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1 Introduction

Let X;, i = 1,...,n, be independent and identically distributed (i.i.d.) random variables with
common continuous distribution function F', and let Y;, i = 1,...,n, be a second i.i.d. sequence
with continuous distribution function G independent of the X —sequence. One now observes
Z; = X; NY; and 6; = lx,<y,, ¢ = 1,...,n. Let H be the distribution function of Z; with
T = sup{x : H(x) < 1} the supremum of the support of H. Furthermore, let " () =P(Z >

z2,60=1)=Pz< X <Y).

Aside from the classical random right censoring model, we will assume that both F and G are
in the domain of attraction of an extreme value distribution, with extreme value indices v and
~vo respectively. Remark that this semi-parametric assumption is very general and hardly puts
any restriction on the applicability of the results. Moreover this implies that the extreme value

index of H exists and it will be denoted in the sequel by ~.

The aim in this paper is to estimate the extreme value index =1, although no observations from
F are available. This topic has already been studied in Beirlant et al. (2007), where differ-
ent estimators for the extreme value index have been introduced. For instance generalizations
of the well-known Hill estimator (Hill, 1975), moment estimator (Dekkers et al., 1989) and
U H —estimator (Beirlant et al., 1996) have been proposed in the context of censored observa-
tions. All these estimators are constructed in the same way: the classical non-censored estimator
based on the Z—observations is divided by the proportion of non-censored observations above

the threshold ¢, that is
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with N; the number of absolute excesses over t. 7/, could be any estimator not adapted to

censoring, in particular those previously mentioned: Q(Z}?,"?(ZA;[), or ﬁ(ZUtH) Recently, Einmahl

et al. (2008) have established, in a unified way, the asymptotic normality of any extreme value



index estimator of the form (1) in case where t = Z,,_j, ,, the (k + 1)-largest observation among

4, ey .

However, another approach to obtain estimators in the case of censoring is to adapt the likelihood
to this context. Indeed, recall that the maximum likelihood method relies on the results given
by Balkema and de Haan (1974) and Pickands (1975), stating that the limit distribution of the
absolute exceedances F; = X; —t, given X; > t, over a threshold ¢ when ¢ — 7, is given by the
generalized Pareto distribution. In the case of censoring, setting now E; = Z; —t, given Z; > t,

we can easily adapt the likelihood (see e.g. Andersen et al., 1993, p. 411) to

Ny
5~ 1-5;
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where 1 — G, 0, ,(2) = (1 + lac)_W and g, o, , is the associated density.

As usual in this context, we cannot explicitly deduce the expression of the two estimators of ¢
and o1 ¢, but we can obtain them numerically. However, it is very hard to obtain the asymptotic
normality of these estimators. Recall that in the case of no-censoring, this topic has been studied
by several authors, even recently (see Smith, 1987; Drees, 1998; Drees et al., 2004). In the case of
censoring, this normality is of course more difficult to derive and at this moment the asymptotic
normality is an open problem. In this paper, we propose an alternative approach which consists
of solving the M L—equations based on a one-step Newton-Raphson approximation (as discussed
for instance in Lehmann, 1991, Sections 6.3 and 6.4). This leads to new estimators adapted to
censoring for (y1,01,), denoted in the sequel by (W(thos), G(Zf}OS)). More precisely, in the spirit

of Theorem 4.2, Chapter 6 in Lehmann (1991), the proposed one-step estimators are defined by

the following way



-1
’\(C’OS) ’\(Cr) " "
Zt Tzt 11 o1,tL7y Ly

~(c,08) ~(c,.)
UZ,t UZ,t L// 2 rn L/
O1tdng 0714492 Ot Lo
O1,t 01t
where L, and LY., i = 1,2,5 = 1,2 denote the first, resp. second, derivatives evaluated at

i

(ﬁ(Zc’t'),E(Zc’t')) of the log-likelihood log L(1,01+). The estimators ‘y\(th) and G(Zc’t') are any initial

~(c,.) /
estimators for 71 and o1, such that /JV, (ﬁgt - Tai _ 1) is asymptotically normal. For

o1,

instance, it could be any of the estimators mentioned in Section 1.
Note that, in the same way, it is also possible to construct two-steps estimators.

