
Journal of Statistical Planning and Inference 138 (2008) 2867–2886
www.elsevier.com/locate/jspi

A LAN based Neyman smooth test for Pareto distributions

Michael Falka, Armelle Guilloub,∗, Gwladys Toulemondec

aInstitute of Mathematics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
bIRMA, Université Louis Pasteur, 7 rue René Descartes, F-67084 Strasbourg Cedex, France

cLSTA, Université Pierre et Marie Curie, Boîte 158, 175 rue du chevaleret, F-75013 Paris, France

Received 4 May 2007; received in revised form 25 October 2007; accepted 31 October 2007
Available online 12 November 2007

Abstract

The Pareto distribution is found in a large number of real world situations and is also a well-known model for extreme events. In
the spirit of Neyman [1937. Smooth tests for goodness of fit. Skand. Aktuarietidskr. 20, 149–199] and Thomas and Pierce [1979.
Neyman’s smooth goodness-of-fit test when the hypothesis is composite. J. Amer. Statist. Assoc. 74, 441–445], we propose a smooth
goodness of fit test for the Pareto distribution family which is motivated by LeCam’s theory of local asymptotic normality (LAN).
We establish the behavior of the associated test statistic firstly under the null hypothesis that the sample follows a Pareto distribution
and secondly under local alternatives using the LAN framework. Finally, simulations are provided in order to study the finite sample
behavior of the test statistic.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Pareto distribution is a well-known model which was originally introduced to describe the distribution of income.
It has been applied in many fields like in insurance to model claims (Benktander, 1970), in climatology–hydrology
(Katz et al., 2002) to describe the occurrence of extreme weather, and also in economy (Fisk, 1961), in finance
(Danielsson and de Vries, 1997) or in hydrogeology (Gustafson and Fransson, 2005) among others. For general
overviews of the role of the Pareto distribution in many other fields, we refer to Arnold (1983) who studied extensively
this distribution. Moreover, with a specific parameterization, the Pareto distribution can be considered as a particular
case of the generalized Pareto distribution which is an essential model in the study of exceedances over a high threshold
in the extreme value framework (Reiss and Thomas, 2007).

If we use a statistical analysis that involves fitting a parametric model, it is always advisable to check the adequacy
of the model. For this, a goodness of fit test could be used to decide whether a sample of independent random variables
(rvs) X1, . . . , Xn is distributed according to a Pareto distribution. To keep a link with extreme value theory, we use the
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following parameterization of the Pareto distribution density:

f (x, �) = 1

�

(
1 + �x

�

)−1/�−1

where �t = (�, �) ∈ � = (0, ∞) × (0, ∞) and x ∈ [0, ∞).

Clearly, we will have to estimate the parameters of the Pareto distribution since in most of the applications, they are
unknown. To this aim, different techniques have been proposed (see Arnold and Press, 1989; Castillo and Hadi, 1997;
Davison, 1984; Hosking and Wallis, 1987; Malik, 1966; Smith, 1984). In this paper we will introduce an estimator,
having the same properties as the maximum likelihood one, but which is easier to compute. This point will be discussed
later on.

The problem of testing the fit of a Pareto distribution has not been studied extensively in the literature. Davison and
Smith (1990), for instance, pointed out the lack of tests in the case of the generalized Pareto distribution. They used
tables for testing the exponential distribution, which, however, requires very high critical values. Porter et al. (1992)
presented tables of critical values for Pareto distributions with known shape parameter for test statistics based on the
empirical distribution function (EDF). More recently, Choulakian and Stephens (2001) introduced goodness of fit tests
for generalized Pareto distributions also based on EDF but with an unknown shape parameter. Although these test
statistics, based on the EDF, are consistent against essentially all alternatives, there are numerous empirical studies
(Kopecky and Pierce, 1979; Miller and Quesenberry, 1979; Rayner and Best, 1986) where smooth tests have been
shown to be more powerful than the usual tests like these EDF tests or the Pearson’s �2 test. The latter results caused
renewed interest in smooth tests.

Historically, Neyman (1937) introduced these smooth goodness of fit tests for testing uniformity. Many generaliza-
tions of them have been proposed, see for instance Rayner and Best (1989, 1990) and Thomas and Pierce (1979). The
basic idea behind these tests is to embed the null density into, say a J-dimensional exponential family of the form

gJ (x, �, �) = f (x, �) exp

{
J∑

s=1

�sF
s(x, �) − K(�)

}
(1)

and then to construct an asymptotically optimal test for the parametric testing problem. Here F(., �) is the df of
the Pareto distribution, F(., �) the corresponding survival function, whereas K(�) is a normalizing function ensuring
integration to 1. It is easy to check that K(�) only depends on � and is given by

K(�) = log

{∫ 1

0
exp

(
J∑

s=1

�s t
s

)
dt

}
.

From (1), we can deduce that the goodness of fit test for the Pareto distribution can be reduced to the following test:
H0 : � = 0 where � = (�1, . . . , �J )t versus H1 : � �= 0.

