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ABSTRACT
The statistical modeling of space-time extremes in environmental applications is key to understanding
complex dependence structures in original event data and to generating realistic scenarios for impact
models. In this context of high-dimensional data, we propose a novel hierarchical model for high thresh-
old exceedances de!ned over continuous space and time by embedding a space-time Gamma process
convolution for the rate of an exponential variable, leading to asymptotic independence in space and
time. Its physically motivated anisotropic dependence structure is based on geometric objects moving
through space-time according to a velocity vector. We demonstrate that inference based on weighted
pairwise likelihood is fast and accurate. The usefulness of our model is illustrated by an application to
hourly precipitation data from a study region in Southern France, where it clearly improves on an alternative
censored Gaussian space-time random !eld model. While classical limit models based on threshold-stability
fail to appropriately capture relatively fast joint tail decay rates between asymptotic dependence and
classical independence, strong empirical evidence from our application and other recent case studies
motivates the use of more realistic asymptotic independence models such as ours. Supplementary materials
for this article, including a standardized description of the materials available for reproducing the work, are
available as an online supplement.
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1. Introduction

The French Mediterranean area is subject to heavy rainfall
events occurring mainly in the fall season. Intense precipitation
o!en leads to "ash "oods, which can be de#ned as a sudden
strong rise of the water level. Flash "oods o!en cause fatalities
and important material damage. In the literature, such intense
rainfalls are o!en called "ood-risk rainfall (Carreau and Bouvier
2016); characterizing their spatio-temporal dependencies is key
to understanding these processes. In this article, we consider a
large dataset of hourly precipitation measurements from a study
region in Southern France. We tackle the challenge of propos-
ing a physically interpretable statistical space-time model for
high threshold exceedances, which aims to capture the complex
dependence and time dynamics of the data process.

Fueled by important environmental applications during the
last decade, the statistical modeling of spatial extremes has
undergone a fast evolution. A shi! from maxima-based model-
ing to approaches using threshold exceedances can be observed
over recent years, whose reasons lie in the capability of thresh-
olding techniques to exploit more information from the data
and to explicitly model the original event data. A #rst overview
of approaches to modeling maxima is due to Davison, Padoan,
and Ribatet (2012). A number of hierarchical models based
on latent Gaussian processes (Casson and Coles 1999; Gae-
tan and Grigoletto 2007; Cooley, Nychka, and Naveau 2007;
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Sang and Gelfand 2009) have been proposed, but they may be
criticized for relying on the rather rigid Gaussian dependence
with very weak dependence in the tail, while the lack of closed-
form marginal distributions makes interpretation di$cult and
frequentist inference cumbersome. Max-stable random #elds
(Smith 1990; Schlather 2002; Kabluchko, Schlather, and de Haan
2009; Davison and Gholamrezaee 2012; Reich and Shaby 2012;
Opitz 2013) are the natural limit models for maxima data and
have spawned a very rich literature, from which the model of
Reich and Shaby (2012) stands out for its hierarchical construc-
tion simplifying high-dimensional multivariate calculations and
Bayesian inference. Generalized Pareto (GP) processes (Ferreira
and de Haan 2014; Opitz, Bacro, and Ribereau 2015; Thibaud
and Opitz 2015) are the equivalent limit models for threshold
exceedances. However, the asymptotic dependence stability in
these limiting processes for maxima and threshold exceedances
has a tendency to be overly restrictive when asymptotic depen-
dence strength decreases at high levels and may vanish ulti-
mately in the case of asymptotic independence. The results
from the empirical spatio-temporal exploration of our French
rainfall data in Section 6.2 are strongly in favor of asymp-
totic independence, which appears to be characteristic for many
environmental datasets (Davison, Huser, and Thibaud 2013;
Thibaud, Mutzner, and Davison 2013; Tawn et al. 2018) and may
arise from physical laws such as the conservation of mass. This
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has motivated the development of more "exible dependence
models, such as max-mixtures of max-stable and asymptoti-
cally independent processes (Wadsworth and Tawn 2012; Bacro,
Gaetan, and Toulemonde 2016) or max-in#nitely divisible con-
structions (Huser, Opitz, and Thibaud 2018) for maxima data, or
Gaussian scale mixture processes (Opitz 2016; Huser, Opitz, and
Thibaud 2017) for threshold exceedances, capable to accom-
modate asymptotic dependence, asymptotic independence and
Gaussian dependence with a smooth transition. Other "exible
spatial constructions involve marginally transformed Gaussian
processes (Huser and Wadsworth 2019). Such threshold models
can be viewed as part of the wider class of copula models (see
Bortot, Coles, and Tawn 2000; Davison, Huser, and Thibaud
2013, for other examples) typically combining univariate limit
distributions with dependence structures that should ideally be
"exible and relatively easy to handle in practice.

Statistical inference is then o!en carried out assuming tem-
poral independence in measurements typically observed at spa-
tial sites at regularly spaced time intervals. However, devel-
oping "exible space-time modeling for extremes is crucial for
characterizing the temporal persistence of extreme events span-
ning several time steps; such models are important for short-
term prediction in applications such as the forecasting of wind
power and atmospheric pollution, and for extreme event sce-
nario generators providing inputs to impact models, for instance
in hydrology and agriculture. Early spatio-temporal models for
rainfall were proposed in the 1980s (Rodriguez-Iturbe, Cox, and
Isham 1987; Cox and Isham 1988, and the references therein)
and exploit the idea that storm events give rise to a cluster
of rain cells, which are represented as cylinders in space-time.
Currently, only few statistical space-time models for extremes
are available. Davis and Mikosch (2008) considered extremal
properties of heavy-tailed moving average processes where coef-
#cients and the white-noise process depend on space and time,
but their work was not focused on practical modeling. Sang and
Gelfand (2009) proposed a hierarchical procedure for maxima
data but limited to latent Gauss–Markov random #elds. Davis,
Klüppelberg, and Steinkohl (2013a, 2013b) extended the widely
used class of Brown–Resnick max-stable processes to the space-
time framework and propose pairwise likelihood inference. Spa-
tial max-stable processes with random set elements have been
proposed by Schlather (2002) and Davison and Gholamrezaee
(2012), and Huser and Davison (2014) have #tted a space-time
version to threshold exceedances of hourly rainfall data through
pairwise censored likelihood. Huser and Davison (2014) mod-
eled storms as discs of random radius moving at a random veloc-
ity for a random duration, leading to randomly centered space-
time cylinders; our models developed in the following rely on
similar geometric representations. A Bayesian approach based
on spatial skew-t random #elds with a random set element and
temporal autoregression was proposed by Morris et al. (2017).
The aforementioned space-time models may capture asymptotic
dependence or exact independence at small distances but are
unsuitable for dealing with residual dependence in asymptotic
independence. In this article, we propose a novel approach
to space-time modeling of asymptotically independent data to
avoid the tendency of max-stable-like models to potentially
strongly overestimate joint extreme risks. In a similar context,

Nieto-Barajas and Huerta (2017) recently proposed a spatio-
temporal Pareto model for heavy-tailed data on spatial lattices,
generalizing the temporal latent process model of Bortot and
Gaetan (2014) to space-time.