In the sequel, we assume that sgn(y;) = sgn(y2) and 77 = 7 which corresponds to one of the

following cases:

case 1: v > 0,79 >0,
case 2: 71 < 0,7 <0, 7 = 103,

case 3: v1 =7 =0, =1G.

The other possibilities are not very interesting. Typically they are very close to the « completely
censored situation » where estimation is impossible (this holds in particular when ~; > 0 and
72 < 0) or the « uncensored case » which has been studied in detail in the literature (this holds
in particular when 77 < 0 and 2 > 0). Note also that in case 1, F' and G are of Pareto-type
which means that 1— F(z) = 2= /"0p(z) and 1—G(z) = 2~ /"24g(z) with £r and £g two slowly
varying functions at infinity. Similarly, we have in case 2, 1 — F(2) = (1p — )~ Y Up((tp —2) 1)

and 1 — G(z) = (g — 2)"/"24q((rg — )~ ). As a consequence, in these two first cases, it is

easy to check that v = -1 since 1 — H(x) = (1 — F(2))(1 — G(z)). In the last one, y = 0. For
convenience we always use the notation v =: %

The aim of this paper is to generalize the Peaks-Over-Threshold method to the case of randomly



right censored data, and more specifically to establish the asymptotic normality of the pair
@(ch%OS) G(Zf’tos))/ correctly normalized. This is the goal of our Section 2. As such we also
provide a new method for deriving this result, offering an alternative to the existing approaches
for proving such results in the uncensored i.i.d. case. Then various examples are detailed in
Section 3 with a small simulation study in order to illustrate the similar behaviour between

the one-step estimators and the M L—estimators, whose asymptotic behaviour is unknown. The

proof of our theorem is postponed to Section 4 and the technical details are given in the appendix.

2 Main Result

We denote by Ur (resp. by Ug) the tail quantile function of F' (resp. of G), that is Up(z) :=
F(1-3) =imf{y: F(y) > 1—1} (resp. Ug(z) := G~ (1 —1)). We assume that there exists

two positive auxiliary functions ar and ag such that

lim JE(W) = Ur(z) / v o =t hay (u) for u >0 (4)
T— 00 aF(fL‘) 1

i Je(zu) — Ug()

. ag(x)

/ 02y =: hoyy(u)  for u > 0. (5)
1

We will say that the tail quantile function Up (resp. Ug) satisfies the extreme value condition
C,, (ar) (resp. C,,(ag)) if (4) (resp. (5)) holds with the auxiliary function ap (resp. ag). In
order to establish the asymptotic normality of our estimators, we need a second order condition,
which can be expressed as follows. Using the theory of generalized regular variation of second

order outlined in de Haan and Stadtmiiller (1996), one assumes that for all u > 0:

Up(zu) — Up(x)
ar(z)

—hy(u) ~ agr(x)kp(u), z71o00 (6)

Ug(zu) — Ug(x)
ag ()

- h’yz (’LL) ~ a27g(l')]{70(u), x T o (7)



where ag ,a2 ¢ — 0 are regularly varying R,,,R,, functions respectively, with p1 < 0 and

p2 <0 and

u
kr(u) = Aphoip(u)+er [ 007 by, (8)de

kG(u) = Aghyip(u) +eg [ 1727 hyy(t) dt,

—

for suitable constants Ap, Aq, cp and cg.

Note that if p; < 0 and ps < 0, then an appropriate choice of the auxiliary functions ar and
ag results in a simplification of the limit functions, namely kr(u) = (p] 'cp + Ar)hy, 1p, (u) and

ke (u) = (py e + AG)haystps (u) (see Proposition 3.2 in Beirlant et al., 2004).

