max-stable process, χ̄(h, ·) is a constant function. In other
words, bivariate survival distributions of inversemax-stable processes are uniquely linked to themarginal survival function
of the process whatever the magnitude of the considered extreme events. Moreover we have χ̄(h) = 2/θ(h)− 1.

Finally, the function χ̄(h, u) of a max-Gaussian ratio process varies with u and tends to 0 as u → 1− for a fixed value of
λ(h).

3. Max-mixture modeling of spatial extremal dependence

3.1. Model specification

Let X = {X(s), s ∈ D} and Y = {Y (s), s ∈ D} be two independent stationary spatial processes, such that X is a max-
stable process and Y an AI process both with unit Fréchet univariate distributions. We define the max-mixture (MM)model
as

Z(s) = max(βX(s), (1 − β)Y (s)), 0 ≤ β ≤ 1. (10)

The MM model has been introduced by Wadsworth and Tawn (2012) for modeling situations where the extremal
dependence structure may vary with distance. Even if it is not max-stable process, the MM model allows a different order
of decay towards an asymptotically dependent limit which inherits the same dependence structure of X . In Wadsworth
and Tawn (2012) various instances of max-stable processes along with their inverted versions as AI processes have been
considered and all fitted models had asymptotic dependence or asymptotic independence present at all spatial lags.

Owing to our motivating data set, we propose in the sequel to extend the set of examples by considering a max-mixture
model that deals with asymptotic dependence at short lags, asymptotic independence at intermediate lags and possibly
exact independence at larger lags. More precisely we choose as X a TEG process (4) with covariance function ρ(·). Moreover,
with respect to the examples in Wadsworth and Tawn (2012), we broaden the class of considered AI processes by taking
into account AI processes with unit Fréchet univariate distributions and bivariate distributions satisfying the LT model (7)
for η(h) < 1.

Using the independence between the two processes X and Y it is straightforward to obtain the bivariate distribution for
a pair of sites, namely

Pr(Z(s) ≤ z1, Z(s + h) ≤ z2)

= exp


−β


1
z1

+
1
z2


1 −

α(h)
2


1 −


1 − 2

(ρ(h)+ 1)z1z2
(z1 + z2)2

1/2


F h
Y


z1

1 − β
,

z2
1 − β


(11)

where F h
Y (y1, y2) = Pr(Y (s) ≤ y1, Y (s + h) ≤ y2). Since Pr(Z(s) ≤ z) = Pr(Z(s) ≤ z, Z(s + h) < ∞) = exp (−1/z) the

model has unit Fréchet univariate distribution.
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3.2. Pairwise extremal dependence measures of the model

Exploiting characterization (7), the bivariate tail distribution of (10), for large z, can be expressed as:

Pr(Z(s) > z, Z(s + h) > z) =
β(2 − θ(h))

z
+


z

1 − β

−1/η(h)

Lh


z

1 − β


+ O(z−2).

So it is easy to deduce the χ(h) function using Eq. (8), namely

χ(h) = β (2 − θ(h)) = β α(h)


1 −


1 − ρ(h)

2


.

If the approximation (6) holds, it turns out that pairs of sites separated by a distance ∥h∥ are AD if this distance is smaller
than 2r and AI otherwise.

For evaluating χ̄(h), we need to evaluate the logarithm of the bivariate tail distribution. We obtain

log Pr(Z(s) > z, Z(s + h) > z)

=


log (β(2 − θ(h)))− log z + o(log(z)) if 2 − θ(h) ≠ 0

−η(h)−1 log


z
1 − β


+ logLh


z

1 − β


+ o(1), otherwise.

