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a b s t r a c t

Hazard assessment at a regional scale may be performed thanks
to a spatial model for maxima that can be obtained by com-
bining the generalized extreme-value (GEV) distribution for the
univariate marginal distributions with extreme-value copulas to
describe their dependence structure, as justified by the theory
of multivariate extreme values. A flexible class of extreme-value
copulas, called XGumbel for short, combines two Gumbel copulas
with extra-parameters weighting each dimension. In a multisite
study, the XGumbel copula quickly becomes over-parametrized.
In addition, interpolation to ungauged locations is not easily
achieved. We develop an extension of the XGumbel copula to the
spatial framework by defining the extra-parameters as a map-
ping shaped as a disk. The inference of the Spatialized XGumbel
copula is performed thanks to an Approximate Bayesian Compu-
tation (ABC) scheme with summary statistics based on upper tail
dependence coefficients. The GEV parameters are estimated with
a spatial regression model built with a vector generalized linear
model. We evaluate and compare this spatial model with the
Brown–Resnick process on annual maxima of daily precipitation
totals at 177 gauged stations in the French Mediterranean over
a 57 year period. Our analyses show that the ABC scheme yields,
except in one instance, interpretable parameters. In addition, the
Spatialized XGumbel copula is able to reproduce reasonably well
the non-stationarity present in our case study.
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1. Introduction

The French Mediterranean is exposed to intense rainfall events called Cevenol events. These
regularly cause flooding leading to important material damages and fatalities (Delrieu et al., 2005;
Braud et al., 2014). Hazard assessment is conventionally performed by determining at-site T year
return levels — the rainfall intensity level that is expected to be exceeded on average once per
T years at a given site, see for instance Carreau et al. (2017). However, planning for flood risk
mitigation is generally made at a regional scale. Therefore, a quantity of interest might rather be the
probability that, conditionally on the fact that rainfall intensity at a given site has reached a high
level, high intensity levels are likely to be reached at nearby sites. To estimate such a probability,
characterization of the dependence of intense rainfall events in space, that is knowledge on spatial
patterns of extreme events, is required. To this end, a spatial model for maxima over blocks of
observations may be used.

Extreme value theory developed a sound theoretical framework to model the distribution of
maxima over sufficiently large blocks of observations (Coles, 2001). Their univariate marginal
distributions can be approximated by the Generalized Extreme Value (GEV) distribution (Fisher
and Tippett, 1928; Gnedenko, 1943; Gumbel, 1958). In the multivariate case, theoretically justified
distributions for componentwise maxima are the so-called Multivariate Extreme Value (MEV) distri-
butions. The extension to the spatial setting leads to max-stable processes whose finite dimensional
margins are MEV (de Haan, 1984). MEV distributions are either asymptotically dependent which
entails that the dependence level remains constant at extreme levels or strictly independent (no
dependence whatever the level).

MEV distributions and max-stable processes, unlike the GEV, do not have a unique finite
dimensional parametrization (Beirlant et al., 2004). MEV distributions can be constructed by
associating GEV margins with MEV copulas. Some MEV copulas such as the Gumbel copula exist
in high dimension but are limited in their ability to reproduce complex dependencies. Moreover,
interpolation to ungauged locations is not straightforward. Several parametric models for max-
stable processes have been proposed, see Davison et al. (2012) for a recent review. For small study
regions, a single parametric model may be used, for instance see Thibaud et al. (2013). However, in
order to account for differences in dependence structures resulting from non-stationarities, larger
study regions may be split into smaller sub-regions (Blanchet and Davison, 2011; Blanchet and
Creutin, 2017).

As the complete log-likelihood is often intractable in high dimension, let alone in the spatial
framework, pairwise log-likelihood inference is a common practice, in particular for max-stable
processes (Davison et al., 2012). Another possibility is Approximate Bayesian Computation (ABC)
likelihood free inference that selects parameters such that the model reproduces statistics of interest
(see Beaumont, 2010 for instance). By simulating from the model for candidate parameters drawn
from a prior distribution, ABC schemes constitute the so-called reference table that contains the
statistics of interest. The posterior distribution consists of the candidate parameters that yielded
statistics sufficiently similar to the observations’. ABC schemes for max-stable processes rely on
summary statistics containing information on the extremal dependence structure (Erhardt and
Smith, 2012; Erhardt and Sisson, 2016; Lee et al., 2018).

In this work, we propose a spatial model for maxima that rely on the extension to the spatial
framework of the class of extra-parametrized MEV copulas (Durante and Salvadori, 2010; Salvadori
and De Michele, 2010). The extra-parameters characterize each dimension thereby introducing ad-
ditional flexibility in the dependence structure. We focus on extra-parametrized Gumbel (XGumbel)
copulas, see Section 2. In Section 3, we present our case study, annual maxima of daily precipitation
at 177 gauged stations over a 57 year period in the French Mediterranean. Our proposed spatial
model, described in Section 4, combines the extension to the spatial framework of the XGumbel
copula with a spatial regression model for the GEV marginals. This way, MEV distributions are
defined for any set of sites, whether gauged or ungauged. The spatial extension is achieved by
defining the extra-parameters of the XGumbel copula as a mapping of geographical covariates. An
ABC scheme is designed to perform the inference. Evaluation on our precipitation case study is
carried out in Section 5. The spatialized XGumbel copula is compared with the Brown–Resnick
process, a max-stable process commonly used to model environmental extremes (Brown and
Resnick, 1977; Davison et al., 2012).