We transform the remainder condition that has been stated above in terms of Up (resp. Ug)
towards a statement based on the distribution function F' (resp. G). Sometimes this can be
more easy to handle. Assuming that Up and Ug are continuous and satisfy (4)-(7), then we

have that (see for instance Theorem 3.3 in Beirlant et al., 2004)

1 1—F(t+val,t)_ Y G " o
ST )= w, ®

1 I—G(t‘i‘fUO—Q’t)_ RN G v s
iR ) — ) 1 )
where xi(t) = azr (Ui (1), x2(t) = a2c (UG (1)) = (14 y0)7, gi(v) =

e ke (13,1 (v)) and 2 (v) = 1) (0)ke (1, (v)).

Before stating our main result, we need to introduce some notations. Let

L A, L B,
yio H(t) Sy 1+ 2 (x—t) o H(t) o (1+ 2 (e —1)?

—1
1 1 /TH H () :
——= dx if vy #0
Bii(y1,014) = ot H(t) )y 1+ 2(x—1))?

o1,t

TH o 7'Hi1 .
— /t (q;_t)H(x)dx—t)/t H (z)dz ify1=0



and

H( 1 1 (™  H) )
H(t) o1tH(t) /t (1+ 2 (o - t))zd
n 1 [ H(w) .
Baaln, o14) 1= “memw ) T Taopp Imro
H@M) 1 1 [ o
CH({t) - al,tH(t)/t H(z)dx if y1=0.

The functions B;; and By, are computed from expected values of L] and L. In a classical
parametric setting, By ; and By are equal to zero, while here in a semiparametric extreme value
setting they tend to zero which leads to some bias in the estimates. We have now the following

result.

Theorem. Suppose that Up and Ug are continuous and satisfy (4)-(7). Moreover, if v < 0, we

assume that the slowly varying function £ is normalised. Assuming when t — Ty,

P
VNiBii(y1,014) — oq €R, (10)
i
VNt Bay(y1,014) — oo €R, (11)
oot .
and ——— — C€(0,1) if 7 =v%=0 and 7p=r1q, (12)
o1+ 02

1

then we have, in case v > —3,
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M1 +4) [—Vlal + 2042]
¥ ¥
=

0_3[a1—a20]
if 1=7%=0 and 7Tr=1710

0_2 [—041 + 209 C]



and

if v172>0 and 7TF=1¢

if y1=v%=0 and 7Tr=71g.

3 Examples and a small simulation study

In this section, we consider three examples:

e a Burr distribution censored by another Burr distribution;
e a ReverseBurr distribution censored by another ReverseBurr distribution;

e a Logistic distribution censored by a Logistic distribution.

Remark that these three examples cover the three cases considered in this paper. For each
example, we evaluate explicitly the main bias terms B 4(y1,01,) and Ba¢(v1,01,+). This leads
to a reformulation of conditions (10)-(11) of our theorem and also we prove that (12) is fulfilled
in case 3. Then, in a second part of this section, we provide a small simulation study to
illustrate the correspondance, for these three distributions, between the one-step estimators and

the M L—estimators obtained by direct optimization of the likelihood (2).

3.1 Various examples

e Example 1: X ~ Burr(f8y,71,A1) and Y ~ Burr(f82,72,A2), Gi, 7, As > 0, i = 1,2, and

’7'17&1.



In that case

A1
1-F) = (G 1) = (e ) M0,
1
Ba he A -2
1-6l) = () = (e Mo
2

1

We can infer that v = Y =
n )\17'1 7 )\17'1 + )\27’2

and o1 =t <1 + &t_n(l + 0(1))).
1

Direct, but tedious computations, lead to

2 2
1-— 1 —
712 /81( Tl)( +’7 Y 7-1) t_Tl lf n S T
A (14 7) (L + 37 +9) (1 +79)(1 +27)
Bii(v, o) =
0 (t_m) if />
1-— 1
v BO-mty o, e
M1+ +7)(1+27y)
Boi(m,o14) =
O(t_m) if T > T92.

Now, if we recall that V; is by definition the number of absolute excesses over t, it is distributed

Ny
nH(t)

according to a Binomial (n, H(t)) distribution. Then — 1 in probability as t — oo and

therefore, a sufficient condition for (10) and (11) is
— ., . L
nH(t)t™7 — «a or equivalently /nt = > — «a, ast— oo,
where o € R and 7 = min(7y, 72).

e Example 2: X ~ ReverseBurr (f1,71,A1,7y) and Y ~ ReverseBurr (052,72, A2, TH),

BisTiy NiyTr >0, i =1,2.