If 2 − θ(h) ≠ 0, we can conclude that χ̄(h, z) → 1 as z → ∞. On the other hand, if 2 − θ(h) = 0, we have

χ̄(h, z) ∼


−2 −

2
z log z



−

1
η(h)


1 −

log(1−β)
log z


+

log(Lh(z/(1−β)))
log z

 − 1,

i.e. χ̄(h, z) → 2η(h)− 1 as z → ∞. Owing to (6) the results can be summarized into the formula

χ̄(h) = I[0,2r](∥h∥)+ (2η(h)− 1)I[2r,∞)(∥h∥),

that highlights the different behavior according to the distance between two sites. Let R > 2r and assume that η(h) = 1/2
for ∥h∥ > R. Then pairs of sites separated by a distance ∥h∥ are asymptotically dependent for ∥h∥ < 2r , asymptotically
independent for 2r ≤ ∥h∥ ≤ R and near independent for ∥h∥ > R. For example, for the transformed stationary Gaussian
process with unit Fréchet margins and correlation function ρY (h), we have:

χ̄(h) = I[0,2r](∥h∥)+ ρY (h)I[2r,∞)(∥h∥).

In that case, independence is achieved if the correlation function ρY (·) is such that ρY (h) = 0 when ∥h∥ > R.

3.3. Model inference

For the model (10) since the full likelihood is intractable to evaluate, a composite likelihood approach is used for
parametric estimations using pairs. The composite likelihood is an inference function derived by multiplying likelihoods
of marginal or conditional events (Lindsay, 1988; Varin, 2008). Such an approach has been applied in spatial extremes
using bivariate densities of max-stable processes (Padoan et al., 2010) or bivariate density of exceedances over a large
threshold (Jeon and Smith, 2012;Wadsworth and Tawn, 2012; Bacro and Gaetan, 2014; Huser and Davison, 2014). Recently,
improvements have been obtained for the parameters estimations of some max-stable processes, e.g. Brown–Resnick
processes: extremal increments of the process allow to work with a complete likelihood function (Engelke et al., 2015;
Wadsworth and Tawn, 2014). A direct modeling of the exceedances of a max-stable process is also possible using a
generalized Pareto process (Ferreira and de Haan, 2014) but such an approach is only of interest in the case of asymptotic
dependence.

If zik is the site-wise block maximum, for instance seasonal maximum, observed at site si, i = 1, . . . ,N and at time
tk, k = 1, . . . ,M , the pairwise (weighted) log-likelihood is defined by

pl(ψ) =

M
k=1

plk(ψ) =

M
k=1

N−1
i=1

N
j>i

wij log L(zik, zjk;ψ) (12)

where L(zik, zjk;ψ) is the likelihood of a pair zik, zjk, The weights wij are non negative and specify the contributions of each
pairs. A simple weighting choice is to let wij = 0 for any pair whose distance exceeds a specified value δ, and let wij = 1,
otherwise.
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Recently Wadsworth and Tawn (2012) argued that, under asymptotic independence, it is more natural to model the
original events provided that they exceed a large threshold, u. Following their proposal the pairwise likelihood contribution
L(zik, zjk;ψ) becomes

L(zik, zjk;ψ) =


∂2

∂zik∂zjk
G(zik, zjk;ψ) if max(zik, zjk) > u

G(u, u;ψ) if max(zik, zjk) ≤ u
(13)

where zik is the observed value and G(·, ·) designates the bivariate distribution (11).
When dealing with exceedances it is not reasonable to assume that the observations are independent over the time.

Assuming that the space–time process is temporally α mixing, the function (12) is a contrast function and conditions
in Guyon (1995, Theorem 3.4.7) are satisfied. Thus the maximum composite likelihood estimator ψ is asymptotically
Gaussian for large M and its asymptotic variance is given by the inverse of the Godambe information matrix G(ψ) =

H(ψ)[J(ψ)]−1H(ψ). Standard error evaluation requires consistent estimation of the matrices H(ψ) = E(−∇
2pl(ψ))

and J(ψ) = Var(∇pl(ψ)).
It is worth noting that such results hold if the data are actually from the limit model and this fact can add a bias (for an

accurate study see Jeon and Smith, 2012) and, consequently, further uncertainty in the estimates.
The matrix H(ψ) can be estimated by H = −∇

2pl(ψT ). Estimation of the matrix

J(ψ) =

M
k=1

M
k′>k

Cov

∇plk(ψ)∇plk′(ψ)

′


requires some care when we deal with temporally dependent data. In this paper we estimate J by means of a subsampling
technique (Carlstein, 1986). More precisely, we consider B overlapping blocks Db ⊂ {1, . . . ,M}, b = 1, . . . , B, of size db
and the estimate

J =
M
B

B
b=1

1
db

∇plDb
(ψ)∇plDb

(ψ)′
where plDb is the pairwise likelihood evaluated over the block Db.