In Section 3, we study the behavior under H0 of the test statistic which is defined in Proposition 5. To this aim, we
need to use an estimator of �. Various methods have been proposed to estimate the parameters of the Pareto distribution.
In hydrology for instance, the method of probability weighted moments (Hosking and Wallis, 1987) is widely applied.
The maximum likelihood estimator (MLE) is also quite common. It is known to have good asymptotic properties, but it
is typically hard to compute. In this paper, we introduce an estimator, �̂n, having the same asymptotic properties as the
MLE but which is easier to compute. Using this estimator, the limiting distribution of the test statistic is obtained under
H0 using Pfanzagl’s (1994) general results on parametric statistics. In Section 4 the behavior under local alternatives
H1,n is studied. They are defined as

H1,n : � = �n = �√
n
(1 + o(1)), (2)

where � = (�1, . . . , �J )t �= 0 with �i ∈ R, for all i = 1, . . . , J .
This investigation is used in the local asymptotic normality (LAN) framework of LeCam (1960). Here the notation

�(1 + o(1)) has to be interpreted as a vector (�1(1 + r1(n)), . . . , �J (1 + rJ (n)))t , with functions rs(n) converging to 0
as n → ∞. The fifth section of this paper is devoted to simulations in order to study the finite sample behavior of our
test statistic. Finally the last section deals with concluding remarks. The details of the proofs are given in the appendix.



M. Falk et al. / Journal of Statistical Planning and Inference 138 (2008) 2867–2886 2869

2. Notations and definitions

We start this section by setting some notations. We denote by {PH0,�; � ∈ �} the Pareto family of probability
measures with density f. First, define �(.)(., �) and �(	
)(., �) as follows:

�(.)(., �) =
(

�(1)(., �)

�(2)(., �)

)
=
⎛⎜⎝

� log f (., �)

��
� log f (., �)

��

⎞⎟⎠ ,

�(	
)(., �) = �2 log f (., �)

��[	]��[
] for 	, 
 = 1, 2 with �[1] = � and �[2] = �.

Direct computations lead to

�(.)(x, �) =

⎛⎜⎜⎝ − 1

�
+ (1 + �)

x

�2

(
1 + �x

�

)−1

1

�2
log

(
1 + �x

�

)
− 1 + �

��
x

(
1 + �x

�

)−1

⎞⎟⎟⎠ (3)

and

�(11)(x, �) = 1

�2
− 2

1 + �

�3
x

(
1 + �x

�

)−1

+ 1 + �

�4
�x2

(
1 + �x

�

)−2

, (4)

�(12)(x, �) = 1

�2
x

(
1 + �x

�

)−1

− 1 + �

�3
x2
(

1 + �x

�

)−2

, (5)

�(22)(x, �) = − 2

�3
log

(
1 + �x

�

)
+ 2

�2�
x

(
1 + �x

�

)−1

+ 1 + �

��2
x2
(

1 + �x

�

)−2

. (6)

Further define the Fisher information matrix

I�� = EH0,�

(
(�(1)(X, �))2 �(1)(X, �)�(2)(X, �)

�(1)(X, �)�(2)(X, �) (�(2)(X, �))2

)
=
(

1/{�2(1 + 2�)} 1/{�(1 + �)(1 + 2�)}
1/{�(1 + �)(1 + 2�)} 2/{(1 + �)(1 + 2�)}

)
which leads to

I−1
�� =

(
2�2(1 + �) −�(1 + �)

−�(1 + �) (1 + �)2

)
.

Now, the methodology used in order to study the behavior of the test statistic under H0 is based on Pfanzagl’s (1994)
results, while, under H1,n, the LAN theory is applied. To this aim, it seems useful to recall some definitions, in particular
concerning the locally uniformly weak convergence, which is a fundamental notion in our method. Also, as already
mentioned, we have to estimate the parameter of the Pareto distribution. Therefore, the definition of a

√
n-consistent

locally uniformly estimator will be also recalled below. Most of the definitions and notations below are adopted from
Pfanzagl (1994).

Definition 1. Let X1, . . . , Xn be iid rvs from an arbitrary df depending on some parameter � ∈ S, say F�. Set
Yn = H(X1, . . . , Xn; �), where the function H is Rq -valued and let Qn,� be the law of Yn. The sequence Yn, n ∈ N,
converges weakly to Q� locally uniformly on S if for every �0 ∈ S, there exists a neighborhood V (�0) of �0 ∈ S
such that

lim
n→∞ sup

�∈V (�0)

|Qn,�(h) − Q�(h)| = 0 for every h ∈ C,

where C denotes the class of all bounded and continuous functions h : Rq �→ R.
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Definition 2. Denote by P� the probability under F�. A random quantity Q(X1, . . . , Xn; �) is
√

n-consistent locally
uniformly on S for Q(�) if for every �0, there exists a neighborhood V (�0) of �0 ∈ S such that for every � > 0, there
exists M� > 0 such that

sup
�∈V (�0)

P�(
√

n‖Q(X1, . . . , Xn; �) − Q(�)‖ > M�) < � for n ∈ N,

where ‖ · ‖ is the usual Euclidean norm.

Remark also that a random quantity Q(X1, . . . , Xn; �) is
√

n-consistent locally uniformly on S for Q(�) if the
quantity

√
n(Q(X1, . . . , Xn; �) − Q(�)) converges weakly locally uniformly on S.