Our model provides a hierarchical formulation for modeling
spatio-temporal exceedances over high thresholds. It is de#ned
over a continuous space-time domain and allows for a physi-
cal interpretation of extreme events spreading over space and
time. Strong motivation also comes from Bortot and Gaetan
(2014) by developing a generalization of their latent temporal
process. Alternatively, our latent process could be viewed as a
space-time version of the temporal trawl processes introduced
by Barndor%-Nielsen et al. (2014) and exploited for extreme
values by Noven, Veraart, and Gandy (2015), with spatial exten-
sions recently proposed by Opitz (2017). Our approach is based
on representing a GP distribution as a Gamma mixture of an
exponential distribution, enabling us to keep easily tractable
marginal distributions which remain coherent with univariate
extreme value theory. We use a kernel convolution of a space-
time Gamma random process (Wolpert and Ickstadt 1998a)
based on in"uence zones de#ned as cylinders with an ellipsoidal
basis to generate anisotropic spatio-temporal dependence in
exceedances. We then develop statistical inference based on
pairwise likelihood.

The article is structured as follows. Our hierarchical model
with a detailed description of its two stages and marginal trans-
formations is developed in Section 2. Space-time Gamma ran-
dom #elds are presented in Section 2.1 where we also propose
the construction and formulas for the space-time objects used
for kernel convolution. Section 3 characterizes tail dependence
behavior in our new model yielding asymptotic independence
in space and time. Statistical inference of model parameters is
addressed in Section 4 based on a pairwise log-likelihood for the
observed censored excesses. We show good estimation perfor-
mance through a simulation study presented in Section 5 involv-
ing two scenarios of di%erent complexity. In Section 6, we focus
on the dataset and explore in detail how our #tted space-time
model captures spatio-temporal extremal dependence in hourly
precipitation. Since a natural choice of a reference model for
asymptotically independent data is to use threshold-censored
space-time Gaussian processes, we show the good relative per-
formance of our model by comparing it to such alternatives. A
discussion of our modeling approach with some potential future
extensions closes the article in Section 7.

2. A Hierarchical Model for Spatio-Temporal
Exceedances

When dealing with exceedances of a random variable X above
a high threshold u, univariate extreme value theory suggests
using the limit distribution of GP type. The GP cumulative
distribution function (cdf) is de#ned for any y > 0 by

GP(y; σ , ξ) = 1 −
(

1 + ξ
y
σ

)−(1/ξ)

+
, (1)

where (a)+ = max(0, a), ξ is a shape parameter and σ a posi-
tive scale parameter. The sign of ξ characterizes the maximum
domain of attraction of the distribution of X: ξ > 0 corresponds
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to the Fréchet domain of attraction while ξ = 0 and ξ < 0
correspond to the Gumbel and Weibull ones, respectively.

When ξ > 0, the GP distribution can be expressed as a
Gamma mixture for the rate of the exponential distribution
(Reiss and Thomas 2007, p. 157), that is,

V|# ∼ Exp(#), # ∼ Gamma(1/ξ , σ/ξ)

⇒ V ∼ GP( · ; σ , ξ), (2)

where Exp(b) refers to the Exponential distribution with rate
b > 0 and Gamma(a, b) to the Gamma distribution with shape
a > 0 and rate b > 0. Based on this hierarchical structure,
we will here develop a stationary space-time construction for
modeling exceedances over a high threshold, which possesses
marginal GP distributions for the strictly positive excess above
the threshold.

2.1. First Stage: Generic Hierarchical Space-Time Structure

We consider a stationary space-time random #eld Z =
{Z(x), x ∈ X } with x = (s, t) and X = R2 × R+, such that s
indicates spatial location and t time. Without loss of generality,
we assume that the margins Z(x) belong to the Fréchet domain
of attraction with positive shape parameter ξ . To infer the tail
behavior of {Z(x)}, we focus on values exceeding a #xed high
threshold u, and we consider the exceedances over u,

Y(x) = (Z(x) − u) · 1(u,∞)(Z(x)). (3)

Standard results from extreme value theory (de Haan and Fer-
reira 2006) establish the GP distribution with ξ > 0 in (1) as the
limit of suitably renormalized positive threshold exceedances
in (3), such that it represents a natural model for the values
Y(x) > 0. Following Bortot and Gaetan (2014), we use the
representation of the GP distribution as a Gamma mixture of
an exponential distribution to formulate a two-stage model
that induces spatio-temporal dependence arising in both the
exceedance indicators 1(u,∞)(Z(x)) and the positive excesses
Z(x) − u > 0 by integrating space-time dependence in a
latent Gamma component. A key feature of our model is that
it naturally links exceedance probability to the size of the excess
and therefore provides a joint space-time structure of the zero
part and the positive part in the zero-in"ated distribution of
Y(x).

In the #rst stage, we condition on a latent space-time random
#eld {#(x)} with marginal distributions #(x) ∼ Gamma(α, β)

and assume that

Y(x) | [#(x), Y(x) > 0] ∼ Exp (#(x)) , (4a)
Pr(Y(x) > 0 | #(x)) = e−κ#(x), (4b)

where κ > 0 is a parameter controlling the rate of upcrossings
of the threshold. The resulting marginal distribution of Y(x)

conditionally on Z(x) > u corresponds to the GP distribution,
and the unconditional marginal cdf of Y(x) is

F(y; σ , ξ) =
{

p for y = 0,
p + (1 − p)GP(y; ξ , σ ) for y > 0, (5)

with shape parameter ξ = 1/α, scale parameter σ = (κ +β)/α,
and with 1 − p the probability of an exceedance over u, that is,

Pr(Z(x) > u) = Pr(Y(x) > 0) = 1 − p. The probability of
exceeding u,

Pr(Z(x) > u) = E (Pr(Y(x) > 0|#(x))) = E
(

e−κ#(x)
)

=
(

β

κ + β

)α

(6)

depends on κ and corresponds to the Laplace transform of #(x)

evaluated at κ . The constraint ξ > 0 is not restrictive for dealing
with precipitation in the French Mediterranean area, which
is known to be heavy-tailed. For general modeling purposes,
we can relax this assumption by following Bortot and Gaetan
(2016): we consider a marginal transformation within the class
of GP distributions for threshold exceedances, for which we sup-
pose that α = 1 and β = 1 for identi#ability. By transforming
Y(x) through the probability integral transform

g(y) = GP−1(GP(y; 1, 1 + κ); σ ∗, ξ∗) (7)

= (σ ∗/ξ∗)

{(
1 + y

κ + 1

)ξ∗

− 1
}

(8)

with parameters ξ∗ ∈ R and σ ∗ > 0 to be estimated, we get a
marginally transformed random #eld Y∗(x) = g(Y(x)) which
satis#es Y∗(x) ∼ GP( · ; ξ∗, σ ∗), conditionally on Y∗(x) > 0.
Notice that it is straightforward to develop extensions with non-
stationary marginal excess distributions by injecting response
surfaces σ'(x) and ξ'(x) into (8). Moreover, nonstationarity
could be introduced into the latent Gamma model (4) in di%er-
ent ways. If κ = κ(x) depends on x or other covariate informa-
tion, exceedance probabilities become nonstationary. If Gamma
parameters α = α(x) and β = β(x) depend on covariates,
then the GP margins in Y(x) become nonstationary. Finally, one
could combine the two previous nonstationary extensions.