In that case

A1 “\
1 - F(z) = ( m(ﬁfl_ )) = (i — )M (14 rlrr —2)) <
A2 Ao
el = (@ - ac)‘T2> = = a2 (14 o = 0)) <



and o1t = —’yl(TH — t) (1 — @(TH — t)Tl(l + 0(1)))

leading to v; = —
1

7'1)\177 - _7'1)\1 +7'2)\2

Direct computations yield

;

7 A+ 7)1 +y+7"m) (r— )" i < 7
) <

2
V(L —m) (L —ym + ) (1 +9) (1 + 2y

Bii(m,014) =

0((7‘H—t)72) if7'1>7'2

v Bl +1)(1+7) -

— T — )™ if <

7171(1—7T1+7)(1+2’Y)(H ) e
Byi(m,014) =

o((tg —1)™) if 71 > 7.

Consequently, a sufficient condition for (10) and (11) is
—_— 1
nH(t) (tg —t)7 — «a or equivalently +/n(rg —t)" 2 — a, ast— 7g,
where o € R and 7 = min(ry, 7).

e Example 3: X,Y ~ Logistic.

In that case

2

1-F(z)=1-G(x)
Hence 71 = v = 0 and 014 = 1. This implies that
|
Bii(m,014) = 9° (1+0(1))
and
Lo
Boy(yi,014) = 3¢ (14 0(1)).
Therefore a necessary and sufficient condition for (10) and (11) is

nH(t)e " — a or equivalently ne * — a, ast— oo,

where a € R. Also, since 01, = 024 = 1, (12) is clearly fullfilled.

10



3.2 Simulations

In order to illustrate these three examples, we simulate 300 samples of size 500 from the following

distributions:

e a Burr (10,4, 1) censored by a Burr (10,1,0.5): v = 0.25, 2 = 2;

e a ReverseBurr (1,8,0.5,10) censored by a ReverseBurr (10,1,2.5,10): 3 = —0.25,72 = —0.4;
e a Logistic censored by another Logistic: v; = v = 0.

These three specific choices of parameters lead to three different expected percentages of cen-
soring in the right-tail: 11% for the Burr example, 38% for the ReverseBurr example and 50%

for the last one.

The moment estimators adapted to censoring have been used as the initial estimators. They are

defined as follows:

—1
~(e,M Hn(t) ~(M Hy(t 1 (M(l))2
0 = Bt =2 -1 2) )

/

=

Zt

— 1 2
Ha(t) t\/3(M(z,i)2—M(z,i

~(¢,M)
g = =
2T 0\ G0 GY)
where
1 ity>0
pi(y) =
- if v <0
)
2 ify>0
p2(7) =
2 .
== ify<0
y o Zicalog Pl
wt nH ,(t)
M(Q) — Z?:l (105%)2ﬂ{zi>t}
wt nH , (t)

11



with H,(t) and F}I(t) the empirical versions of H(t) and " (t) respectively.

In all the figures, the panel (a) represents the median whereas panel (b) shows the empirical

mean squared errors (MSE) based on these 300 samples. Figure 1 displays the result for the

~(c,.)
Ozt

estimators of v; whereas Figure 2 shows the results for i

The full line corresponds to the
maximum likelihood estimator (obtained by direct optimization of the likelihood (2)) and the
dashed line corresponds to the one-step estimator. The horizontal line is always the true value
of the estimated parameter. All the plotted estimators are adapted to censoring. These graphs

correspond successively to the three distributions: Burr (top), ReverseBurr (middle), Logistic

(bottom).