J. Carreau and G. Toulemonde / Spatial Statistics 40 (2020) 100410 3

i
e
A
β
t
f

c
i
o
t

2

1
e

w
f

T
c

2. Extra-parametrized Gumbel copula

2.1. Multivariate definition

The multivariate XGumbel copula Cψ (·), defined as

Cψ (u) = CβA (u
a)CβB (u

1−a), βA, βB ≥ 1, a = (a1, . . . , ad) ∈ [0, 1]d, (1)

is a distribution function on the unit hypercube [0, 1]d with parameter vector ψ = (βA, βB, a). The
parameters βA, βB ≥ 1 are inherited from the two Gumbel copulas, CβA (·) and CβB (·), whose general
form is

Cβ (u) = exp

⎧⎨⎩−

[
d∑

i=1

(− ln ui)β
]1/β

⎫⎬⎭ , β ≥ 1. (2)

Note that the case β = 1 corresponds to the independent copula. As they affect all d dimensions
n the same fashion, the two parameters βA and βB can be thought of as global parameters. The
xtra-parameter vector a = (a1, . . . , ad) ∈ [0, 1]d appears as componentwise exponents in Eq. (1).
s each dimension is characterized separately, extra-parameters may be thought of, in contrast to
A and βB, as local parameters. As can be seen from Eq. (1), if the values of βA and βB are swapped,
he same copula Cψ is obtained by replacing a with 1 − a. To remove this identifiability issue, we
ix βA ≤ βB.

As it fulfills the max-stability property, i.e. C(ut
1, . . . , u

t
d) = C t (u1, . . . , ud) ∀t > 0, the Gumbel

opula is a multivariate extreme value (MEV) copula. By the definition in Eq. (1), it follows that Cψ
s a MEV copula as well (Salvadori and De Michele, 2010). The multivariate XGumbel copula may be
btained by a constructive approach as follows (see e.g. Liebscher, 2008). Let U ∼ CβA and V ∼ CβB ,
hen max(U 1/a,V 1/(1−a)) is distributed according to Eq. (1).

.2. Bivariate properties

A MEV copula can be defined with the Pickands function conventionally denoted by A (Pickands,
981; Marcon et al., 2017). In the bivariate case, a copula C is a MEV copula if and only if there
xists a convex function A : [0, 1] ↦→ [1/2, 1] such that

P(U1 ≤ u1,U2 ≤ u2) = C(u1, u2) = exp
[
ln(u1u2)A

(
ln(u2)

ln(u1u2)

)]
, (3)

ith U1 and U2 two uniform random variables on the interval [0, 1] and 0 ≤ u1, u2 ≤ 1. The
ollowing properties must be fulfilled: min((1− t), t) ≤ A(t) ≤ 1, for all t ∈ [0, 1], A(0) = A(1) = 1,
−1 ≤ A′(0) ≤ 0, 0 ≤ A′(1) ≤ 1 and A′′

≥ 0.
For the bivariate XGumbel copula, the Pickands function, illustrated in Fig. 1(a), is

A(t) =

[
aβA1 (1 − t)βA + aβA2 tβA

]1/βA  
AβA (t)

+
[
(1 − a1)βB (1 − t)βB + (1 − a2)βB tβB

]1/βB  
AβB (t)

. (4)

he Pickands function completely characterizes bivariate extremal dependence. It is equal to 1 in
ase of independence and equal to min((1 − t), t) in case of perfect dependence. In between, the
strength and the shape of the dependence, in particular the asymmetry, may vary. Note that the
XGumbel copula is symmetrical when a1 = a2 or when βA = βB and a1 = 1 − a2.

For 2-dimensional MEV distributions, the strength of extremal dependence may be summarized
by the upper tail dependence coefficient χ defined as

χ = χ (u) = P(U2 > u | U1 > u) = 2(1 − A(1/2)), ∀ 0 < u < 1. (5)

In case of asymptotic independence, which necessarily corresponds to strict independence in a
max-stable context, χ = 0. Otherwise, 0 < χ ≤ 1 indicates the strength of the asymptotic
dependence (Sibuya, 1960; Coles et al., 1999).
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Fig. 1. Bivariate properties of the XGumbel copula of Eq. (1) with βA = 2 and βB = 5.

The upper tail dependence coefficient of the bivariate XGumbel copula is defined as

χ = 2 − [(aβA1 + aβA2 )1/βA + ((1 − a1)βB + (1 − a2)βB )1/βB ]. (6)

It may be deduced by combining Eqs. (4) and (5). The variation of the χ of the XGumbel copula
with respect to the values of the extra-parameters a1 and a2 is illustrated in Fig. 1(b) for βA = 2
and βB = 5. We note that χ is maximum when a1 = a2 (along the first diagonal) and increases
for decreasing values of the extra-parameter (in the lower left corner). In the limiting case with
a1 = a2 = 0 (a1 = a2 = 1), the XGumbel copula boils down to the Gumbel copula with parameter
βB (βA) and χ = 2 − 21/βB (χ = 2 − 21/βA ). In addition, independence (χ = 0) is achieved when
a1 = 0 and a2 = 1 or the reverse, a1 = 1 and a2 = 0.

3. Precipitation data

3.1. Study area

Our study area is illustrated in Fig. 2. It covers about 16 000 km2 around the city of Montpellier
near the Mediterranean area in the south of France. It is well-known for intense rainfall events that
occur mainly in autumn (Brunet et al., 2018). Owing to the Cévennes mountain range sitting in the
north-west of the area, the Rhône river valley running in the eastern end that encompasses the city
of Montpellier and the Mediterranean sea in the south, there is a strong variability in the distribution
of heavy precipitation both in terms of intensities and of dependence structure (Blanchet and
Creutin, 2017; Carreau et al., 2017).