Definition 3. A random quantity Q(X1, . . . , Xn; �) converges stochastically locally uniformly on S to Q(�) if for
every �0 ∈ S, there exists a neighborhood V (�0) of �0 such that

lim
n→∞ sup

�∈V (�0)

P�(‖Q(X1, . . . , Xn; �) − Q(�)‖ > �) = 0 for � > 0.

Now, in order to use the LAN theory, we have to compute the loglikelihood ratio given by

Ln = log
n∏

i=1

gJ (Xi, (�/
√

n)(1 + o(1)), �)

f (Xi, �)

=
n∑

i=1

[
log

(
gJ

(
Xi,

�√
n
(1 + o(1)), �

))
− log(f (Xi, �))

]
.

By (1) and (2), Ln may be rewritten as

n∑
i=1

J∑
s=1

�s√
n
(1 + rs(n))F s(Xi, �) − nK

(
�√
n
(1 + o(1))

)

=
J∑

s=1

�s(1 + rs(n))
1√
n

n∑
i=1

(
F s(Xi, �) − 1

s + 1

)
+ √

n

J∑
s=1

�s

s + 1
(1 + rs(n)) − nK

(
�√
n
(1 + o(1))

)
.

Using a Taylor expansion, we obtain that

Ln =
J∑

s=1

�s(1 + rs(n))
1√
n

n∑
i=1

(
F s(Xi, �) − 1

s + 1

)
+ √

n

J∑
s=1

�s

s + 1
(1 + rs(n))

− n

[
(�(1 + o(1)))t√

n

�K(�)

��

∣∣∣∣
�=0

+ 1

2

1√
n
(�(1 + o(1)))t

�2K(�)

����

∣∣∣∣
�=0

1√
n
�(1 + o(1))

+o

(∥∥∥∥ �√
n
(1 + o(1))

∥∥∥∥2
)]

.

Denote by Zn(�) the column vector

1√
n

n∑
i=1

[
F s(Xi, �) − 1

s + 1

]∣∣∣∣∣
s=1,...,J

,

which is bounded in probability, by the Central Limit Theorem.
Note that the matrix

I := �2K(�)

����

∣∣∣∣
�=0

corresponds to the variance of Zn(�) (see (14)).
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Since for s = 1, . . . , J , the functions rs(n) converge to 0 and

�K(�)

��

∣∣∣∣
�=0

= 1

s + 1

∣∣∣∣
s=1,...,J

,

we obtain

Ln = �tZn(�) − 1
2�t I� + oPH0,�(1). (7)

The central sequence Zn(�) is significant in LAN theory (see Strasser, 1985, Chapter 13). Consequently, the statistic
for testing H0 against H1,n should be based on Zn(�). In the next section we consider the null hypothesis.

3. The behavior of our test statistic under H0

We assume in this section that the sample X1, . . . , Xn comes from a Pareto distribution with unknown parameter
� = (�, �)t ∈ �. Since the MLE is difficult to compute, we propose to use an estimator �̂n of � having the same
asymptotic properties as the MLE but which is easier to compute. This estimator �̂n will be called a two-step estimator.
Indeed, the first step consists in computing an initial

√
n-consistent estimator (locally uniformly) �̃n whereas the second

one consists in the achieved construction of the estimator �̂n defined as

�̂n = �̃n + I−1
�̃n�̃n

1

n

n∑
i=1

�(.)(Xi, �̃n). (8)

The estimator I−1
�̃n�̃n

is obtained by the plug-in method which consists in replacing the parameter � by the estimator �̃n in

the matrix I−1
�� . Indeed, a local uniform version of the continuous mapping theorem can be deduced by straightforward

arguments from the usual one (see van der Vaart, 1998, 2.3). The estimator �̃n is consistent for �, locally uniformly
on �, therefore applying the local uniform version of the continuous mapping theorem, we deduce that the estimator
I−1
�̃n�̃n

is consistent for I−1
�� , locally uniformly on �.

The following proposition is a key result to establish the behavior of the test statistic defined in Proposition 5. It
states a local uniform weak convergence of the two-step estimator. Here� denotes weak convergence.

Proposition 4. Under our assumption H0 and using �̂n as defined by (8), we have

√
n(̂�n − �) − I−1

��
1√
n

n∑
i=1

�(.)(Xi, �) → 0 locally uniformly on �, (9)

√
n(̂�n − �)�N(0, I−1

�� ) locally uniformly on �. (10)

We can now construct our test as follows.

Proposition 5. Let Zn(̂�n) and J (�) be defined as follows:

Zn(̂�n) = 1√
n

n∑
i=1

[
(1 − F(Xi, �̂n))

s − 1

s + 1

]∣∣∣∣
s=1,...,J

,

J (�) =
[

uv

(u + v + 1)(u + 1)(v + 1)
− uv(1 + �)(uv + � + (u + 1)(v + 1))

(v + � + 1)(u + � + 1)(u + 1)2(v + 1)2

]∣∣∣∣
u,v=1,...,J

.