We observe that the one-step estimator has a similar behaviour to the M L—estimator. In
particular, it is very hard to differentiate the two graphs in the case of the Burr (10,4,1)
censored by a Burr (10,1,0.5). In terms of the MSE, we can say that the minima of the two
curves are very close, except in the case of the Logistic distribution for the scale parameter where
the difference between the two graphs is significant (also for the median), the one-step estimator
being considerably better. In this case the percentage of censoring is quite large (50%). Remark

that in the case of no-censoring the two graphs are much closer as illustrated on Figure 3.

4 Proof of our Theorem

The proof of our theorem is in the spirit of Lehmann’s theory (1991). This proof is very technical.
Therefore, to facilitate its understanding, we first sketch the proof, the details being postponed

to the appendix.

Step 1: The system of equations (3) can be rewritten as

12



A(C7OS) A(Cv')
Yzt =~ Vzt

508 ()

Zt 9zt
O1,t O1,t
2
91t + 1 O1,t _ 1 /1
22 - 12
Ny Ny V Nt
1
= 14
1 7n o7 4 " oLt I 2 ( )
<mL11> ~, L2 _(Tth) .
Ul,t 17 L// Ul,t L/
- 12 Ar 11 - 2
N Ny V' Ny

where to alleviate the notations, we have not specified that all the derivatives are evaluated at
A(Cv') A(c»')

( Zt 297t )

Step 2: According to (14) we have to compute the limit in probability of the second derivatives

correctly normalized. Direct computations lead to

(o |
L P (%) weem 0
—ELH(VLULO -
203 if vy =0
v 1 .
2 ] o
*N’t 2(11,01) —
C ifyy =0
2 1
(1) araez o
_i\lf;tLb(%,m,t) £
C? if v, = 0.

However, the preceding convergences hold in case where the derivatives are evaluated at (71, 01¢).

In our case (see (14)), we need a similar result but when the derivatives are evaluated at

13



nE;j/o1s

@(cht-)j (’7‘(20;)). In fact, it is fairly easy to deduce these results taken the fact that Ty <1
o1,
into account. For instance, we have
N, N,
Ll 5 Ll B
~(c,. (e m g,
Ny O-(Zc;t) = 1+j(Zc’t)Ej N; o1t = 1+01,tE]
Ty
N, N,
- x| w2
o~ . ~(c,. M . ~(c,. Kzl ]
Ny O-(ZC,’t) Pl N %E]’ 1+ o1t E] Ny G(Zc,t) o1t st 14+ Ul,tE]
Tz}
~ ~ Ny N 2 N
_ _1<1,t_1> 1t Uizf CTuE —I—i o iz’ﬂ
ﬁ(zc,}') Lt Tre71e Mt T \L+T1E; gl a(ZC”t') Ny i+ 114 E;
N 0,

(6.

"o~ Zt S . N
where 71y = —, 71 = ) and 71 is between 71 ; and 7y 4.
1,t O'Z’t'

Step 3: Now expanding the first derivatives of the log-likelihood appearing in the right-side of
(3) about (v1,014¢) (as in the proof of Theorem 4.2, Chapter 6 in Lehmann, 1991) and taking

the conditions (10) and (11) into account, we have to establish the asymptotic normality of

1
—/ Ny [NLll(%’ o1,t) — Bit(m, Ul,t)]
t

g
-V N [ ]\17’t Ly(y1,014) — B2,t(71>0'1,t):|
t

According to Appendix 2, this follows from the asymptotic normality of

H,(t)— H(t)
H,(t) ~ T (1)
BN N " /TH H(z)
W [ - Z og( + U1,t( J )) {2;>t} oty T¥ (@1 x
H{(t) n]—l 1.t
1 1 2! /TH H(zx) i
- , RS
n = + %(Z] t) {Z;>t} o), A+ ;/Tl(x — )2
L —1
1 1 "N /TH ' (z)
—2.0 iz, — dx
n ; J < 1+ %(Z] t)) 1Zj>ty = ) 1+ %(a: —1))2
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in the case 1 # 0 and

otherwise.