We selected 177 gauged stations from the Météo-France network, the French weather service,
that are located within our study area. For each station, we extracted annual maxima of daily
precipitation totals over a 57 year period (1958–2014). The calibration set consists of the stations
depicted as black filled circles. Among these, 11 numbered stations are used for a regional hazard
analysis in Section 5.3. In addition, six stations with no missing values scattered in the study
region, shown as red filled circles wearing letters in Fig. 2, are kept aside for validation purposes in
Section 5.

3.2. Exploratory analyses of the dependence structure

We rely on sample estimates of the upper tail dependence coefficient χ introduced in Eq. (5)
that summarizes the strength of the dependence between two sites i and j. Let U and U be random
i j
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Fig. 2. Gauged stations in the study area located in the French Mediterranean: 171 stations (in black) are used for
alibration, 11 of these are numbered and serve in a regional hazard analysis, 6 stations (in red) are kept aside for
alidation — coordinates are in extended Lambert II projection. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

ariables representing the annual maxima at each site transformed to the uniform scale. Then, the
pper tail dependence coefficient χij between sites i and j can be written as

χij = 2 −

(
1 + E[|Ui − Uj|]

1 − E[|Ui − Uj|]

)
(7)

where 1/2E[|Ui − Uj|] is the so-called madogram (Cooley et al., 2006; Vannitsem and Naveau, 2007).
Sample estimates χ̂ij are obtained by replacing the expectation E[|Ui − Uj|] in Eq. (7) by the sample
average. To compute empirical estimates, observed annual maxima are rank-transformed to the
uniform scale by applying empirical distribution functions. For a given pair of stations, we kept
empirical estimates only when at least 30 years of observations are available.

To assess the assumption of stationarity in the strength of the dependence, we depicted maps
of estimates χ̂ij, i being a fixed reference station and j ∈ {1, . . . , 171} being, in turn, each of the
other calibration stations. In the left panel of Fig. 3, the reference station is the nearest one to the
city of Montpellier which sits near the coastline. The strength of dependence is relatively low even
for the closest stations (χ̂ij is about 0.3). In the right panel of Fig. 3, the reference station lies on
the mountain range and the level of dependence is higher (χ̂ij is about 0.75 for the closest station).
This change of dependence intensity with the location is an indication of non-stationarity.

We also assess the spatial behavior of the strength of dependence by looking at plots of estimates
χ̂ij with respect to h, the distance between stations i and j. To reduce variability, we also computed
estimates χ̂[h] for five classes of distance [h] ∈ {(0, 3], (3, 9], (9, 27], (27, 81], (81, 243]} that follow
a geometric progression. In Fig. 4, the pairwise estimates χ̂ij are shown (in gray) together with the
distance class estimates χ̂[h] (in black) for the 171 stations of the calibration set over the 57 year
period. Note that preliminary analyses performed by considering two orthogonal directions detected
no significant anisotropy. The strength of dependence, as shown in Fig. 4, decreases with increasing
distance, as is typical for extreme climatic spatial data (Blanchet and Davison, 2011; Davison and
Gholamrezaee, 2012). However, the level of dependence seems to stabilize at a value clearly larger
than zero, starting at a distance of about 40 km. This is an indication of asymptotic dependence.

4. Spatial XGumbel

The spatial XGumbel model for maxima presented in Section 4.3 combines a spatial regression
model for the univariate marginal distributions introduced in Section 4.1 with the spatial extension
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Fig. 3. Maps of empirical upper tail dependence coefficient estimates χ̂ij (see Eq. (7)) with respect to a given reference
station i shown by a white cross. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Empirical upper tail dependence coefficient estimates χ̂ij for pairs of stations with at least 30 years of observations
(in gray) and distance class estimates χ̂[h] (in black) with [h] ∈ {(0, 3], (3, 9], (9, 27], (27, 81], (81, 243]} (see Eq. (7)).

f the multivariate XGumbel copula (see Section 2.1) in Section 4.2. A two-stage inference scheme
or the spatial XGumbel model is described in Section 4.4.

.1. Response surfaces

For a given site i, we denote Yi as the random variable representing the annual maxima of daily
recipitation. As is commonly done, we assume that Gi, the distribution function of Yi, is the GEV
istribution which has the form

Gi(y) = exp

[
−

{
1 + ξi

(
y − µi

σi

)}−1/ξi

+

]
, (8)

where a+ = max(0, a). The GEV distribution, which is theoretically justified by the univariate
extreme value theory (Fisher and Tippett, 1928; Gnedenko, 1943; Gumbel, 1958; Coles, 2001),
depends on three parameters, see Eq. (8): the location parameter µ ∈ R, the scale parameter
i
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σi > 0 and the shape parameter ξi ∈ R. The latter characterizes the behavior of the upper tail of
the distribution: exponential decay when ξi = 0, polynomial decay when ξi > 0 and finite endpoint
for ξi < 0.

To obtain response surfaces that interpolate the GEV parameters over the study area, we rely on
a vector generalized linear model (VGLM) approach, see Yee and Stephenson (2007) and Yee (2015).
This allows to fit the GEV distribution simultaneously at all the calibration stations. The three GEV
parameters are defined as functions

µ(x; αµ) = αµ:0 + αµ:1x1 + · · · + αµ:pxp (9)

log(σ (x; ασ)) = ασ :0 + ασ :1x1 + · · · + ασ :pxp (10)

log(ξ (x; αξ) + 0.5) = αξ :0 + αξ :1x1 + · · · + αξ :pxp, (11)

where x ∈ Rp are geographical covariates known everywhere in the study area. For the shape
parameter, an offset of 0.5, see Eq. (11), serves to enforce that ξ > −0.5 thereby ensuring numerical
stability (Yee, 2015).