Finally we mention that an appropriate model selection criterion to the pairwise likelihood is the composite likelihood
information criterion (Varin and Vidoni, 2005), namely

CLIC = −2

pl(ψ̂)− tr{Ĥ−1Ĵ}


.

Lower values of CLIC indicate better fit.

4. Simulation study

To assess the quality of the estimation procedure in case of the MM model (10), a simulation study has been carried
out. We have chosen for X a TEG process (4) where B is a disk with a fixed radius r and exponential correlation function
ρ(h) = exp(−∥h∥/ρ1), ρ1 > 0. The asymptotically independent process, Y , is given by Y (s) = −1/ log(Φ(Y ′(s))), where
Φ is the cumulative distribution function of a standard normal distribution and {Y ′(s), s ∈ D} is a Gaussian spatial process
with spherical correlation function, i.e. 1 − 1.5(∥h∥/ρ2)+ 0.5(∥h∥/ρ2)3, for ∥h∥ ≤ ρ2, zero otherwise, ρ2 > 0.

Under this setup extreme observations at sites separated by a vector h are asymptotically dependent if ∥h∥ < r ,
asymptotically independent if r ≤ ∥h∥ < ρ2 and independent if ∥h∥ ≥ ρ2, provided that r < ρ2.

Five simulated images of the MM model over the [0, 1]2 square are shown in Fig. 1, according to different values of
the mixing parameter β . Actually, in order to appreciate the role of the mixing parameter β , the values in the images are
derived by considering the simulationwhen β = 0 (AI process) and β = 1 (AD process). Note that the degree of smoothness
decreases with β .

In the simulation study we have considered a moderately sized data set with N = 49 sites and M = 1000 independent
observations. To avoid too systematic distances between pairs of sites, a non regular spatial grid has been considered. The
[0, 1]2 square is divided into 49 equal sub-squares and within each sub-square a point is uniformly chosen at random. We
set ρ1 = 0.2, ρ2 = 0.8 and r = 0.25 and different values of β ∈ {0, 0.25, 0.50, 0.75, 1}.

The parameters are estimated on 500 data replication using the composite likelihood approach detailed in Section 3.3.
The threshold u is taken corresponding to the 0.9 empirical quantile at each site and the δ value is chosen as the 0.9 quantile
of the distribution of the distances between pairs of sites.

For compactness we report only the results for 500 data replications with β = 0, 0.25, 0.75, 1. For β = 0.5 we have
obtained similar results. The boxplots in Fig. 2 that, overall, the parameters arewell estimated exceptρ2 the parameter of the
spherical correlation for which the estimate is significantly biased. This inadequacy seems consistent with the difficulties
in estimating the parameter of the spherical correlation function in Gaussian models (Mardia and Watkins, 1989). In our
example a justification for choosing a spherical correlation function is to consider a potential extremal exact independence
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Fig. 1. Simulations of theMMβ model (10) on the logarithm scale according different values of β ∈ {0, 0.25, 0.50, 0.75, 1}. The compact set B is taken as
a disk with a fixed radius r = 0.25. An exponential correlation function with parameter ρ1 = 0.2 is chosen for the underlying Gaussian process. For the AI
process a Gaussian random field is considered with a spherical correlation function with parameter ρ2 = 0.8.