Under the assumption H0 : X1, . . . , Xn are iid rvs according to a Pareto distribution, the statistic Zn(̂�n) converges
weakly to the normal distribution N(0, J (�)) with mean vector 0 and covariance matrix J (�), and the test statistic
�2

J := Zt
n(̂�n)

−1
J (̂�n)Zn(̂�n) converges weakly to a chi-square distribution with J degrees of freedom as n → ∞.

Therefore, the null hypothesis will be rejected for large values of �2
J .
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Remark 6. When we deal with the null hypothesis �=0 against � �= 0, there exists three tests asymptotically equivalent:
the Wald test, the score test and the likelihood ratio test. It is possible to show that our test statistic corresponds to the
score test which is commonly used in the theory of smooth tests of goodness of fit. Indeed the use of the score test in
the Neyman one appears to be the most convenient, essentially because it does not require the computation of the MLE
of the J-dimensional parameter � unlike the two other tests. Moreover the parameter � has no physical interpretation.
For further discussion we refer to Rayner and Best (1989).

As an illustration, we propose to use the moment estimator (see Hosking and Wallis, 1987, Section 3.2) in order to
construct our new estimator �̂n of �. This moment estimator �̃n = (̃�n, �̃n)

t is defined as follows:

�̃n = 1

2
X

(
X2

X2 − X2
+ 1

)
, �̃n = 1

2

(
1 − X2

X2 − X2

)
, (11)

where X = (1/n)
∑n

i=1Xi and X2 = (1/n)
∑n

i=1X
2
i .

The following proposition proves that �̃n is a
√

n-consistent estimator (locally uniformly) of �.

Proposition 7. Let X1, . . . , Xn be iid rvs according to a Pareto distribution with parameter �. The moment estimator
�̃n defined in (11) is

√
n-consistent for � = (�, �)t , locally uniformly on B ⊂ � where B = (0, ∞) × (0, 1

4 ).

Note that the condition � ∈ (0, 1
4 ) seems to be restrictive, but it is only due to the fact that we use here the moment

estimator. A weaker condition could be obtained for other
√

n-consistent estimators, for instance the probability
weighted moments estimator (see Hosking and Wallis, 1987, Section 3.3).

In the simulations in Section 5 we use this moment estimator as the initial one. Before that, we investigate in the
next section the behavior of the test statistic �2

J under the alternatives H1,n.

4. The behavior of our test statistic under H1,n

In order to study the behavior of our test statistic under H1,n some preliminary results are required.

4.1. Preliminary results

We denote by
PH0,�−→ (respectively, by

PH1,n−→ ) the convergence in probability when H0 (respectively, H1,n) holds. In
what follows the rvs X1, . . . , Xn are iid with either a Pareto distribution (in case we are under H0) or a common density
gJ as defined in (1) (in case we are under the alternatives H1,n).

The following proposition will be a crucial tool. It is a consequence of the concept of contiguity (see LeCam, 1960).

Proposition 8. For any statistic Tn = T (X1, . . . , Xn; �), the convergence Tn

PH0,�→ 0 holds if and only if Tn

PH1,n→ 0.

The next two propositions will be useful to establish the asymptotic behavior of our test statistic �2
J under H1,n.

Proposition 9. With the previous notations, combined with

I := uv

(u + v + 1)(u + 1)(v + 1)

∣∣∣∣
u,v=1,...,J

(12)

and with

I� :=
( −u

(u + 1 + �)(u + 1)�

−u

(u + 1 + �)(u + 1)2

)∣∣∣∣
u=1,...,J
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we have under H1,n(
Zn(�)√

n(̂�n − �)

)
�N

[(
I�

I−1
�� I t

��

)
,

(
I I�I−1

��

I−1
�� I t

� I−1
��

)]
.

Now, an application of the delta method leads to the following result.

Proposition 10. Under H1,n, we have the following weak convergence:

√
n

(
1 − �̂n�

�̂n�

)
�N

(
−�t u2(1 + �)(1 + 2�)

�(u + 1 + �)(u + 1)2

∣∣∣∣
u=1,...,J

,
(1 + �)2(1 + 2�)

�2

)
.

Now, in order to judge the quality of our test, we have to compute its power, which is, by definition, the probability
that it will correctly lead to the rejection of a false null hypothesis. In other words, it is the ability of a test to detect an
effect, if the effect actually exists.

4.2. Power of the test of the Pareto distribution

In order to evaluate the power of our test statistic, what we have to do is to study the asymptotic behavior of the test
statistic �2

J under our local alternatives H1,n. This is the aim of our next proposition.

Proposition 11. Under the assumption H1,n : � = �n = (�/
√

n)(1 + o(1)) where � is defined as in (2), the statistic
Zn(̂�n) converges weakly to the normal distribution N(J (�)�, J (�)), and �2

J = Zt
n(̂�n)

−1
J (̂�n)Zn(̂�n) converges

weakly to a non-central chi-square distribution with J degrees of freedom and noncentrality parameter �tJ (�)�.

Note that the noncentrality parameter partly depends on the distance between the alternatives and the null hypothesis.