4.2. Spatialized XGumbel copula

The spatialized XGumbel copula is based on the definition of the extra-parameters as a mapping
a : R2

↦→ [0, 1], with parameters θ , of the x- and y-coordinates of the sites. Note that more general
geographical covariates could be used as for the response surfaces. This mapping allows to extend
the XGumbel copula from Eq. (1) to any set S of sites by letting the extra-parameters be given by
as = a(sx, sy; θ ), for all sites s ∈ S with x- and y-coordinates (sx, sy) ∈ R2. The vector of parameters
ψspat of the spatialized XGumbel copula includes the global parameters βA and βB, as in Eq. (1),
and θ to define the extra-parameter mapping. The number of parameters is thus invariant to the
dimension, i.e. the number of sites in a spatial application. However, the extra-parameter mapping
must be designed so that the resulting spatialized XGumbel copula be able to reproduce the spatial
dependence structure of the observations.

To this end, we rely on the properties of the upper tail dependence coefficient χ of the XGumbel
copula, see Fig. 1(b). First, we note that the dependence between two sites is maximized when
their extra-parameter values are both equal to zero. In such a case, the extremal coefficient χ only
depends on βB (let a1 = a2 = 0 in Eq. (6)). Second, two sites are independent when one has extra-
parameter value zero and the other has value one (let a1 = 0 and a2 = 1 or vice-versa in Eq. (6)). To
account for these two points, we designed the extra-parameter mapping shaped as a disk, as shown
in Fig. 5(a), with values approaching zero near the disk center indicating stronger dependence and
values getting closer to one when moving away from the center implying independence between
sites near the center and away from the center.

More precisely, for (sx, sy) ∈ R2, the extra-parameter mapping is parametrized as

a(sx, sy; θ ) = 1 − exp
{
−

(sx − µx)2 + (sy − µy)2

2δ2

}
(12)

here δ > 0 is a scale parameter and (µx, µy) ∈ R2 is the center of the disk. The extra-parameter
apping has thus three parameters θ = (δ, µx, µy). Note that any pair of sites located in the dark
reen area in Fig. 5(a), whatever their distance, has the same dependence strength that only depends
n βA (let a1 = a2 = 1 in Eq. (6)). In order to permit independence between pairs of sites with
arger distances, βA is fixed to 1, i.e. the independent copula. Therefore, the parameter vector of
he spatialized XGumbel copula is ψspat = (βB, δ, µx, µy). In addition, the Pickands function and the
upper tail dependence coefficient from Eqs. (4) and (6) are simplified as follows:

A(t) = a1(1 − t) + a2t +
[
(1 − a1)βB (1 − t)βB + (1 − a2)βB tβB

]1/βB
χ = 2 − [(a1 + a2) + ((1 − a1)βB + (1 − a2)βB )1/βB ].

In Fig. 5(b), a simulation of the spatialized XGumbel copula reveals the impact on the spatial
ependence pattern of the shape of extra-parameter mapping shown in Fig. 5(a). The area of strong
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Fig. 5. Effect of the shape of the extra-parameter mapping on the spatial pattern of a simulation of the spatialized
XGumbel copula (βB = 20). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

dependence is completely determined by the location of the disk center and the value of the scale
parameter δ in Eq. (12). As areas of various degree of dependence may be defined, the spatialized
XGumbel copula allows the introduction of non-stationarity in the dependence structure.

4.3. Proposed spatial model for maxima

The full spatial model for maxima combines the GEV distribution provided by the response
surfaces in Section 4.1 and the spatialized XGumbel copula described in Section 4.2. For any set
of sites, whether gauged or ungauged, this spatial model yields a well-defined MEV distribution.
More precisely, ungauged sites can be modeled in a consistent way such that the lower dimensional
distributions of sets of gauged and ungauged sites belong to the same class.

More precisely, let S = {s1, . . . , sK } be any set of K sites in the study area, for any K ∈ N.
For all s ∈ S with x- and y-coordinates (sx, sy) ∈ R2, let Ys and xs be respectively the random
ariate representing the annual maxima of daily precipitation and the geographical covariates at
ite s. The GEV distribution function Gs, ∀s ∈ S , has parameters (µ(xs; αµ), σ (xs; ασ), ξ (xs; αξ)) as
rovided by Eqs. (9)–(11). Moreover, the XGumbel copula parameter vector ψ contains the Gumbel
opula parameters βA = 1 and βB that are shared for all the sites and the extra-parameters given
y as = a(sx, sy; θ ) from Eq. (12)∀s ∈ S. The multivariate distribution of the maxima at the K sites
s then given by

P(Ys1 ≤ y1, . . . , YsK ≤ yK ) = Cψ (Gs1 (y1), . . . ,GsK (yK )), (13)

ith Cψ defined in Eq. (1). Thanks to Eq. (13), it is possible to simulate from the model everywhere
n the study area.

.4. Inference scheme

As the joint estimation of the marginal and the dependence structure parameters of the spatial
Gumbel model would be too complex, we opted for a two-stage inference scheme as fol-
ows. The parameter vectors αµ, ασ and αξ of the response surfaces of the GEV parameters in
qs. (9)–(11) are estimated by maximizing the log-likelihood under the independence assump-
ion (Yee and Stephenson, 2007; Yee, 2015). The parameter vector ψspat of the spatialized XGumbel
opula is estimated with an Approximate Bayesian Computation (ABC) scheme on the rank-
ransformed observations (as recommended in Genest and Favre, 2007).