2.2. Second Stage: Space-Time Dependence With Gamma
Random Fields

Spatio-temporal dependence is introduced by means of a space-
time stationary random #eld {#(x), x ∈ X } with Gamma(α, β)

marginal distributions. In principle, we could use an arbitrarily
wide range of models with any kind of space-time dependence
structure, for instance by marginally transforming a space-time
Gaussian random #eld using the copula idea (Joe 1997). How-
ever, we here aim to propose a construction where Gamma
marginal distributions arise naturally without applying rather
arti#cial marginal transformations. Inspired by the Gamma pro-
cess convolutions of Wolpert and Ickstadt (1998a), we develop a
space-time Gamma convolution process with Gamma marginal
distributions. The kernel shape in our construction allows for
a straightforward interpretation of the dependence structure,
and it o%ers a physical interpretation of real phenomena such
as mass and particle transport. Moreover, we obtain simple ana-
lytical formulas for the bivariate distributions, which facilitates
statistical inference, interpretation and the characterization of
joint tail properties.

We #x X = R3 and consider A ∈ Bb(X ), a subset of X
belonging to the σ -#eld Bb(X ) restricted to bounded sets of X .
A Gamma random #eld ((dx) (Ferguson 1973) is a nonnegative
random measure de#ned on X characterized by a base measure
α(dx) and a rate parameter β such that
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Figure 1. Space-time kernels. Left display: a spatial ellipse E(s, γ1, γ2, φ) centered at s. Right display: an intersection of two slated elliptical cylinders As,t and As′ ,t′ with
duration δ.

1. ((A) :=
∫

A ((dx) ∼ Gamma(α(A), β), with α(A) :=∫
A α(dx);

2. for any A1, A2 ∈ Bb(X ) such that A1 ∩ A2 = ∅, ((A1) and
((A2) are independent random variables.

The calculation of important formulas in this article requires the
Laplace exponent of the random measure given as

L(φ) := − log E
(

exp
{
−

∫
φ(x)((dx)

})

=
∫

X
log

{
1 + φ(x)

β

}
α(dx),

where φ is any positive measurable function; in our case, it
will represent the kernel function (see Appendix A). We pro-
pose to model {#(x), x ∈ X } as a convolution using a three-
dimensional indicator kernel K(x, x′) with an indicator set of
#nite volume used to convolve the Gamma random #eld ((dx)

(Wolpert and Ickstadt 1998a), that is, #(x) =
∫

K(x, x′)((dx′).
The shape of the kernel can be very general (although nonindi-
cator kernels usually do not lead to Gamma marginal distribu-
tions), and particular choices may lead to nonstationary random
#elds, or to stationary random #elds with given dependence
properties such as full symmetry, separability or independence
beyond some spatial distance or temporal lag. To limit model
complexity and computational burden to a reasonable amount,
we use the indicator kernel K(x, x′) = 1A(x − x′), for A ∈
Bb(X ), where A is given as a slated elliptical cylinder, de#ning
a three-dimensional set Ax that moves through X according
to some velocity vector. More precisely, let E(s, γ1, γ2, φ) be
an ellipse centered at s = (s1, s2) ∈ R2 (see Figure 1(a)),
whose axes are rotated counterclockwise by the angle φ with
respect to the coordinate axes, whose semi-axes’ lengths in the
rotated coordinate system are γ1 and γ2, respectively. A physical
interpretation is that the ellipse describes the spatial in"uence
zone of a storm centered at s. For the temporal dynamics, we

assume that the ellipses (storms) E(s, γ1, γ2, φ) move through
space with a velocity ω = (ω1, ω2) ∈ R2 for a duration δ > 0.
The volume of the intersection of two slated elliptical cylinders
(see Figure 1(b)) is given by
V(s, t, s′, t′) = (δ−|t−t′|)+×ν2(E(s, γ1, γ2, φ)∩E(s̃, , γ1, γ2, φ)),
where s̃ = (s̃1, s̃2) with s̃i = s′i − |t′ − t| × ωi, i = 1, 2, where
νd(·) is the Lebesgue measure on Rd.

For two #xed locations, the strength of dependence in the
random #eld #(x) is an increasing monotone function of the
intersection volume; other choices of A are possible, provided
that we are able to calculate e$ciently the volume of the intersec-
tion. To e$ciently calculate the ellipse intersection area, we use
an approach for #nding the overlap area between two ellipses,
which does not rely on proxy curves; see Hughes and Chraibi
(2012).1

In the sequel, we consider the measure
α(B) = ανd(B)/νd(A), B ∈ Bb(X ). (9)

It follows that #(x) ∼ Gamma(α, β), as required for model (4).
Exploiting the formulas of Appendix A, the univariate Laplace
transform of #(x) is

LP(1)
x (v) := E

(
e−v#(x)

)
=

(
β

v + β

)α

, (10)

and the bivariate Laplace transform of #(x) and #(x′) is

LP(2)
x,x′(v1, v2) := E

(
e−v1#(x)−v2#(x′)

)

=
(

β

v1 + β

)α(Ax\Ax′ ) (
β

v1 + v2 + β

)α(Ax∩Ax′ )

×
(

β

v2 + β

)α(Ax′\Ax)

. (11)

1The code is open source and can be downloaded from http://github.com/
chraibi/ EEOver.

http://github.com/chraibi/EEOver
http://github.com/chraibi/EEOver
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This model for #(x) is stationary, but nonstationarity in
Gamma marginal distributions and/or dependence can be gen-
erated by using nonstationary indicator sets Ax whose size and
shape depends on x. More general sets Ax with #nite Lebesgue
volume ν3(Ax) could be used for constructing #(x) = ((Ax). In
all cases, the intersecting volume ν3(Ax1 ∩ Ax2) tends to zero if
‖x2 − x1‖ → ∞, which establishes the property of α-mixing
over space and time for the processes #(x) and Y(x). This
property is paramount to ensure consistency and asymptotic
normality in the pairwise likelihood estimation that we consider
in the following (see Huser and Davison 2014).