5. Simulations

To study the finite sample behavior of the test statistic �2
J , we generated 1000 samples of iid observations from

several distributions with sample sizes n = 20, 50, 100, 1000 and �1 = · · · = �J = � ∈ {0, 0.1, 2, 5}.
We set � = 0.1 and � = 1. In all our simulations, the estimator �̂n is constructed with the moment estimator �̃n

(defined in (11)) as the initial one. In case where � �= 0, four different values of J have been taken in order to see the
impact of this factor. The solid line corresponds to J = 1, the dashed one is used for J = 2, the dotted one for J = 3
and 4 is represented by the dotted-dashed line.

Fig. 1 exemplifies the numerous simulations. It shows quantile plots of 1000 independent realizations of the asymp-
totic p-value p=1−�2

J (�2
J ) corresponding to the test statistic �2

J , where �2
J denotes the df of the chi-square distribution

with J degrees of freedom. The 1000 p-values were ordered on the Y-axis, p1:1000� · · · �p1000:1000 and the points
(i/1001, pi:1000), i�1000, were plotted. The horizontal line is drawn at the 5%-level, since a realization of the p-value
below 5% usually leads to a rejection of the null hypothesis.

We observe that the power increases with J, with a noticeable difference for a large � (typically � = 5) but not for a
small one close to 0 (corresponding to the null hypothesis). Nevertheless the problem of selecting an optimal value for
this parameter is outside the scope of this paper. This problem has already been studied in the literature, see for instance
Thomas and Pierce (1979) or Kopecky and Pierce (1979) for some specific values as an empirical basis, whereas Inglot
et al. (1997) recommended a selection rule.

The p-value is (asymptotically as the sample size increases) uniformly distributed on (0, 1) under the null hypothesis
� = 0. The quantile plot should in this case be close to the straight line connecting the points (0, 0) and (1, 1). The
corresponding plots in Fig. 1 show that this is actually true, with a small tendency to reject the null hypothesis in case
of a very small sample size (n = 20). As expected, the power of the test increases with �. This is visualized by the
quantile plots of the p-value which tend to be below the 5% line as � increases.
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n=20, delta=0 n=20, delta=0.1 n=20, delta=2 n=20, delta=5

n=50, delta=0 n=50, delta=0.1 n=50, delta=2 n=50, delta=5

n=100, delta=0 n=100, delta=0.1 n=100, delta=2 n=100, delta=5

n=1000, delta=0 n=1000, delta=0.1 n=1000, delta=2 n=1000, delta=5

Fig. 1. Quantile plots of 1000 p-values of the test statistic �2
J . Here �= 0.1, �= 1 and �1 =· · ·=�J =� ∈ {0, 0.1, 2, 5}. The solid line corresponds

to J = 1, the dashed one is used for J = 2, the dotted one for J = 3 and 4 is represented by the dotted-dashed line. The horizontal line is always
drawn at the 5% level and the X- and Y-axes from 0 to 1.

6. Concluding remarks

In this paper a smooth goodness of fit test for the Pareto distribution family has been proposed. It is motivated by
Le Cam’s LAN theory. Since the Pareto distribution corresponds to the heavy tailed generalized Pareto distribution, it
is an essential model for extreme events. A classical approach in the extreme framework is the peaks over threshold
(POT) method. It relies on the fact that exceedances over high thresholds in an iid sample follow approximately a
generalized Pareto distribution for a large class of underlying distributions. Therefore an adaptation of our test to the
case of “approximately Pareto distribution” would be useful and will lead to further research. Equally, according to an
idea of Davison and Smith (1990), a further application would be the use of this test to select the threshold in the POT
approach.
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Appendix

Proof of Proposition 4. This proof is based on Theorem 7.5.9. in Pfanzagl (1994). It can be divided into two parts.
First part: We have to check five conditions which are denoted in Pfanzagl’s (1994) book by conditions 7.5.1, 7.5.2,

7.5.3, (i) and (ii) in Theorem 7.5.5. The first one consists in checking that EH0,�(�(.)(X, �)) = 0 with � ∈ �. To satisfy
the second one we have to verify that

EH0,�(�(	
)(X, �)) + EH0,�(�(	)(X, �)�(
)(X, �)) = 0 for 	, 
 = 1, 2 and � ∈ �.

The third condition requires that the functions �(
)(., �) for 
 = 1, 2 and � ∈ �, are linearly PH0,�-independent.
It is easy to see that these three conditions 7.5.1–7.5.3 are satisfied.
It remains for the first part to show that the following two conditions (i) and (ii) are satisfied for every �0 ∈ �.
Condition (i) in Theorem 7.5.5 of Pfanzagl (1994): We have to check that there exists a neighborhood U(�0, �0) of

�0 such that

� �→ �(	
)(x, �) is continuous on U(�0, �0) for 	, 
 = 1, 2 for every x

and sup�1∈U(�0,�0)
|�(	
)(., �1)| is integrable with respect to the Pareto distribution (�) locally uniformly at �0.

Note that in order to establish the latter point, it is sufficient to prove that

sup
(�,�)∈V (�0,�0)

EH0,�

(
sup

(�1,�1)∈U(�0,�0)

|�(	
)(X, �1)|1+�

)
< ∞

for some � > 0, see Pfanzagl (1994, p. 215).
In view of (4), (5) and (6), it is enough to consider the case of �(22)(X, �1). We have

sup
(�,�)∈V (�0,�0)

EH0,�

(
sup

(�1,�1)∈U(�0,�0)

|�(22)(X, �1)|1+�

)

= sup
(�,�)∈V (�0,�0)

EH0,�

(
sup

(�1,�1)∈U(�0,�0)

∣∣∣∣ �2

��1��1
log f (X, �1)

∣∣∣∣1+�)
.