To constitute the reference table of the ABC scheme, we use as summary statistics sample upper
ail dependence coefficient estimates for distance classes χ̂[h] with [h] ∈ {(0, 3], (3, 9], (9, 27], (27,
1], (81, 243]} based on the madogram (see Eq. (7)). In ABC schemes for max-stable processes,
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related summary statistics containing information on the strength of the extremal dependence
structure were proposed. In Erhardt and Smith (2012) and Erhardt and Sisson (2016), summary
statistics deduced from the madogram and the extremal coefficient, which is equivalent to the
upper tail dependence coefficient for max-stable distributions, were evaluated and compared. In
addition to pairwise information, information based on triplet of sites was considered. A smoothing
procedure, similar in spirits to the use of distance classes, was based on either curve fitting or by
grouping stations.

The prior distribution in the ABC scheme of the spatialized XGumbel copula is meant to be vague.
For the parameter vector ψspat = (βB, δ, µx, µy), we set: βB ∼ U[10, 100], δ ∼ U[5100] and (µx, µy)
is drawn uniformly from the locations of the 171 stations in the calibration set. The constitution of
the reference table goes as follows, for all i ∈ {1, . . . , 100000}:

1. Draw candidate parameters ψ (i)
spat = (β (i)

B , δ
(i), µ

(i)
x , µ

(i)
y ) from the prior distribution ;

2. Simulate U (i)
= (U (i)

1 , . . . ,U
(i)
d ), a sample of size n = 57 from the spatialized XGumbel copula

with parameters ψ (i)
spat at the d = 171 stations of the calibration set ;

3. Compute χ̂[h], the sample upper tail dependence coefficients for all [h] ∈ {(0, 3], (3, 9], (9, 27],
(27, 81], (81, 243]} on the simulated sample U (i).

We apply a simple version of ABC called rejection-ABC in which the posterior distribution consists
of a subset of candidate parameters such that the distance in terms of summary statistics to the
observations is small. More specifically, let {ψ

(ij)
spat}

100
j=1 with 1 ≤ ij ≤ 100000 be the subset of 100

candidate parameters such that Euclidean distances in terms of summary statistics are the smallest.
This corresponds to 0.1% of the simulations from the prior distribution.

5. Assessment of spatial models for maxima

We evaluate and compare spatial models for maxima on the annual maxima of the daily precipi-
tation data described in Section 3. In Section 5.1, a single spatial regression model for the univariate
margins (see Section 4.1) is considered. In Section 5.2, the dependence structure as modeled by
the spatialized XGumbel copula is compared with the one from a Brown–Resnick process (Brown
and Resnick, 1977). The Brown–Resnick process is fitted by pairwise log-likelihood on the annual
maxima rank-transformed to the Fréchet scale (this is performed with the R package from Ribatet,
2018). Uncertainty assessment is based on non-parametric bootstrap: 100 sets of Brown–Resnick
parameters are estimated on bootstrap samples obtained by sampling with replacement the years
of the calibration period. Finally, two complete spatial models, i.e. GEV margins combined with
either the spatialized XGumbel copula or the Brown–Resnick process, are compared in Section 5.3 in
terms of simulated fields of maxima and in terms of their ability to reproduce conditional trivariate
probabilities involving the validation stations. These probabilities may be of interest for hazard
assessment at a regional scale.

5.1. Response surfaces

In addition to the x- and y-coordinates along with the altitude, we considered as covariates
for the response surfaces in Eqs. (9)–(11) ten landscape features (Benichou and Le Breton, 1987).
Based on a digital elevation model, these features are deduced from a principal component (PC)
analysis applied to the relative elevation of a square neighborhood centered on each cell of the
digital elevation grid. The first ten components are retained.

Covariate selection is performed in two stages. First, a screening is performed by applying LASSO
regression to the natural logarithm of the annual maxima with the initial 13 covariates (Friedman
et al., 2010). Six covariates are selected: the x- and y- coordinates, the altitude and three landscape
features resulting from the 1st, 4th and 9th PC. This selection is further refined by constraining
the coefficients of the VGLM to be null when not sufficiently significant for a subset of the
GEV parameters. The Bayesian Information Criterion (BIC) is used to ensure that the exclusion of
covariates does not deteriorate the fit (Schwarz, 1978). The final covariate selection is summarized
in Table 1.
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Table 1
Selected covariates for the response surfaces of the GEV parameters (Eqs. (9)–(11)). In addition to the x- and y-coordinates
and the altitude z, three landscape features (PC1, PC4 and PC9) are obtained from a principal component analysis of the
digital elevation grid.

x y z PC1 PC4 PC9

µ(·; αµ) ✓ ✓ ✓ ✓ ✓ ✓

σ (·; ασ ) ✓ ✓ ✓

ξ (·; αξ) ✓ ✓

Fig. 6. Interpolation of the GEV parameters over a grid covering the study area with a vector generalized linear model
pproach, see Eqs. (9)–(11), and geographical covariates (see Table 1). (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

The response surfaces of the GEV parameters as provided by the fitted VGLM by interpolating
ver a grid covering our study area are shown in Figs. 6(a)–6(c). While the spatial patterns of the
ocation and scale parameters are strongly influenced by the altitude, the shape parameter displays
different pattern with higher values in the Rhône river valley. The map of the 100-year return

evels, i.e. quantiles of probability 0.99 computed by inverting Eq. (8), is shown in Fig. 6(d). As is
ypical for this area, values ranging from 150 mm near the coastline to 400 mm on the mountain
ange are observed (Carreau et al., 2017).