3. Joint Tail Behavior of the Hierarchical Process

Extremal dependence in a bivariate random vector (Z1, Z2) can
be explored based on the tail behavior of the conditional distri-
bution Pr(Z1 > F←

1 (q)|Z2 > F←
2 (q)) as q tends to 1, where F←

i ,
i = 1, 2 denotes the generalized inverse distribution functions
of Zi (Sibuya 1960; Coles, He%ernan, and Tawn 1999). The
random vector (Z1, Z2) is said to be asymptotically dependent
if a positive limit χ , referred to as the tail correlation coe$cient,
arises

χ(q) := Pr(Z1 > F←
1 (q), Z2 > F←

2 (q))

Pr(Z2 > F←
2 (q))

→ χ > 0,

q → 1−.

The case χ = 0 characterizes asymptotic independence.
To obtain a #ner characterization of the joint tail decay rate

under asymptotic independence, faster than the marginal tail
decay rate, Coles, He%ernan, and Tawn (1999) introduced the
χ index de#ned through the limit relation

χ̄(q) := 2 log Pr(Z2 > F←
2 (q))

log Pr(Z1 > F←
1 (q), Z2 > F←

2 (q))

− 1 → χ̄ ∈ (−1, 1], q → 1−.

Larger values of |χ̄ | correspond to stronger dependence. We
now show that {Z(x), x ∈ X } is an asymptotic independent
process, that is, for all pairs (x, x′) ∈ X 2 with x .= x′ the bivariate
random vectors (Z(x), Z(x′)) are asymptotically independent.

Owing to the stationarity of the process, it is easy to show
that for any (x, x′) ∈ X 2, x .= x′ and for values v exceeding a
threshold u ≥ 0, we get

Pr(Z(x) > v) = LP(1)
x (v − u + κ)

=
(

1 + v − u + κ

β

)−α(Ax)

and

Pr(Z(x) > v, Z(x′) > v) = LP(2)
x,x′(v − u + κ , v − u + κ)

=
(

1 + v − u + κ

β

)−α(Ax\Ax′ )

×
(

1 + 2v − 2u + 2κ

β

)−α(Ax∩Ax′ )

×
(

1 + v − u + κ

β

)−α(Ax′\Ax)

.

To simplify notations, we set c0 := α(Ax), c1 := α(Ax\Ax′),
c2 := α(Ax ∩ Ax′) , c3 := α(Ax′\Ax), such that c1 = c3 =
c0 − c2 ≥ 0 and c1 + 2c2 + c3 = 2c0. For c2 = 0 characterizing
disjoint indicator sets Ax and Ax′ , it is clear that Z(x) and Z(x′)
are independent. Now, assume u = 0 without loss of generality
and x .= x′; then,

χx,x′(v) := Pr(Z(x) > v, Z(x′) > v)
Pr(Z(x′) > v)

=
(

1 + 2v + 2κ

β

)−c2 (
1 + v + κ

β

)−c1−c3+c0

=
(

1 + 2v + 2κ

β

)−c2 (
1 + v + κ

β

)2c2−c0

∼ 2−c2

( v
β

)c2−c0
, for large v.

Since c2 < c0, we obtain

χx,x′ = 0.

We conclude that Z is an asymptotic independent process.
To characterize the faster joint tail decay, we calculate

χ̄xx′(v)

:= 2 log Pr(Z(x) > v)
log Pr(Z(x) > v, Z(x′) > v) − 1

= − 2c0 log (1 + (v + κ)/β)

−c1 log(1 + (v + k)/β) − c2 log (1 + 2(v + k)/β)
−c3 log(1 + (v + k)/β)

− 1

= 2c0

c1 + c2
log (1 + 2(v + k)/β)

log (1 + (v + k)/β)
+ c3

− 1.

Taking the limit for v → ∞ yields

χ̄x,x′ = 2c0
c1 + c2 + c3

− 1 = c2
2c0 − c2

,

which describes the ratio between the intersecting volume of Ax
and Ax′ and the volume of the union of these two sets. The value
of χ̄ con#rms the asymptotic independence of the process Z. A
larger intersecting volume between Ax and Ax′ corresponds to
stronger dependence.

4. Composite Likelihood Inference

To infer the tail behavior of the observed data process {Z(x)},
without loss of generality assumed to have GP marginal distri-
butions with shape parameter α, we focus on values exceeding a
#xed high threshold u. We let θ denote the vector of unknown
parameters. For simplicity, we assume that we have observed
the excess values Y(si, t) for a factorial design of S locations si,
i = 1, . . . , S and T times t = 1, . . . , T.

To exploit the tractability of intersecting volumes of two
kernel sets, we focus on pairwise likelihood for e$cient
inference in our high-dimensional space-time set-up. The
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pairwise (weighted) log-likelihood adds up the contribu-
tions f (Y(si, t), Y(sj, t + k); θ) of the censored observations
Y(si, t), Y(sj, t + k) and can be written

pl(θ) =
T∑

t=1
plt(θ) =

T∑

t=1

0T∑

k=0

S∑

i=1

S∑

j=1
{1 − 1{i≥j, k=0}}

× log f (Y(si, t), Y(sj, t + k); θ)wsi,sj , (12)

where wsi,sj is a weight de#ned on [0, ∞) (Bevilacqua et al. 2012;
Davis, Klüppelberg, and Steinkohl 2013b; Huser and Davison
2014). We opt for a cut-o% weight with wsi,sj = 1 if ||si − sj|| ≤
0S and 0 otherwise, which bypasses an explosion of the number
of likelihood terms and shi!s focus to relatively short-range dis-
tances where dependence matters most. This also avoids that the
pairwise likelihood value (and therefore parameter estimation)
is dominated by a large number of intermediate-range distances
where dependence has already decayed to (almost) nil.

The contributions f (Y(x), Y(x′); θ) are given by

f (y1, y2; θ)

=






∂2
∂v1∂v2

LP(2)
x,x′(v1, v2)J(y1)J(y2) y1 > 0, y2 > 0

(
− ∂

∂v1
LP(1)(v1) + ∂

∂v1
LP(2)

x,x′(v1, v2)
)

J(y1) y1 > 0, y2 = 0
(
− ∂

∂v2
LP(1)(v2) + ∂

∂v2
LP(2)

x,x′(v1, v2)
)

J(y2) y1 = 0, y2 > 0

1 − 2LP(1)(v1) + LP(2)
x,x′(v1, v2) y1 = 0, y2 = 0

with vi = (κ + 1)
(
1 + ξ∗yi/σ ∗)1/ξ∗

− 1 and J(yi) =
κ+1
σ ∗

(
1 + ξ∗yi

σ ∗

)1/ξ∗−1
, i = 1, 2. We provide analytical expres-

sions for LP(1) and LP(2)
x,x′ in Appendix B.