With the change of variable X = (�/�)(U−� − 1), where U is a uniformly distributed rv on (0, 1), it is equivalent to
study

sup
(�,�)∈V (�0,�0)

E

(
sup

(�1,�1)∈U(�0,�0)

∣∣∣∣ �2

��1��1
log f

(
�

�
(U−� − 1), �1

)∣∣∣∣1+�)

= sup
(�,�)∈V (�0,�0)

E

(
sup

(�1,�1)∈U(�0,�0)

∣∣∣∣∣− 2

�3
1

log

(
1 − �1�

�1�
(1 − U−�)

)

+ 2

�2
1�1

(�/�)(U−� − 1)

1 − (�1�/�1�)(1 − U−�)
+ 1 + �1

�1�
2
1

(�/�)2(1 − U−�)2

(1 − (�1�/�1�)(1 − U−�))2

∣∣∣∣∣
1+�
⎞⎠ .
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If we take � = 1, we only need to consider the terms sup(�1,�1)∈U(�0,�0)
{(1 − U−�)4}/{(1 − (�1�/(�1�))(1 − U−�))4},

sup(�1,�1)∈U(�0,�0)
log2{1 − (�1�/(�1�))(1 − U−�)} and sup(�1,�1)∈U(�0,�0)

{log{1 − (�1�/(�1�))(1 − U−�)} × {(1 −
U−�)2}/{(1 − (�1�/(�1�))(1 − U−�))2}}.

Just like � and �, the parameters �1 and �1 are in the neighborhood of �0 and �0. Consequently, we can assume that
there exists � such that � ∈ (0, 1) and (�1�)/(�1�) ∈ (1 − �, 1 + �).

Concerning the first term, we have, with � fixed, that

C1 = sup
(�,�)∈V (�0,�0)

E

⎛⎝ sup
(�1,�1)∈U(�0,�0)

{
1 − U−�

1 − (�1�/(�1�))(1 − U−�)

}4
⎞⎠

� sup
(�,�)∈V (�0,�0)

E

⎛⎝{ 1 − U−�

1 − (1 − �)(1 − U−�)

}4
⎞⎠ .

For u ∈ (0, 1), let h1,�(u) := {1 −u−�}/{1 − (1 − �)(1 −u−�)}. Since � is positive, h1,�(.) is a negative and increasing
function.

Since � ∈ (0, 1), we have

sup
(�,�)∈V (�0,�0)

E

⎛⎝{ 1 − U−�

1 − (1 − �)(1 − U−�)

}4
⎞⎠ �h4

1,�(0) = 1

(1 − �)4
< ∞.

Concerning the second term,

C2 = sup
(�,�)∈V (�0,�0)

E

(
sup

(�1,�1)∈U(�0,�0)

log2
(

1 − �1�

�1�
(1 − U−�)

))
� sup

(�,�)∈V (�0,�0)

E(log2(1 − (1 + �)(1 − U−�)))

= sup
(�,�)∈V (�0,�0)

E([−� log U + log(1 + �(−U� + 1))]2)

� sup
(�,�)∈V (�0,�0)

E([−� log U + log(1 + �)]2)

� sup
(�,�)∈V (�0,�0)

(2�2 + 2� log(1 + �)) + log2(1 + �)

< ∞.

Concerning the third term,

C3 = sup
(�,�)∈V (�0,�0)

E

(
sup

(�1,�1)∈U(�0,�0)

{
log

(
1 − �1�

�1�
(1 − U−�)

)}{
(1 − U−�)2

(1 − (�1�/(�1�))(1 − U−�))2

})

� sup
(�,�)∈V (�0,�0)

E

({
sup

(�1,�1)∈U(�0,�0)

log

(
1 − �1�

�1�
(1 − U−�)

)}

×
{

sup
(�1,�1)∈U(�0,�0)

(1 − U−�)2

(1 − (�1�/(�1�))(1 − U−�))2

})
.
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By applying the Cauchy–Schwarz inequality, we obtain that

C3� sup
(�,�)∈V (�0,�0)

⎛⎜⎝
√√√√√E

⎛⎝{ sup
(�1,�1)∈U(�0,�0)

log

(
1 − �1�

�1�
(1 − U−�)

)}2
⎞⎠

×

√√√√√E

⎛⎝{ sup
(�1,�1)∈U(�0,�0)

(1 − U−�)2

(1 − (�1�/(�1�))(1 − U−�))2

}2
⎞⎠
⎞⎟⎠

�

√√√√√ sup
(�,�)∈V (�0,�0)

E

⎛⎝{ sup
(�1,�1)∈U(�0,�0)

log

(
1 − �1�

�1�
(1 − U−�)

)}2
⎞⎠

×

√√√√√ sup
(�,�)∈V (�0,�0)

E

⎛⎝{ sup
(�1,�1)∈U(�0,�0)

(1 − U−�)2

(1 − (�1�/(�1�))(1 − U−�))2

}2
⎞⎠.