In Fig. 7, the goodness-of-fit of the response surfaces is evaluated in terms of return levels at the
ix validation stations. Each validation station, depicted in red filled circles in Fig. 2, wears a letter
hat is related to a panel in Fig. 7. Empirical return levels are depicted as black dots. The light blue
ands are 99% non-parametric bootstrap confidence bands (10000 replications obtained by sampling
ith replacement the 57 years of annual maxima) for the return levels computed from the GEV
arameters interpolated by the fitted VGLM. At the third station which is located in the mountain
rea (corresponding to the red filled circle wearing the letter c in Fig. 2), the VGLM interpolation
ends to overestimate the larger empirical return levels (see Fig. 7(c)). Nevertheless, the fit is overall
uite satisfactory.
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A

Fig. 7. Return levels at the six validation stations, each panel corresponding to a red filled circle wearing the same letter
in Fig. 2: empirical estimates are depicted as black dots and 99% non-parametric bootstrap confidence bands for the
return levels computed from GEV parameters interpolated by the fitted VGLM are shown in light blue. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.2. Spatial dependence structures

The posterior distribution of the spatialized XGumbel copula parameter vector resulting from the
BC scheme, that is the subset {ψ

(ij)
spat}

100
j=1 with 1 ≤ ij ≤ 100000 of candidate parameters leading to

the summary statistics closest to the observed ones, is illustrated in Fig. 8. For the Gumbel parameter
βB, in Fig. 8(a), the posterior distribution is similar to the prior distribution U[10, 100]. This might
indicate that the designed ABC scheme is not able to infer properly this parameter. In contrast, the
posterior distribution of δ, the scale parameter of the disk in the extra-parameter mapping, has a
clear mode at about 45 km, see Fig. 8(b). The posterior distribution of the location of the disk center
in the extra-parameter mapping is represented as black filled circles in Fig. 8(c). The selected disk
centers are located preferentially, i.e. 98 times out of 100, over the mountain range, in a very specific
area which might be explained by orographic effects.

The spatialized XGumbel copula and the Brown–Resnick process are compared in Fig. 9, left
and right panel respectively, in terms of the statistics χ̂[h], i.e. the sample upper tail dependence
coefficients for distance classes [h], with [h] ∈ {(0, 3], (3, 9], (9, 27], (27, 81], (81, 243]}. The
empirical estimates computed from the observations are shown in light blue in both panels. For
each model, there are 100 statistics χ̂[h] depicted in gray. For the spatialized XGumbel copula, these
statistics, retrieved directly from the reference table, correspond to the 100 sets of parameters
{ψ

(ij)
spat}

100
j=1 with 1 ≤ ij ≤ 100000 from the posterior distribution of the rejection-ABC inference

scheme. The median of the 100 χ̂[h] is also shown in black. For the Brown–Resnick process, the
100 statistics are estimated by simulating samples of the same size as the observations’ from
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Fig. 8. Posterior distribution of the spatialized XGumbel copula parameters {ψ
(ij)
spat}

100
j=1 with 1 ≤ ij ≤ 100000 from the

rejection-ABC inference scheme described in Section 4.4. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the 100 sets of Brown–Resnick parameters obtained by non-parametric bootstrap. The statistics
estimated from the fit on the original calibration data are shown in black. The patterns of decrease
in extremal dependence with the distance produced by both models of spatial dependence structure
are comparable to the one obtained from the observed annual maxima. However, the spread and
thus the uncertainty of the Brown–Resnick estimates is larger.

In Figs. 10 and 11, the two models are compared in terms of non-stationarity patterns in the
dependence structure. These patterns are produced when drawing the maps of the upper tail
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Fig. 9. Upper tail dependence coefficient estimates χ̂[h] for five classes of distance [h] ∈ {(0, 3], (3, 9], (9, 27], (27, 81],
81, 243]} (see Eq. (7)). For the spatialized XGumbel (left panel), the best 100 estimates (in gray, with the median in
lack) are retrieved from the reference table. For the Brown–Resnick process (right panel), estimates are computed on
amples of the same size as the observations’ (57 years); from 100 models fitted on bootstrap samples (in gray) and
rom the model on the original sample (in black).. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Fig. 10. Maps of spatialized XGumbel copula upper tail dependence coefficient estimates χ̂ij , computed from Eq. (6). The
eference station i is shown by a white cross. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

ependence coefficient estimates χ̂ij with respect to two different reference sites i. In Fig. 10, these
atterns are depicted for the spatialized XGumbel copula, with the χ̂ij obtained by replacing the
arameters in Eq. (6) by the best set of parameters from the posterior distribution of the ABC
cheme. For the Brown–Resnick process, the maps are shown in Fig. 11 with χ̂ij computed with the
adogram, as in Eq. (7), on a sample of size 1000 simulated from the fitted model. Although the
alues are a bit too high with respect to the empirical estimates in Fig. 3, the non-stationary pattern
f the spatialized XGumbel copula in Fig. 10 is generally reasonable. In contrast, the Brown–Resnick
rocess in Fig. 11 not only fails to exhibit any non-stationarity, as expected since it is not designed
o account for it, but it also yields rather low values with little spatial variability compared to the
mpirical estimates in Fig. 3.