Since the space-time random #eld {#(x)} is temporally α-
mixing, the maximum pairwise likelihood estimator θ̂ can be
shown to be asymptotically normal for large T under mild
additional regularity conditions; see Theorem 1 of Huser
and Davison (2014). The asymptotic variance is given by
the inverse of the Godambe information matrix G(θ) =
H(θ)[J (θ)]−1H(θ). Therefore, standard error evaluation
requires consistent estimation of the matrices H(θ) =
E(−∇2pl(θ)) and J (θ) = var(∇pl(θ)). We estimate H(θ)

with Ĥ = −∇2pl(θ̂) and J (θ) through a subsampling
technique (Carlstein 1986), implemented as follows. We de#ne
B overlapping blocks Db ⊂ {1, . . . , T}, b = 1, . . . , B, containing
db observations; we write plDb for the pairwise likelihood (12)
evaluated over the block Db. The estimate of J (θ) is

Ĵ = T
B

B∑

b=1

1
db

∇plDb(θ̂)∇plDb(θ̂)′.

The estimates Ĥ and Ĵ allow us to calculate the composite
likelihood information criterion (Varin and Vidoni 2005)

CLIC = −pl(θ̂) + tr{Ĥ−1Ĵ }
with lower values of CLIC indicating a better #t. Similar to Davi-
son and Gholamrezaee (2012), we improve the interpretability
of CLIC values through rescaling CLIC∗=c CLIC by a positive
constant c chosen to give a pairwise log-likelihood value pl(θ)

comparable to the log-likelihood under independence.

5. Simulation Study

We assess the performance of the pairwise composite likelihood
estimator through a small simulation study. For each replication,
we consider S = 30 randomly chosen sites on [0, 1] × [0, 1]
observed at time points t = 1, . . . , T = 2000. The realizations
of the Gamma random #eld are simulated by adapting the
algorithm of Wolpert and Ickstadt (1998b). In the simulations,
we #x parameters ξ = 1, σ = 10 and an exceedance probability
of 1 − p = 0.2. We focus on estimating dependence parameters
while treating the margins as known. For estimation, we #x the
site-dependent threshold u to an empirical quantile of order
greater than p. Here, we #x p = 0.9 corresponding to κ = 9.

Two scenarios with di%erent model complexity are con-
sidered, involving di%erent speci#cations of the cylinder (see
Table 1). scenario A uses a circle-based cylinder without
velocity, while scenario B comes with a slated ellipse-based
cylinder, yielding nonnull velocity. Technically, the model in
scenario A is over-parameterized since the rotation parameter
φ cannot change the volume of the cylinder.

Model parameters are estimated on 100 data replications
using the composite likelihood approach developed in Section 4.
We have considered a larger number of replications for some
parameter combinations, but in general the number of 100
replications is enough to satisfactorily illustrate the estimation
e$ciency. The evaluation of pl(θ) depends on the choice of
0S and 0T , where greater values increase the computational
cost. Results in the literature indicate that using as much as
computationally possible or all of the pairs will not necessarily
lead to an improvement in estimation owing to potential issues
with estimation variance (see, e.g., Huser and Davison 2014).
We have considered di%erent values of 0T and have identi#ed
0T = 15 as a good compromise for the estimation quality.
The parameter 0S has been set to 1 which is large enough with
respect to the spatial domain limits. Main results are illustrated
in the boxplots in Figures 2 and 3.

When the cylinder is circle-based, that is, γ1 = γ2, and
without velocity (scenario A), the orientation parameter φ can
take any value. In the simulation experiment we estimate all
parameters without constraints, such that the optimization algo-
rithm gives also an estimate of φ. It is reassuring to see in the
boxplots of Figure 2 that the other parameters are still well
estimated.

Results are fairly good for the scenario B where the velocity
is nonnull. The estimates of the velocity present slightly higher
variability, and the estimation of ω2 appears slightly biased. On
the other hand, the duration δ and the lengths of the semi-axes
of the ellipse (γ1 and γ2) are still well estimated. The angle φ is
well de#ned in scenario B, but it is still estimated with relatively
high variability. This may seem as disappointing at #rst glance,
but it may be due to the only moderate di%erence in the length of

Table 1. Design of the two simulation scenarios.

Parameters

Scenario γ1 γ2 φ δ ω1 ω2

A 0.2 0.2 – 10 0.00 0.00
B 0.2 0.3 π/4 5 0.05 0.10
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Figure 2. Summary of parameter estimates for scenario A of the simulation study: boxplots of parameter estimates for 100 simulated datasets.
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Figure 3. Summary of parameter estimates for scenario B of the simulation study: boxplots of parameter estimates for 100 simulated datasets.

the semi-axes. To check this conjecture, we consider a modi#ed
scenario B where the second semi-axis is modi#ed from γ2 =
0.3 to γ2 = 0.5 and other parameters remain unchanged. As

illustrated by the boxplots in Figure 4, estimation of φ clearly
improves when the shape of the ellipse departs more strongly
from a circular shape.
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Figure 4. Parameter estimates of the simulation study: boxplots of φ estimates
according to scenario A, scenario B, and a modi!ed scenario B with γ2 = 0.5.

Even with only a relatively small number of spatial sites and
time steps, the simulation study shows that the pairwise com-
posite likelihood approach leads to reliable estimates of model
parameters that are well identi#able. We underline that results
are consistently good whatever the complexity of the scenario.

6. Space-Time Modeling of Hourly Precipitation Data
in Southern France

6.1. Data

We apply our hierarchical model to precipitation extremes
observed over a study region in the South of France. Extreme
rainfall events usually occur during fall season. They are mainly
due to southern winds driving warm and moist air from the
Mediterranean sea toward the relatively cold mountainous areas
of the Cevennes and the Alps, leading to a situation which
o!en provokes severe thunderstorms. The data were provided
by Météo France (https://publitheque.meteo.fr). Our dataset is
part of a query containing hourly observations at 213 rainfall
stations for years 1993 to 2014. To avoid modeling complex
seasonal trends, we keep only data from the September to
November months, resulting in observations over 54,542 hr.
For model #tting, we consider a subsample of 50 meteorological
stations with elevations ranging from 2 to 1418 m, for which the
observation series contain less than 70% of missing values over
the full period. The spatial design of the stations is illustrated in
Figure 5.

6.2. Exploratory Analysis

We #t the univariate model (5) for each station by #xing a
threshold u that corresponds to the empirical 99% quantile.
We use such a rather high probability value since we have
many observations, and there is a substantial number of zero
values such that a high quantile is needed to get into the tail
region of the positive values. Figure 5 clearly shows that spatial
nonstationarity arises in the marginal distributions.