Fig. 2. Boxplots of 500 estimates from 1000 independent copies of the MMβ model (from left to right: β = 0, β = 0.25, β = 0.75 and β = 1) with
ρ1 = 0.2, ρ2 = 0.8 and r = 0.25. For β = 0 and β = 1, only the results for the identifiable parameters are reported.

for distances larger than ρ2. Simulations with an exponential correlation function not reported here lead to unbiased
estimates of the range parameter.

Thereafter, we assessed whether CLIC is useful in identifying the true model, i.e. in our framework if we can use CLIC
for discriminating between asymptotic independence, asymptotic dependence or a mixture of this. We have considered
500 simulations from mixture models with the same setting as before. In Table 1 we summarize our findings that are quite
encouraging. We denote by MMβ , β ∈ {0, 0.25, 0.50, 0.75, 1} the MM model according to different values of the mixing
parameter. When the simulations come from MMβ , β = 0.25, 0.5 and 0.75, identification based on minimizing the CLIC
value performs extremely well. Moreover the proportion of simulations in which the true model is detected is 68.6% if the
true model is the AI process (MM0). This proportion increases to 80% when the TEG process (β = 1) is the true model.
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Table 1
Number of identified models according CLIC under different
MMβ model, β ∈ {0, 0.25, 0.50, 0.75, 1}with ρ1 = 0.2, ρ2 =

0.8, r = 0.25.

Gaussian MM TEG

MM0 346 154 0
MM0.25 0 500 0
MM0.50 0 500 0
MM0.75 0 498 2
MM1 0 100 400

Fig. 3. Geographical locations of the 31 meteorological stations in the East Australia. Stations with a label in bold character are used for model inference
and the other stations are put aside for validating the models.

5. Real data example

We analyze daily rainfall data from the 31 stations in the East of Australia whose locations are shown in Fig. 3. The values
come from the daily rainfall data set of Lavery et al. (1992), available at time of writing at ftp.bom.gov.au/anon/home/ncc/
www/change/HQdailyR.

Daily rainfall totals are for the 24-hours (measured at 9 am) andwe consider days in thewinter period (April–September)
for 49 years ranging from 1955 to 2003.

Empirical estimates of the functions χ(h, u) and χ̄(h, u) can be constructed on the basis of observed data by using the
empirical estimates of univariate and bivariate distributions. In order to explore possible anisotropy of the dependence we
have plotted (Fig. 4) the loess smoothing of χ̂(h, u) and ˆ̄χ(h, u) at u = 0.975 with respect to the distances in different
directional sectors, namely (−π/8, π/8], (π/8, 3π/8], (3π/8, 5π/8], (5π/8, 7π/8], where 0 represents the northing
direction. Based on these estimates there is no clear evidence of anisotropy even if a stronger spatial dependence appears
in the northing direction.

Moreover, as we mentioned in the introduction, the isotropic estimates (Fig. 5) of the functions χ̂(h, u) and ˆ̄χ(h, u) at
different values of the threshold u suggest that asymptotic dependence between sites seems to be present up to a distance
of 500 km, and asymptotic independence could be conjectured between 500 and 1000 km distances. Therefore a max-
mixturemodel seems a good candidate for interpreting the extreme value dependence. However the strength of dependence
decreases when considering exceedances of increasing thresholds. This fact highlights the difficulty in a proper modeling of
the asymptotic dependence for short distances.

In the sequel, we shall consider seven models that belong to three classes: max-mixture, max-stable and asymptotically
independent. Each model is fitted using a subset of 16 sites and the remaining sites are used to perform model validation.
We shall consider three MMmodels, namely

A1 a MM model (10) specification in which X is a TEG process with exponential correlation function exp{−∥h∥/ρ1},
ρ1 > 0 and B1 is a disk of fixed and unknown radius r1. The asymptotically independent process is given by Y (s) =

−1/ log((Φ(Y ′(s)))), whereΦ is the cumulative distribution function of a normalized Gaussian random variable and Y ′

is a Gaussian spatial process with spherical correlation function 1 − 1.5(∥h∥/ρ2) + 0.5(∥h∥/ρ2)3, for ∥h∥ ≤ ρ2, zero
otherwise, ρ2 > 0;

ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR
ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR
ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR
ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR
ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR
ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR
ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR
ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR
ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR
ftp.bom.gov.au/anon/home/ncc/www/change/HQdailyR
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Fig. 4. Empirical evaluation of the functions χ(h, u) (left) and ̄χ(h, u) (right) at u = 0.975. Gray circles give empirical value between all available
pairs. Lines represent smoothed values of the empirical estimates using the pairs in the directional sectors (−π/8, π/8], (π/8, 3π/8], (3π/8, 5π/8]
and (5π/8, 7π/8].