Step 4: Using the multivariate central limit theorem, the pairs (Z;, 6;)i=1,... » being independent,

the following asymptotic variance-covariance matrix for W follows in case 1 # 0:

wherea =~y (1-(1+9)7!),b=7(1—-(1+7)?),andc=1-2(1+7)" '+ (1+2y)""

Similarly, in case 7; = 0, using the assumption (12), we obtain the following variance-covariance

matrix for W:

n

1 TH _
ST g - [ H)do
t

n -
) ]:1

1 — — a
et v
R A
_ = = a a
0 S S |
2
y T 292 b T,
4! 4!
n a b c lc
Y il
i i i
a a —b —c —c
§a! g4l 4!

1 ¢ Cc 0 (C?

c o c* o

C C? 20% 302 20°
c? ¢ 3¢ 60* 301
c? ¢? 20° 30 208

15




It is important to note that the computation of these matrices is quite complex. It requires to
split each integral into several parts and to use the convergence results (8) and (9) combined
with the dominated convergence theorem in order to conclude. To illustrate these techniques,
we give two examples of such integrals in the Appendix 3, one in the case v = 0, and another

one in the case v < 0, the case of a positive one being more easy to handle.

Step 5: The preceding step combined with Appendix 2 leads to the following variance-covariance

matrix for V' in case y; # 0:

? (3)5 AT (3)2 T+ +27)

2
< v ) 1 v o1
n/) (1+7)0+2) Mnl+2y
whereas, in the case v; = 0, we obtain the following matrix:
20° C?
c* c
Concerning now the bias term, we have to use the conditions (10) and (11) combining with Step

2, to conclude that it is equal to

2
8! ge!
— 1+ [1+’ya—a}
<'Y> ( ) ’Y( Jo ?

ﬂ(l +7) |:_%a1 +2042}

Y g
in the case 1 # 0 and

Cig[al—agC]

2 [—Ckl + 209 C]

in the case y; = 0.

Combining all these steps, our theorem follows.
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5

Appendix

5.1 Appendix 1: The first and second derivatives

Direct computations lead to the following first derivatives of the log-likelihood:

;

Olog L(v1,01,4)

L =
1(,7170'17t> 8’}’1

Lh(y1,014) = dlog L(m,01.t)

— Ezé

80’1’15

s

and to the following second derivatives:

82 log L(’}/l, 01775)
3271
N

Zlog(l—kf ) 232;

Liy(v,014) =
7 E; /01t
e E

Ult

9% log L(71,01,4)

Lyy(yi,014) =

820'1t
N 1 1E /O’lt
2 ; Z fyl_‘_ 1_|_U'Y11tE +

9*log L(v1,01,)

Liy(yi,01p) =

0o1,:0M
I (mE;/o1)? 1 1
=2\t armee tyo
MO\ 1+ -Ej) Mo 4

In case where v; = 0, the first derivatives can be read as follows
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’ ]:1 1,t ]:1

Ny

1)

N

J

7

nEj/o14
1+ LE;

E
+ 5j> gl

1+%Ej

O1,t

1
— 4+
(71 !

Ej/o14
1+ 1 E<'

O1,t

j/Ul,t

(nEj/o14)*

(1+ 2 B))?



whereas the second are given by:

4 N 3 Ny 2
2 E; E;
L7,(0,0 == E (7 ) + E 5 <7 >
11(0,01,¢) 3 2o, < Ay

PTETRSE JEANEE Y3
20010 mZ mZ

5.2 Appendix 2: Justification of the matrix W

Using the preceding appendix, it is clear that in case v; # 0, we have

1
Ny [N Ly (v, 016) — Blt(%,au)]

_l’_
RS S o ! %/”’ L[
; njzl VA2 -0) P T o ), T EG-0P

N o1,t

RS " /TH TG
L P

n\ns7\ 1r 7 -0) Y e ) (U G 1)?

o o 1 1 TH F(Z 1 1 " H(Z)
+[Hn(t)—H(t)][— (t)/t 1+ 2o Z_t)d”%al,tﬂ(t)/t (1+ 725 (z —ny®

and

18



o
—/ Nt []\lftLQ(’Yl,Uu B2t(’Y1,U1t)]
t

T -

1 1 Sy H(2)
— | = 1-— 1 d
= (n( T+ (7~ >> i B A T )