Figure 6 displays the results of a bootstrap procedure in
which we calculate estimates of χ(q) and χ̄(q) for probabilities
q = 0.99, 0.995 for pairs Z(s, t), Z(s, t + h) with only temporal
lag, and for pairs Z(s, t), Z(s′, t) with only spatial lag. The
curves for spatial lags are the result of a smoothing procedure.
Con#dence bands are based on 200 bootstrap samples, drawn
by the stationary bootstrap (Politis and Romano 1994). Our
procedure samples temporal blocks of observations and the
block length follows a geometric distribution with an average of
20 days. These plots support the assumption of asymptotic inde-
pendence at all positive distances and at all positive temporal
lags. Moreover, the strength of tail dependence as measured by
the subasymptotic tail correlation value χ(q) strongly decreases
when considering exceedances over increasingly high thresh-
olds, which provides another clear sign of continuously decreas-
ing and ultimately vanishing dependence strength. On the other
hand, the values of the subasymptotic dependence measure
χ(q) (well adapted to asymptotic independence) decrease with
increasing spatial distances or temporal lags, but they tend to
stabilize at a nonzero value. This behavior indicates the presence
of residual tail dependence that vanishes only asymptotically.

6.3. Modeling Spatio-Temporal Dependence

While the preceding exploratory analysis has shown that
marginal distributions are not stationary, our model detailed
in Section 2 requires a speci#c type of common marginal
distributions. It would indeed be possible to extend the model
to accommodate nonstationary patterns (an example can be
found in Bortot and Gaetan (2016)) and to jointly estimate
marginal and dependence parameters. However, our focus
here is to illustrate that our modeling strategy is capable
to capture complex stationary spatio-temporal dependence
patterns at large values, which would render joint estimation of
margins and dependence highly intricate. Therefore, we #t a GP
distribution separately to each site with thresholds chosen as the
empirical 99% quantile. With respect to positive precipitation,
this quantile globally corresponds to a probability of 0.91, with a
minimum of 0.86 and maximum of 0.95 over the 50 sites. Next,
we use the estimated parameters ξ̂ and σ̂ to transform the raw
exceedances Y(x) observed at site x to exceedances Ỹ(x) with
cdf (5) such that ξ = 1 and σ = κ + 1, that is,

Ỹ(x) = (κ + 1)






(

1 + ξ̂ Y(x)

σ̂

)1/ξ̂

− 1




 .

Since κ must satisfy Pr(Ỹ(x) > 0) = (κ + 1)−1 = 0.01, see
Equation (6), we get κ = 99.

We #t our hierarchical models to the censored pretrans-
formed data Ỹ(x) by numerically maximizing the pairwise like-
lihood. We set the spatial cut-o% distance to 0S = 110 km,
which retains about 60% of the pairs of meteorological sta-
tions, and we choose the temporal cut-o% as 0T = 10 hr.
The resulting number of pairs of observations is approximately
4.6 × 109, taking into account missing values. The full pair-
wise likelihood counts around 1.7 × 1011 pairs, which shows
that we have attained a huge reduction. Pairwise likelihood
maximization is coded in C, and it runs in parallel using the

https://publitheque.meteo.fr
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Figure 5. Precipitation data of Southern France. Top left display: topographic map showing the meteorological stations selected for our case study. Dots correspond to the
stations used for !tting. In the other displays, their diameter is proportional to empirical 99% quantiles u(s) (top right plot) and to estimates of the GPD parameters ξ(s)
(bottom left plot) and σ (s) (bottom right plot).

R library parallel. All calculations were carried out on a
2.6 GHz machine with 32 cores and 52 GB of memory. One
evaluation of the composite likelihood requires approximately
18 seconds. For calculating standard errors and CLIC∗ values,
we use the previously described subsampling technique based
on temporal windows by considering B = 500 overlapping
blocks, each corresponding to 1000 consecutive hours, that is,
db = 50 × 1000.

We consider two settings for the hierarchical model, with
(G1) and without velocity (G2). Then, we compare these two
models to three variants of a censored Gaussian space-time cop-
ula model labeled C1, C2, and C3 (Bortot, Coles, and Tawn 2000;
Renard and Lang 2007; Davison, Huser, and Thibaud 2013)
pertaining to the class of asymptotic independent processes. The

#ts of the censored Gaussian space-time copula models match
a censored Gaussian random #eld with transformed threshold
exceedances; that is, we transform original data to standard
Gaussian margins G(x) = 3←(GP(Ỹ(x))) (with 3 the standard
Gaussian cdf), and we suppose that {G(x), x ∈ X } is a Gaussian
space-time random #eld with space-time correlation function
ρ(x1, x2; θ).

We denote by ρe(a) = exp(−a) and by ρs(a) = (1 −
1.5a + 0.5a3)1[0,1](a), a ≥ 0, the exponential and spherical
correlation models with scale 1, respectively. We introduce the
scaled Mahalanobis distance between spatial locations s1 and s2,
written

a(s1, s2; τ ) = {(s1 − s2)
′6(τ )−1(s1 − s2)}1/2,
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Figure 6. A simulation example showing exceedances of the 0.95-quantile for the model G1 !tted to precipitation data. Dots correspond to the stations used for !tting.
The evolution over time during 19 hr is presented row-wise starting from the top left. The bottom right display illustrates the estimated ellipses, centered at the barycenter
of the locations, and the movement induced by the velocity vector.

where

6(τ ) =
(

cos(τ1) − sin(τ1)
sin(τ1) cos(τ1)

)(
1 0
0 τ−1

2

)

×
(

cos(τ1) sin(τ1)
− sin(τ1) cos(τ1)

)
.

The Mahalanobis distance de#nes elliptical isocontours. Here,
τ1 ∈ [0, π) is the angle with respect to the West-East direction,
and τ2 > 0 is the length ratio of the two principal axes.
We choose three speci#cations of the space-time correlation
function:

C1. Space-time separable model:

ρ(x1, x2; θ) = ρe(a(s1, s2; τ )/ψS) ρe(|t1 − t2|/ψT), (13)

with θ = (τ1, τ2, ψS, ψT). We assume anisotropic spatial
correlation in analogy to models G1 and G2. The model is
isotropic for τ2 = 1.

C2. Frozen #eld model 1 (see Christakos 2017, for a compre-
hensive account):

ρ(x1, x2; θ) = ρe(a(s1 − νt1, s2 − νt2; τ )/ψ), (14)

where θ = (τ1, τ2, ψ , ν′) and ν ∈ R2 is a velocity vector.
C3. Frozen #eld model 2 with compact support:

ρ(x1, x2; θ) = ρs(a(s1 − νt1, s2 − νt2; τ )/ψ). (15)

In this model, two observations separated by Mahalonobis
distance a(s1 − νt1, s2 − νt2; τ ) greater than ψ will be
independent.
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Table 2. Estimates, standard errors (in italic), and CLIC∗ values of !tted models.