.3. Complete spatial models

Simulations from the two complete fitted spatial models for maxima are illustrated in Figs. 12
nd 13. In the former case, the dependence structure is modeled by the spatialized XGumbel
opula whereas in the latter case, it is modeled by the Brown–Resnick process. In both cases,
nivariate marginal distributions are provided by the response surfaces for the GEV parameters from
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Fig. 11. Maps of Brown–Resnick upper tail dependence coefficient estimates χ̂ij , obtained by estimating the madogram
ith a sample of size 1000 (see Eq. (7)). The reference station i is shown by a white cross. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Two data-scale simulations of the spatialized XGumbel copula combined with the response surfaces for the GEV
over the study area. The color scale is capped at the 99% quantile of the simulated values. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Section 5.1. In the spatialized XGumbel copula case, the best set of parameters from the posterior
distribution of the ABC scheme is used. The location of the disk center of the extra-parameter
mapping, see Eq. (12), on the mountain range can easily be detected in Fig. 12. In the Brown–Resnick
case, the grid for the simulation is restricted to two sub-areas (a first one encompassing the city
of Montpellier and a second one in the mountain area) owing to computing limitations (Ribatet,
2018).

We then compare the two complete fitted spatial models for maxima in terms of a quantity
hat could be useful for regional hazard analysis. This quantity is related to the multivariate
xtension of the upper tail dependence coefficient termed m-dimensional joint tail dependence
oefficients (Wadsworth and Tawn, 2013). Higher dimensional properties of the models can be
nvestigated as these coefficients involve m-dimensional distributions instead of being limited to
ivariate marginals as is the case for the upper tail dependence coefficient.
More precisely, we focus on trivariate properties, i.e. m = 3. Let Yk, Yi and Yj represent annual

maxima at three sites k, i and j respectively. Moreover, let RT
k , R

T
i and RT

j be the T -year return level
at each site. The quantity of interest for our regional hazard analysis is the 3-dimensional joint tail
dependence coefficient that is defined as follows:

P(Yi > RT
i , Yj > RT

j |Yk > RT
k ). (14)

Note that, given that the univariate marginals are the same in both spatial models, differences
in terms of the coefficient in Eq. (14) are only caused by differences in the spatial dependence
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Fig. 13. Two data-scale simulations of the Brown–Resnick process combined with the response surfaces for the GEV over
the study area. The color scale is capped at the 99% quantile of the simulated values. Two sub-areas are selected as the
implementation of the Brown–Resnick process we used did not allow simulation on the full area (Ribatet, 2018). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

structure. The interpolation ability of the spatial models is evaluated by setting the conditioning
site k in Eq. (14) as one of the six validation stations not used for model inference (see the stations
epicted with red filled circles in Fig. 2). For the other two sites i and j in Eq. (14), we selected two
earby sites from the calibration stations within a 20 km radius with the most complete observation
ecord. These calibration stations wear numbers from 1 to 11 in Fig. 2.

In Figs. 14 and 15, empirical and theoretical estimates of the 3-dimensional joint tail dependence
oefficient from Eq. (14) are compared, with each of the six validation stations taken as the
onditioning site k in turn. Empirical estimates, colored in light blue in both cases, are obtained by
omputing the sample proportions from the observed annual maxima with return levels determined
rom empirical quantiles. As there is no closed-form expression for Eq. (14), theoretical estimates
re also deduced from proportions of samples of size 10000 simulated from each of the spatial
odels (GEV margins combined with either the spatialized XGumbel copula, in Fig. 14, or the
rown–Resnick process, in Fig. 15), with the return levels provided by the response surfaces for
he GEV parameters (see Section 4.1, Eqs. (9)–(11)). For each return level, there are 100 theoretical
stimates corresponding to different sets of parameters (from the posterior distribution resulting
rom the ABC scheme for the spatialized XGumbel copula or from the non-parametric bootstrap
or the Brown–Resnick process). In addition, for the spatialized XGumbel copula, the median of the
heoretical estimates of the 3-dimensional joint tail dependence coefficient is shown in black in
ig. 14 while, for the Brown–Resnick process, the theoretical estimates of the fit on the original
alibration data are shown in black in Fig. 15.
As the dependence structure in both spatial models is max-stable, both theoretical coefficient

stimates stabilize at longer return periods (greater than five years). Being a stationary model, the
rown–Resnick process always yields estimates at about the same level, wherever is located the
onditioning site. In contrast, the spatialized XGumbel copula, thanks to its non-stationarity, can
dapt to the location of the conditioning site. For instance, the estimates stabilize at about 0.5 for
he validation station labeled ‘‘a’’ in Fig. 14(a) whereas they stabilize at about 0.3 for the validation
tation labeled ‘‘b’’ in Fig. 14(b). The empirical estimates are mostly contained within the spread
f the theoretical estimates for both models, although it happens in a few instances that they
all outside, e.g. in Fig. 14(c) or Figs. 15(c) and 15(e). For some conditioning sites, e.g. Fig. 14(d),
he spatialized XGumbel copula yielded two estimates that are far away from the others. These
orrespond to parameter vectors for which the disk centers are located near the coastline, see
ig. 8(c).