' @'w 11 HG)
”(t)_H(t”[Ha) _mmt)/t i+ Z-or”

01,t

t
v 1 (™M H()
2wl T —t))?dZ”

O1,t

whereas, in case y; = 0, we have

1
\/Nt[ L 717017&) Blt("}/lao'lt)]

F {01 (217% 2 2=tz — /TH (z— t)H(:L")dx)
K J=1 t

and

o
Ny [“LQ(%,Q t) — Ba (1,01 t):|

- (- om0y L (e - ams - [ o)

5.3 Appendix 3: Two examples of integral to be computed

We have to compute several integrals. To this aim, we have to divide them into several parts.

Below, we illustrate two such examples.
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5.3.1. An example in case where 7; and v, are negative and 7p = 7¢

We illustrate our technique with the following integral

n

—1
g, (i IRV )
Var F(t) nZCSg (1 1+71(Zj—t)> H{Zj>t} Ul,t/t (1+L{(x—t))2dm

j=1 o1t

on the first-hand because it is the most difficult one to handle and on the other-hand because
the required assumption v > —1/2 appears clearly. According to de Haan and Ferreira (2006,

Theorem 1.2.5, p. 21), if the convergence

F(t+ o14x)

lim = (1 +yz) Y/m
tr F(t) (1+mz)

holds for some o1 > 0, then it also holds for o1 ; = —v1 (75 — t). Therefore, in all the sequel we

assume that oy is such defined.

The quantity of interest can then be rewritten as:

n —1
n |1 1 m [T H (z)
— =) e (1- Ty oy — ——
Yy |n 2 53( L+ 2 <Zj—t>> 1=t a/ 0+ 2 (- 02"

=1 O1,t

2 1 1 2
o 1 dH (z) — o 1 dH (z)
N /t (1 1+ 2 (x— t)> H(t) () (/t (1 14 2 (z - t)) H(t) )

o1,t

_ _/;H (1 - :g:i)z dgl(g”) +o(1)

I

|
c\\‘
T
Q)
~=
~ |
~

Il
|
r\
S
Q |l

S

[l

|
S
o

i
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[ -2 o

/HH(u)< TH —t

2
1
N1
) TH—’LL> (T —u) E<TH_u>du+0(1)
with e () i= mm T
1
5(7H7’U4

using the fact that £ is normalized. Recall that, when u — 7y,
> converges to 0, (see Bingham et al., 1987, p. 15)

By changing variables, we obtain that

1 _m / i H (x)
I+ A (z-n) ) Y L
1 H(ty — Tr—t

(0] (1—x)% e (mx— t) dz + o(1)

= Tl,t + T2,t~

H _ Tg—t
Recall now that (T )

T

H{(t)

— 7 as t tends to 7. Moreover, using Potter’s bounds (see
e.g. Bingham et al., 1987, p. 25), for any chosen constants A > 1 and 1 > 0 we have

H(rg — =t ly
(TPL L ):xi (. = <A1:v+n x>1
H{(t) H(TH_t
for ¢ sufficiently large

Also if v > —1/2, choosing 71 sufficiently small, the integral

1 1
S— am+n(1 —x)foldx
" J1

1 o
lim T7; = ——

is clearly finite. This allows us to use the dominated convergence theorem and to deduce that
t—TH

1 _ ¥ 2 1
7 (1—2)x 1dx:(1—+ )
M ( ) M I+~ 142y
Concerning now T5;, using the fact that 5( Hm7t> tends to 0 as ¢t — 7y and the preceding
argument, we can also use the dominated convergence theorem in order to deduce that 75,
tends to O.
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5.3.2 An example in case where 7; = v, =0 and 7 = 7¢