Model Parameters

γ1 γ2 φ δ ω1 ω2 CLIC∗

G1 165.062 318.823 0.085 20.184 0.723 0.446 404480.8
23.459 19.811 0.026 0.948 0.195 0.009

G2 175.817 294.323 0.041 20.036 0 0 404488.1
11.879 25.291 0.064 1.039 – –

τ1 τ2 ψS ψT CLIC∗

C1 0.057 2.568 137.692 10.128 404626.2
0.060 0.309 7.615 0.523

τ1 τ2 ψS ν1 ν2 CLIC∗

C2 1.034 2.025 108.755 6.672 16.358 404750.3
0.040 0.318 7.299 0.908 1.502

C3 0.481 5.125 174.980 6.614 10.406 405020.4
0.005 0.262 6.955 0.095 0.226

NOTES: Parameter units are kilometers for φS , γ1, and γ2, radians for φ and τ1, hours
for δ and φT , and kilometers per hour for ω1, ω2, ν1, and ν2.

Evaluation of the full likelihood of the models C1, C2, and C3
requires numerical operations such as matrix inversion, matrix
determinants, and high-dimensional Gaussian cdfs (Genz and
Bretz 2009), which are computationally intractable in our case.
Therefore, we opt again for a pairwise likelihood approach,
which also simpli#es model selection through the CLIC∗.

Estimation results are summarized in Table 2. The CLIC∗ in
the last column shows a preference for our hierarchical mod-
els with the best value for model G1, followed closely by G2.
Estimated durations vary only slightly between G1 and G2. Esti-
mates of φ di%er more strongly, but one has to take into account
that estimates of both semi-axis are very close. Moreover, esti-
mates of γ1 and γ2 are similar for G1 and G2, which suggests
coherent results for the two models and allows reliable physical
interpretation of estimated parameter values. Regarding the
results for model G1, we observe that the estimated parameters
γ1 and γ2 characterize an ellipse covering a large part of the
study region, which indicates relatively strong dependence even
between sites that are far separated in space.

The estimate of φ underlines the low inclination of the ellipse,
while γ2 ≈ 2 γ1, which leads to an ellongated shape of the
ellipse. It corresponds well to the orientation of the mountain
ridges in the considered region.

The estimate of δ, which may be interpreted as the aver-
age duration of extreme events, corresponds well to empirical
measures of the actual durations of extreme events in the study
region. The orientation of the reliefs seems to play an important
role for the estimated velocity characterized by the values of ω1
and ω2, with ω1 being considerably larger than ω2. For visual
illustration, Figure 7 shows a simulation of model G1 where
the velocity e%ect in precipitation intensities becomes apparent.
This simulation shows heavy precipitation arriving from the
north, predominantly spreading over the eastern slopes of a
mountain range in the study region, and then becoming more
intense and #nally gradually evacuating toward the south.

Among the Gaussian copula models, the preference goes to
the separable model C1.

To underpin the good #t of our models through visual diag-
nostics, Figure 8 shows estimated probabilities Pr(Z(s, t) >

q|Z(s′, t′) > q) along di%erent directions and at di%erent tem-
poral lags |t − t′|. These plots suggest that the behavior of
models G1 and G2 is very close; there is no strong preference
for one model over the other. The ranking of the copula models
based on the CLIC∗ is also con#rmed by the visual diagnostics.
For contemporaneous observations with time lag 0, the models
C1, C2, and C3 have comparable performance in capturing
spatial dependence. However, for lags of 1 hr, models C2 and
C3 represent the space-time interaction not satisfactorily.

Finally, we gain deeper insight into the joint tail structure of
the #tted models by calculating empirical estimates p̂i(h) of the
multivariate conditional probability

χ∗
si;h(q) := Pr(Z(sj, t) > q, sj ∈ ∂si|Z(si, t − h) > q),

where ∂si is the set of the four nearest neighbors of site si,
i = 1, . . . , 50. We compare these values with precise Monte
Carlo estimates p̃(j)

i (h), j = 1, . . . , 200, based on a parametric
bootstrap procedure using 200 simulations of the models G1,
G2, and C1 with the leading CLIC∗ values. We compute site-
speci#c root mean-squared errors (RMSE)

RMSEi(h) =






∑200
j=1(p̃(j)

i (h) − p̂i(h))2

200






1/2

,

as well as the resulting total RMSE, RMSE(h) = ∑50
i=1

RMSEi(h), as an overall measure of goodness of #t. Table 3
reports such values for #tted models using contemporaneous
observations or lags of 1 or 2 hr (h = 0, 1, 2) between the
reference site and its neighbors. If we consider the quantile q0.99
used as a threshold for #tting models, our hierarchical models
present the best #t in terms of RMSE only for lagged values.
However, models G1 and G2 extrapolate better for larger values
of the threshold such as q0.995.

7. Conclusions

We have proposed a novel space-time model for threshold
exceedances of data with asymptotically vanishing dependence
strength. In the spirit of the hierarchical modeling paradigm
with latent layers to capture complex dependence and time
dynamics, it is based on a latent Gamma convolution process
with nonseparable space-time indicator kernels, and therefore
amenable to physical interpretation. This framework leads to
marginal and joint distributions that are available in closed
form and are easy to handle in the extreme value context.
The assumption of conditional independence as in our model
is practical since it avoids the need to calculate cumulative
distribution functions in large dimensions, although di$culty
remains in evaluating the volume of the intersections of more
than two cylinders and in calculating partial derivates for
full likelihood formula. We can draw an interesting parallel
to the max-stable Reich–Shaby process ZRS(x) (Reich and
Shaby 2012), which is one of the more easily tractable spatial
max-stable models and has a related construction. Indeed, the
inverted process 1/ZRS(x) can be represented as the embedding
of a dependent latent convolution process (based on positive
α-stable variables) for the rate of an exponential distribution.
Conditional independence models cannot accurately capture
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Figure 7. Empirical estimates of χx(q) (left panels) and χ̄x(q) (right panels) coe"cients for the precipitation data. The !lled region represents an approximate 95%
con!dence region based on a stationary bootstrap procedure.

the smoothness of the data-generating process. Nevertheless,
the α-parameter in our model of the Gamma noise in (9)
partially controls the smoothness of the latent Gamma #eld
#(s), with smaller values yielding more rugged surfaces.