Consequently, since C1 and C2 are finite, C3 is also finite.
Condition (ii) in Theorem 7.5.5 of Pfanzagl (1994): For 
 = 1, 2, the family of functions x �→ [�(
)(x, �)]2 must be

integrable with respect to the Pareto distribution with parameter �, locally uniformly at �0, i.e. we have to check that
for some � > 0,

sup
(�,�)∈V (�0,�0)

EH0,�(|�(
)(X, �)|2(1+�)) < ∞.

Let � = 1/2. We have

[�(1)(X, �)]3 = − 1

�3
+ (1 + �)3

�6
X3
(

1 + �X

�

)−3

− 3(1 + �)2

�5
X2
(

1 + �X

�

)−2

+ 3(1 + �)

�4
X

(
1 + �X

�

)−1

.

With X = (�/�)(U−� − 1), U ∼ U(0, 1), we obtain that [�(1)(X, �)]3 is also equal to

− 1

�3
− (1 + �)3

�3�3
(U� − 1)3 − 3(1 + �)2

�2�3
(U� − 1)2 − 3(1 + �)

��3
(U� − 1).

Similarly, we have

[�(2)(X, �)]3 = 1

�6
log3

(
1 + �X

�

)
− (1 + �)3

�3�3
X3
(

1 + �X

�

)−3

+ 3(1 + �)2

�2�4
X2
(

1 + �X

�

)−2

log

(
1 + �X

�

)

− 3(1 + �)

��5
X

(
1 + �X

�

)−1

log2
(

1 + �X

�

)
which is, by the same change of variable, equal to

− 1

�3
log3(U) + (1 + �)3

�6
(U� − 1)3 − 3(1 + �)2

�5
(U� − 1)2 log(U) + 3(1 + �)

�4
(U� − 1) log2(U).

Using Hölder’s inequalities, we get

E((U� − 1)2 log(U))�(E(U� − 1)2(3/2))2/3 × (E(log3(U)))1/3,

E((U� − 1) log2(U))�(E(U� − 1)3)1/3 × (E(log2(3/2)(U)))2/3.
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Since sup(�,�)∈V (�0,�0)
E(U� −1)3 and sup(�,�)∈V (�0,�0)

E(log3(U)) are finite, condition (ii) is fulfilled. This completes
the first part of the proof of Proposition 4.

Second part: We make use of the particular estimator �̂n of � given in Eq. (8). A direct application of Theorem 7.5.9
in Pfanzagl (1994) leads to

√
n(̂�n − �) − I−1

��
1√
n

n∑
i=1

�(.)(Xi, �) → 0 locally uniformly at �0.

Moreover, since (1/
√

n)
∑n

i=1 �(.)(Xi, �)�N(0, I��) locally uniformly at �0 by the corresponding version of the
Central Limit Theorem (see Pfanzagl, 1994, 7.7.11), we obtain

√
n(̂�n − �)�N(0, I−1

�� ) locally uniformly at �0.

Since these two convergences hold for any �0 in �, the proof of Proposition 4 is complete. �

Proof of Proposition 5. Let X1, . . . , Xn be iid rvs from F(., �). Under H0 we have Xi=F−1(1−Ui, �)=(�/�)(U
−�
i −

1), i = 1, . . . , n, where U1, . . . , Un are iid rvs from the uniform distribution on (0, 1). Then

Zn(̂�n) = 1√
n

n∑
i=1

[
(1 − F(Xi, �̂n))

s − 1

s + 1

]∣∣∣∣
s=1,...,J

= 1√
n

n∑
i=1

[
(1 − F(Xi, �))s − 1

s + 1
+ (1 − F(Xi, �̂n))

s − (1 − F(Xi, �))s
]∣∣∣∣

s=1,...,J

= 1√
n

n∑
i=1

⎡⎣Us
i − 1

s + 1
+
(

U
−�
i + 1 − U

−�
i − �̂n�

�̂n�
(1 − U

−�
i )

)−s/̂�n

− (U
−�
i )−s/�

⎤⎦∣∣∣∣∣∣
s=1,...,J

= 1√
n

n∑
i=1

[
Us

i − 1

s + 1

]∣∣∣∣
s=1,...,J

+ 1√
n

n∑
i=1

⎡⎣(U
−�
i + (1 − U

−�
i )

(
1 − �̂n�

�̂n�

))−s/�

− (U
−�
i )−s/�

⎤⎦∣∣∣∣∣∣
s=1,...,J

+ 1√
n

n∑
i=1

⎡⎣(U
−�
i + (1 − U

−�
i )

(
1 − �̂n�

�̂n�

))−s/̂�n

−
(

U
−�
i + (1 − U

−�
i )

(
1 − �̂n�

�̂n�

))−s/�
⎤⎦∣∣∣∣∣∣

s=1,...,J

=: A + B + C.