Similarly as in the preceding case, we select the « most difficult » integral that have to be

computed. It is the following:

n

n 1 1 TH —1
Var e 0;(Z; —t) g~ — H (x)dx
H(t) o1z n]z_; 3(Z5 = Dlizp /t (=)
1 -1 [™ __ — 1 -1 ["H L 2
_ 2/ (¢ — )2 () — H (1) (/ (:z:—t)dHl(:z:)>
oty H(t) Ji ot H(t) Ji
202 T HY
— ft/ e z—(jUH’tz)dz—i—o(l).
91 Jo H(t)
This integral can be rewritten as:
TH—t —1 Tt
o H t o TH — .
w M tomz), / e _Z / G (u)dF (u)dz
0 H(t) 0 H(t) t+zomt

H(t)
1 ( o2t )2 /Tg,tt G(t+ 02.42) o F(t+ 0242)
2 \om 0 G(t) F(t)
= _1 <U2,t >2 /sztt {G(t + UQ,tZ) _ —z} 2 F(t"‘@,t'z)
2 \ony 0 G(1) F(t)

=: T34+ Ty +Ts5,.

We treat the three terms separately. Direct computations lead to

2 3
QUH’tT _ 20H7t )
014 014

which is the expected result for the variance that we would like to compute. Therefore, we have

now to prove the negligibility of the two other terms.

First concerning 7} ¢, we have

T —1 —
1 2 = (Tt _o2
Tyt = = <02t> / 2t M —e ut” (2ze_z — z2e_z) dz
2 \omt 0 F(t)
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2 THU (— . 9 .
L [ o2t Ol o1t t+ 0142 _ o1 —Zht, O14 _oLt
= s\ — y —e Py (2= ze 2T — [ ) 2% 247 | da.
2\oue) o2t Jo F(t) o2t o2t

Consequently

T TR | TO

which leads to

2

2074 02t 2
5 Ty <4 0—’ (1+0(1)) sup 7F(t)
].,t 17t 2€ (0 TH—t>

by condition (12).
Second, concerning T3 ;, we have
2
_ <02,t>
01t
G(t+ 0242) .

2
— <0-2’t> sup ‘G ; — e
g
Lt Ze<0 TH7t> (t)

Voot

TH —

R R R

2
OH
2
014

2 T34

TH—t J—

/‘72,t ZQdF(ti— 0’27,52)‘
0 F(t)

IN

Since the supremum tends to 0, we only have to prove that

2 TH—t —_—
Q= — (fm> / 2 gFtt oa2)
e o1, 0 F(t)

is bounded. To this aim, we are going to use (8). We first remark that
TH—t —
o F(t
Qe = 2/ e Bt 0142) i_ 714%) zdz
0 F(t)
TH—1 —_—
= 1 [F(t +01+2)

= 20 [ i C) e a0

= 2x1(t) /OOO Jt(z)dz 4+ 2 4 o(1).

TH—t
1.t

ze “dz

— e_z] dz +2
0

Since fi(z) — z¢1(z) and |fi(2)| < 2 z]11(2)| which is integrable, we deduce by the dominated

convergence theorem that QQ; — 2.
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Figure 1: (a) Median for the extreme value index estimators and (b) the associated empirical
mean squared errors for a Burr (10,4,1) censored by a Burr (10,1,0.5) (on the top), for a
ReverseBurr (1,8,0.5,10) censored by a ReverseBurr (10,1,2.5,10) (in the middle) and for a
Logistic censored by another Logistic (on the bottom). The M L—estimator is in full line whereas

the one-step estimator is in dashed line. The hzogizontal line corresponds to ;.
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Figure 2: Median for atht and (b) the associated empirical mean squared errors for a Burr

(10,4,1) censored by a Burr (10,1,0.5) (on the top), for a ReverseBurr (1,8,0.5,10) censored
by a ReverseBurr (10, 1,2.5,10) (in the middle) and for a Logistic censored by another Logistic
(on the bottom). The M L—estimator is in full line whereas the one-step estimator is in dashed

line. 26
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Figure 3: The case of no-censoring: at the top: (a) median for the estimators of y; and (b) the
associated empirical mean squared errors and at the bottom: (a) median for the estimators of
the scale parameter correctly normalized and (b) the associated empirical mean squared errors
for a Logistic distribution. The M L—estimator is in full line whereas the one-step estimator is

in dashed line. The horizontal line is the true value of the estimated parameter.
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