In cases where data present asymptotic dependence, our
asymptotically independent model may substantially under-
estimate the probability of jointly observing very high values
over several space-time points. Asymptotic dependence in
our construction (4) is equivalent to lower tail dependence
in #(x). There is no natural choice for introducing such
dependence behavior, but a promising idea is to use what we
label Beta scaling: given a temporal process B(t) independent
of #(s, t) with Beta(α̃, α) distributed margins, 0 < α̃ < α,
we could replace #(s, t) in our construction by the process
#̃(s, t) = B(t)#(s, t) possessing margins following the ((α̃, β)

distribution. This construction has asymptotic dependence over
space, and it will be asymptotically dependent over time if
B(t) has lower tail dependence. Follow-up work will explore

theoretical properties and practical implementation of such
extensions.

We have developed pairwise likelihood inference for our
models, which scales well with high-dimensional datasets. We
point out that handling observations over irregular time steps
and missing data is straightforward with our model thanks to its
de#nition over continuous time. While we think that MCMC-
based Bayesian estimation of the relatively high number of
parameters may be out of reach principally due to the very high
dimension of the set of latent Gamma variables in the model’s
current formulation, we are con#dent that future e%orts to tackle
the conditional simulation of such space-time processes based
on MCMC simulation with #xed parameters could be success-
ful; that is, by using frequentist estimation of parameters, space-
time prediction requires to iteratively update only the latent
Gamma #eld through MCMC, but not parameters.

The application of our novel model to a high-dimensional
real precipitation dataset from southern France was motivated
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Figure 8. Estimated probabilities Pr(Z(s, t) > q|Z(s′ , t′) > q) along di#erent directions (expressed in radians) and at di#erent temporal lags for the precipitation data.
Dotted points correspond to empirical estimates. The value q is !xed to the empirical 99% quantile.

Table 3. Total root mean squared errors for the estimates of χ∗
si ;h

(q).

RMSE(0) RMSE(1) RMSE(2)

q0.99 q0.995 q0.99 q0.995 q0.99 q0.995

G1 2.614 2.096 1.901 1.643 1.475 1.496
G2 2.605 2.072 1.907 1.626 1.477 1.480
C1 2.240 2.455 2.053 2.428 1.779 1.928

from clear evidence of asymptotic independence highlighted
at an exploratory stage. It provides practical illustration of the
high "exibility of our model and its capability to accurately
predict extreme event probabilities for concomitant threshold
exceedances in space and time. Based on meteorological knowl-
edge about the precipitation processes in the study region, we

had hoped to estimate a clear velocity e%ect. As a matter of
fact, the #tted hierarchical model with velocity appeared to be
only slightly superior to other models in some aspects. This
interesting #nding may also be interpreted as evidence for the
highly fragmented structure arising in precipitation processes
at small spatial and temporal scales.

Ongoing work aims to adapt the current latent process con-
struction to the multivariate setting by considering construc-
tions with Gamma factors common to several components,
speci#cally structures with a hierarchical tree-based construc-
tion of the latent Gamma components, and extensions to asymp-
totic dependence using the above-mentioned Beta-scaling. Ulti-
mately, such novelties could provide a "exible toolbox for mul-
tivariate space-time modeling with scenarios of partial or full
asymptotic dependence.
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Appendix A: Formulas for the Laplace Exponent of a
Random Measure

The Laplace exponent of the random measure ((·) is de#ned as

L(φ) := − log E
(

exp
{
−

∫
φ(x)((dx)

})

=
∫

X
log

{
1 + φ(x)

β

}
α(dx),

where φ is any positive measurable function.
Consider φ = v1A(x). Then,

L(φ) = − log E
(
exp{−v((A)}

)
=

∫

A
log

{
1 + v

β

}
α(dx)

= α(A) log
{

1 + v
β

}
,

that is,

E
(
exp{−v((A)}

)
=

(
β

v + β

)α(A)

.

For bivariate analyses, choosing φ(x) = v11A1(x) + v21A2(x), yields

L(φ) = − log E
(
exp{−v1((A1) − v2((A2)}

)

= − log E
(
exp{−v1((A1\A2) − (v1 + v2)((A1 ∩ A2)

−v2((A2\A1)})

=
∫

A1\A2
log

{
1 + v1

β

}
α(dx)

+
∫

A1∩A2
log

{
1 + v1 + v2

β

}
α(dx)

+
∫

A2\A
log

{
1 + v2

β

}
α(dx)

= α(A1\A2) log
{

1 + v1
β

}
+ α(A1 ∩ A2) log

{
1 + v1 + v2

β

}

+α(A2\A1) log
{

1 + v2
β

}

and therefore

E(exp{−v1((A1) − v2((A2)})

=
(

1 + v1
β

)−α(A1\A2) (
1 + v1 + v2

β

)−α(A1∩A2)

×
(

1 + v2
β

)−α(A2\A1)
.

Appendix B: Formulas for the Pairwise Censored
Likelihood

Let LP(1)(v) and LP(2)
x,x′(v1, v2), x .= x′ denote the univariate and

bivariate Laplace transform of #(Ax) that is,

LP(1)(v) := E
(

e−v#(Ax)
)

=
(

β

v + β

)c0
,

and

LP(2)
x,x′(v1, v2) := E

(
e−v1#(Ax)−v2#(Ax′ )

)
=

(
β

v1 + β

)c1

×
(

β

v1 + v2 + β

)c2 (
β

v2 + β

)c3

with c0 = α(Ax) c1 = α(Ax\Ax′), c2 = α(Ax ∩ Ax′), c3 = α(Ax′\Ax).

We obtain
∂

∂v LP(1)(v)

= −c0βc0(v + β)−c0−1,
∂

∂v1
LP(2)

x,x′(v1, v2)

= −βc1+c2+c3
{

c1(v1 + β)−c1−1(v1 + v2 + β)−c2(v2 + β)−c3

+ c2(v1 + β)−c1(v1 + v2 + β)−c2−1(v2 + β)−c3
}

,

∂

∂v2
LP(2)

x,x′(v1, v2)

= −βc1+c2+c3
{

c3(v1 + β)−c1(v1 + v2 + β)−c2(v2 + β)−c3−1

+ c2(v1 + β)−c1(v1 + v2 + β)−c2−1(v2 + β)−c3
}

,

∂

∂v1∂v2
LP(2)

x,x′(v1, v2)

= βc1+c2+c3
{

c1c2(v1 + β)−c1−1(v1 + v2 + β)−c2−1

× (v2 + β)−c3 + c1c3(v1 + β)−c1−1(v1 + v2 + β)−c2

× (v2 + β)−c3−1 + c2(c2 + 1)(v1 + β)−c1(v1 + v2 + β)−c2−2

× (v2 + β)−c3 + c2c3(v1 + β)−c1(v1 + v2 + β)−c2−1

× (v2 + β)−c3−1
}

.

Supplementary Materials

The supplementary material contains the code to simulate and estimate
the model of Section 2. This is a snapshot of the repository https://github.
com/cgaetan/Gamma-GPD. Real data cannot be freely distributed, but the
Readme.md #les contains instructions for requesting them.
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