. Conclusion

We proposed a spatial extension of the XGumbel copula that relies on the definition of the

xtra-parameters as a mapping of geographical covariates. Although the XGumbel copula could in
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Fig. 14. 3-dimensional joint tail dependence coefficient estimates, see Eq. (14), with respect to return periods T on the
x-axis. The Spatialized XGumbel estimates (gray squares) are proportions of simulated samples of size 10000 for each of the
100 sets of parameters of the posterior distribution. The median estimates are shown as black squares. The conditioning
site k is one of the six validation stations, red filled circles in Fig. 2 wearing the letter corresponding to the panel. The
other two sites i and j are calibration stations wearing numbers in Fig. 2 that are reported under each panel. The black
line corresponds to the perfect independence case. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)



J. Carreau and G. Toulemonde / Spatial Statistics 40 (2020) 100410 17
Fig. 15. 3-dimensional joint tail dependence coefficient estimates, see Eq. (14), with respect to return periods T on the
x-axis. The Brown–Resnick estimates (gray triangles) are proportions of simulated samples of size 10000 for each of the
100 sets of parameters of the non-parametric bootstrap. The estimates from the fit on the original data are shown as
black triangles. The conditioning site k is one of the six validation stations, red filled circles in Fig. 2 wearing the letter
corresponding to the panel. The other two sites i and j are calibration stations wearing numbers in Fig. 2 that are reported
under each panel. The black line corresponds to the perfect independence case. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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principle be fitted in high dimension, the large number of extra-parameters, corresponding to the
number of sites in a spatial application, might hamper inference. The spatialized XGumbel copula is
more parsimonious as it requires only a four parameter vector ψspat = (βB, δ, µx, µy), independently
of the number of sites. We designed the extra-parameter mapping shaped as a disk by relating
the behavior of the strength of dependence between two sites, as characterized by the upper tail
dependence coefficient χ , to desirable spatial properties. In particular, we focused on the pattern of
decrease of the dependence with the distance by using χ estimates for five distance classes. These
distance class χ estimates also serve as summary statistics in an ABC scheme to infer the parameters
of the spatialized XGumbel copula. The spatialized XGumbel copula, when combined with a spatial
regression model for the GEV marginal distributions, yields well-defined MEV distributions for any
set of sites. Therefore, simulation is possible everywhere in the study area.

The proposed spatialized XGumbel copula is evaluated and compared with a Brown–Resnick
process on annual maxima of daily precipitation totals in a region of the French Mediterranean
with 177 gauged stations, six of which are kept for validation purposes. A vector generalized
linear (VGLM) model is considered for the interpolation of the GEV parameters to model the
univariate marginal distributions. The goodness-of-fit of the VGLM model is evaluated in terms of
return levels at the validation stations. We analyzed the posterior distribution of the spatialized
XGumbel copula parameters resulting from the rejection ABC scheme. Except for the parameter βB,
a global parameter inherited from one of the Gumbel copulas of the XGumbel, the ABC scheme
inferred interpretable parameters. The Brown–Resnick process is fitted by pairwise log-likelihood
minimization and uncertainty estimates are obtained by performing the fit on bootstrap resamples.

Comparison between the spatialized XGumbel copula and the Brown–Resnick process shows
the following. The pattern of decrease of the strength of dependence is well reproduced in both
cases. Owing to asymptotic dependence, the strength of dependence remains constant at extreme
levels. However, strong non-stationarity patterns in the strength of dependence are present for
the spatialized XGumbel copula whereas the Brown–Resnick process, by construction, has none.
Simulations from both complete spatial models for maxima, GEV marginals together with spatial
dependence structure, were provided for illustrations. A further downside of the Brown–Resnick
process is that simulation on the full grid covering the study area was not possible due to computing
limitations. We proposed a regional hazard analysis based on 3-dimensional joint tail dependence
coefficients. These involve the trivariate distributions at three stations one of which is taken as
a validation station and the other two are neighbor calibration stations. The simulations and the
regional hazard analysis also highlight differences due to the presence or absence of non-stationarity
in the dependence structures.

Earlier propositions to extend copulas to the spatial framework are based on a parametrization
in terms of distance but are not especially targeting spatial maxima (Bárdossy and Li, 2008; Gräler,
2014; Krupskii et al., 2018). The construction of the XGumbel copula as the maximum between two
weighted random variables is directly related to the max-mixture model (Wadsworth and Tawn,
2012; Bacro et al., 2016). Instead of relying on processes with well-defined spatial dependence
structures, the spatial dependence of the spatialized XGumbel copula is driven by the mapping
of extra-parameters. The shape of the mapping determines the non-stationarity pattern of the
dependence structure. A completely different proposition to introduce non-stationarity in the
dependence structure for spatial maxima was put forward in Huser and Genton (2016) concerning
max-stable processes.

Further analyses are needed to develop and test different shapes for the extra-parameter
mapping. An interesting development, that was already considered in preliminary work, would be
to let the shape of the mapping change from year to year, leading to a conditionally max-stable
model. This would allow, in particular, to let the areas of stronger and weaker dependence vary
from one year to another. Another way to achieve this, while keeping the max-stable property,
would be to iterate the extra-parametrization (or maximization) operation in Section 2.1, e.g. by
assuming that the phenomenon of interest can be modeled as:

max{[max(U 1/b,W 1/(1−b))]
1/a
,V 1/(1−a)

},

with U ∼ CβA , V ∼ CβB , W ∼ CβC , βA, βB, βC ≥ 1 are Gumbel copula parameters and
a, b ∈ [0, 1]d two extra-parameter vectors. Although pairwise log-likelihood inference is widely
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used, ABC inference scheme yields promising results. For complex dependence structure models,
even pairwise log-likelihood might be intractable. We have used summary statistics that convey
information on the strength of extremal dependence. Other statistics, for instance, conveying
information on asymmetry or non-stationarity, as well as other ways to compute distances, such as
the Wasserstein distance, could be considered (Arbel et al., 2019).
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