Fig. 5. Smoothed values of the empirical estimates of the functions χ̂(h, u) (left) and ˆ̄χ(h, u) (right) at different values of the threshold u.

A2 a MM model (10) where X is a TEG process as in A1 and Y ′ is a Gaussian spatial process with exponential correlation
function exp{−∥h∥/ρ2};

A3 a MM model with the same X as specified in A1 and A2 and in which Y is an inverse TEG process with exponential
correlation function exp{−∥h∥/ρ2}, ρ2 > 0. The B2 disk has a fixed and unknown radius r2.

As max-stable model candidate, we consider a max-stable model that entails exact independence between sites after a
distance greater than 2r1, i.e.

B the TEG process specified in A1.

Finally we take into account three asymptotically independent models, namely

C1 the asymptotically independent process specified as Y in A1;
C2 the asymptotically independent process specified as Y in A2;
C3 the asymptotically independent process specified as Y in A3.

Note that models C1 and C3 result in exact independence after distances greater than ρ2 and r2, respectively.
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Fig. 6. Site-wise winter maxima: empirical and fitted values for χ̂(h, u) and ˆ̄χ(h, u). Empirical values are computed using the validation data set. Top row:
u = 0.9; bottom row: u = 0.95.

5.1. Site-wise maxima

First of all we have considered model site-wise winter maxima. Model (10) assumes common marginal Fréchet
distributions and a proper inferential approach requires to fit marginal and dependence parameters. However, because
we are interested in the appropriateness of different degrees of spatial asymptotic dependence, we prefer to follow a more
simple and pragmatic approach. Specifically, we fit separately a GEV distribution in each site and we use the estimates to
transform the marginals to unit Fréchet. The dependence parameters are estimated using the pairwise likelihood approach.
Padoan et al. (2010) found in their simulation study that relatively small values of the distance δ in (12) produce gains in
computation efficiency aswell as in statistical efficiency of the estimates. However in our casewe prefer to set δ ≃ 1000 km,
which entails to consider about 90% of all distinct observational pairs. For evaluating the CLIC and the standard errors we
assume that the seasonal maxima are independent. In that case the estimation of the matrix J is greatly simplified in
the subsampling procedure and we have considered M = 49 non overlapping blocks Db corresponding to a single year,
i.e. db = 1.

Our findings are summarized in Table 2. The rather wide standard-error of the spatial parameters, in particular for the
max-mixture models, probably can be justified by the small number of independent replications over the years, pointing
out that it is hard to separate the contribution of the components in the max-mixture. As suggested by the CLIC, the best-
fitting model is A1, for which pairs of sites separated by a distance d smaller than 160 km or greater than 750 km are
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Table 2
Summary of the fitted models based on the site-wise winter maxima from the Australian data. Standard errors are reported
between parentheses.

Model ρ1 r1 ρ2 r2 β CLIC

A1 10.82 81.22 752.42 – 0.38 22623.54
(14.10) (301.93) (278.52) (0.22)

A2 29.05 177.91 1451.92 – 0.72 22661.76
(37.56) (32.16) (187.49) (0.04)

A3 5.47 311.22 367.48 707.73 0.43 22644.5
(5.63) (81.88) (129.36) (217.12) (0.07)

B 78.09 410.34 – – – 22692.3
(18.32) (86.77)

C1 – – 359.51 – – 22689.73
(42.96)

C2 – – 179.34 – – 22642.23
(21.59)

C3 – – 71.84 440.48 – 22679.72
(19.11) (63.99)

Fig. 7. Site-wise winter maxima: quantile–quantile plots for the minimum and maximum values on the validation data set (15 sites). The three columns
correspond to fitted models A1, B and C2 , respectively. The top row compares the minimum of the validation data set with its corresponding value under
the fitted models. The bottom row compares in the same way the maximum values on the validation data set.

asymptotically max-stable dependent or exactly independent, respectively. At intermediate distances the seasonal maxima
exhibit asymptotic independence. Moreover according to the CLIC values theMMmodels and the asymptotic independence
models appear superior to themax-stable model B. So themax-stable model seems to overestimate the level of dependence
in the data.

The goodness of fit has been also assessed in two differentways. Fig. 6 shows the empirical values forχ(h, u) and χ̄(h, u),
with u = 0.9 and 0.95 and their model-based counterparts of the three best models in each class according to the CLIC.
Empirical estimates are calculated on the validation data set. The fits at finite thresholds are similar for A1 and C2 and the
max stable model B entails stronger dependence for any distance. Considering the general patterns and owing to the small
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Fig. 8. Site-wise winter maxima: quantile–quantile plots for the minimum and maximum values on the complete data set (31 sites). The three columns
correspond to fitted models A1, B and C2 , respectively. The top row compares the minimum of the validation data set with its corresponding value under
the fitted models. The bottom row compares in the same way the maximum values on the validation data set.

number of repeated observations for each site it is difficult to see which model catches better the bulk of the empirical
values.

Model checking is also performed through QQ-plots for the logarithm of different groupwise minima and maxima on
the validation set (Fig. 7) and the complete data (Fig. 8). Such plots provide some insight into whether the dependence
models inferred using pairwise likelihood are capturing higher order dependence structures (Wadsworth and Tawn, 2012).
Inspecting these plots, it appears that the multivariate distribution of the seasonal maxima is poorly modeled by the max-
stable model B. Instead models A1 and C2 lead to quite similar results with an overall agreement to the data. Considering
these plots and the CLIC values there is an overall evidence in favor of the max-mixture model.

5.2. Threshold exceedances

Nowwe deal with daily precipitations in the winter period and we use exceedances above a threshold corresponding to
the 0.975 quantile in the empirical distribution at each site. We transform the observations to a unit Fréchet variable using
the empirical distribution for data below the threshold and a site-wise fitted Generalized Pareto Distribution for data above
the threshold. We estimate the spatial dependence parameters using the pairwise likelihood contribution (13). Because the
original event data appear temporal dependent, the estimates Ĥ and Ĵ are carried out using a sliding temporal window of
db = 30 days.

According to the CLIC value (Table 3), the preferred model is the MM model A3. Nevertheless, the results for this model,
here reported for completeness, have to be carefully considered because the estimate of β is virtually indistinguishable
from zero, pointing out there is no mixture between the max-stable process and the asymptotically independent one. For
β = 0 the parameters of the max-stable component are not identifiable and this fact affects the values of the estimates,
their standard errors and finally the CLIC value. Moreover model A3 reduces to model C3 for β = 0 which corresponds the
second best CLIC value, indicating some evidence for asymptotic independence for all distances.

Setting aside A3 we reconsider the empirical and fitted values for χ̂(h, u) and ˆ̄χ(h, u), u = 0.9 and u = 0.95, for the
three best models in each class, namely A2, B and C3 (see Fig. 9). Model B seems to overestimate the asymptotic dependence
at large distances. Again the fits of A2 and C3 look overall similar with a slight preference for A2.

Finally, in order to illustrate the behavior of the models and check the fitting, we consider empirical and simulation
based model estimates of few conditional probabilities. We choose the site s1 in the top-right corner of the map (see
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Fig. 9. Winter daily data: empirical and fitted values for χ̂(h, u) and ˆ̄χ(h, u). Empirical values are computed using the validation data set and models are
fitted using the qu quantile exceedances. Top row: u = 0.9; bottom row: u = 0.95.

Fig. 3) as a reference location and we consider three subsets of sites S1 = {s2, s3, s6, s8, s10}, S2 = {s11, s13, s14, s15, s18}
and S3 = {s25, s26, s27, s28, s29} that roughly correspond to three different classes of distances from s1. Then we compute
the conditional probabilities Pr(Z(s) > z, s ∈ Si | Z(s1) > z), i = 1, 2, 3 for different large values of p such that
Pr(Z(s1) ≤ z) = p. The confidence intervals in Fig. 10 are based on block bootstrapping of simulated daily data. The
overall impression is that the max-stable model B is not able to describe the extremal dependence at medium (S2) and
large distances (S3). Model C3 basically overestimates the empirical probabilities for different thresholds and exhibits a lack
of fitting for relative small distances (S1). On the other hand the fitting of model A2 is more consistent at different thresholds
and distances. Lastly note that both models agree for very large thresholds. These findings indicate that the max-mixture
models we propose add modeling flexibility to spatial extreme analysis and seem able to encompass different degrees of
spatial extremal dependence.

6. Conclusion

In this paper we have proposed a unifying spatial model which combines different degrees of extremal dependence
depending on the distance between pairs of sites. Our approach exploits the max-mixture model proposed by Wadsworth
and Tawn (2012) and focuses on the possible detection of pairwise max-stable dependence at short distances, asymptotic
independence at intermediate ones and possibly exact independence at large distances. At short distances the extremal
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Fig. 10. Winter daily data: empirical and fitted values for the conditional probabilities Pr(Z(s) > z, s ∈ S | Z(s1) > z). The three columns correspond
to models A2, B and C3 , respectively. Top row: S = {s2, s3, s6, s8, s10} (near sites data set); middle row S = {s11, s13, s14, s15, s18} (medium sites data set);
bottom row: S = {s25, s26, s27, s28, s29} (far sites data set). The 1 − p values are such that Pr(Z(s1) > z) = 1 − p.

dependence is driven by a truncated extremal Gaussian max-stable process (Schlather, 2002) whereas at larger distances
asymptotic independence is induced by any stochastic process with bivariate distributions satisfying a general condition
proposed by Ledford and Tawn (1996). In this respect the hybrid models in Wadsworth and Tawn (2012) are particular
instances.

Due to the intractability of the multivariate likelihoods parametric inference is carried out using a composite likelihood
approach. A small and preliminary simulation study has shown that the inference procedure performs well, even when we
have considered the boundary values for the mixture parameter.

In our real example we have highlighted that themax-mixture approach appears of interest for modeling environmental
data. In particular it has the merit to overcome the limits of the max-stable models in which only asymptotic dependence
or exact independence can be modeled.

Our attention has been concentrated on modeling the spatial dependence. In the future, we plan to consider spatio-
temporal extensions that have fundamental interest in practice. Currently space–time models are still taking up little
space in the literature and the major emphasis is in modeling asymptotic dependence treating the time just as additional
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Table 3
Summary of the fitted models based on the daily exceedances from the Australian data. Standard errors are reported in
parentheses.

Model ρ1 r1 ρ2 r2 β CLIC

A1 78.71 833.76 1448.52 – 0.38 575518.3
(9.80) (77.70) (57.72) (0.02)

A2 101.03 658.94 841.08 – 0.38 575515.9
(13.93) (54.26) (51.23) (0.02)

A3 210.07 211.15 2164.57 1400.11 0 575183.7
(10−13) (10−13) (140.85) (95.08) (10−13)

B 147.09 1706.55 – – – 580455.
(6.17) (213.31)

C1 – – 814.81 – – 580351.3
(19.34)

C2 – – 429.68 – – 578445.3
12.38

C3 – – 2084.84 1447.33 – 575188.3
(139.76) (106.76)

dimension of the space (Davis et al., 2013; Huser and Davison, 2014). However it seems reasonable to suppose that the
spatial and temporal components behave asymptotically in a different way.
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