We will study the three terms separately. First, concerning B, we have

B = 1√
n

n∑
i=1

⎡⎣(U
−�
i + (1 − U

−�
i )

(
1 − �̂n�

�̂n�

))−s/�

− (U
−�
i )−s/�

⎤⎦∣∣∣∣∣∣
s=1,...,J

= 1√
n

n∑
i=1

Us
i

⎡⎣(1 + (U
�
i − 1)

(
1 − �̂n�

�̂n�

))−s/�

− 1

⎤⎦∣∣∣∣∣∣
s=1,...,J

.
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Using a Taylor expansion with f (x) = (1 + x)� and then applying the law of large numbers, we obtain

B = 1√
n

n∑
i=1

Us
i

[
s

�
(1 − U

�
i )

(
1 − �̂n�

�̂n�

)]∣∣∣∣∣
s=1,...,J

+ oPH0,�(1)

= √
n

(
1 − �̂n�

�̂n�

)
s

(s + � + 1)(s + 1)

∣∣∣∣∣
s=1,...,J

+ oPH0,�(1).

Concerning the term C, we have by a Taylor expansion of f (x) = (1 + x)�

C = 1√
n

n∑
i=1

⎡⎣(U
−�
i + (1 − U

−�
i )

(
1 − �̂n�

�̂n�

))−s/̂�n

−
(

U
−�
i + (1 − U

−�
i )

(
1 − �̂n�

�̂n�

))−s/�
⎤⎦∣∣∣∣∣∣

s=1,...,J

= 1√
n

n∑
i=1

⎡⎣U
s�/̂�n

i

(
1 + (U

�
i − 1)

(
1 − �̂n�

�̂n�

))−s/̂�n

− Us
i

(
1 + (U

�
i − 1)

(
1 − �̂n�

�̂n�

))−s/�
⎤⎦∣∣∣∣∣∣

s=1,...,J

=
[

1√
n

n∑
i=1

U
s�/̂�n

i

(
1 + s

�̂n

(1 − U
�
i )

(
1 − �̂n�

�̂n�

))

− 1√
n

n∑
i=1

Us
i

(
1 + s

�
(1 − U

�
i )

(
1 − �̂n�

�̂n�

))]∣∣∣∣∣
s=1,...,J

+ oPH0,�(1)

=
[

1√
n

n∑
i=1

[Us�/̂�n

i − Us
i ] + √

n

(
1 − �̂n�

�̂n�

)
1

n

n∑
i=1

U
�
i

[
− s

�̂n

exp

(
s

�̂n

� log Ui

)
+ s

�
exp

(
s

�
� log Ui

)]

−√
n

(
1 − �̂n�

�̂n�

)
1

n

n∑
i=1

[
− s

�̂n

exp

(
s

�̂n

� log Ui

)
+ s

�
exp

(
s

�
� log Ui

)]]∣∣∣∣∣
s=1,...,J

+ oPH0,�(1).

Using Taylor expansions for the functions f (x) = x exp(−x� log Ui) and f (x) = exp(x), we obtain that

C = 1√
n

n∑
i=1

[Us�/̂�n

i − Us
i ]
∣∣∣∣∣
s=1,...,J

+ oPH0,�(1)

= 1√
n

n∑
i=1

Us
i (U

s(�/̂�n−1)

i − 1)

∣∣∣∣∣
s=1,...,J

+ oPH0,�(1)

= 1√
n

n∑
i=1

Us
i

[
exp

(
s

(
�

�̂n

− 1

)
log(Ui)

)
− 1

]∣∣∣∣∣
s=1,...,J

+ oPH0,�(1)

= √
ns

(
�

�̂n

− 1

)
1

n

n∑
i=1

Us
i log(Ui)

∣∣∣∣∣
s=1,...,J

+ oPH0,�(1)

= s

(s + 1)2

1

�̂n

√
n(̂�n − �)

∣∣∣∣
s=1,...,J

+ oPH0,�(1)

by the law of large numbers.
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Summarizing the above expansions we obtain

Zn(̂�n) =
[

1√
n

n∑
i=1

(
Us

i − 1

s + 1

)
+ √

n

(
1 − �̂n�

�̂n�

)
s

(s + � + 1)(s + 1)

+ s

(s + 1)2

1

�̂n

√
n(̂�n − �)

]∣∣∣∣∣
s=1,...,J

+ oPH0,�(1)

=: [A′(s) + B ′(s) + C′(s)]|s=1,...,J + oPH0,�(1). (13)

Next we compute the asymptotic variance of Zn(̂�n). In what follows, the asymptotic expectation, variance and
covariance will be denoted by Ea , Vara and Cova . We have

Cova(A
′(u), A′(v)) = Cova

(
1√
n

n∑
i=1

(
Uu

i − 1

u + 1

)
,

1√
n

n∑
i=1

(
Uv

i − 1

v + 1

))

= Cova(U
u
i , Uv

i ) = 1

u + v + 1
− 1

(u + 1)(v + 1)

= uv

(u + v + 1)(u + 1)(v + 1)
.

Note that

Cova(A
′(u), A′(v))|u,v=1,...,J = �2K(�)

����

∣∣∣∣
�=0

= I . (14)

Similarly,

Cova(B
′(u), B ′(v)) = Cova

(√
n

(
1 − �̂n�

�̂n�

)
u

(u + � + 1)(u + 1)
,
√

n

(
1 − �̂n�

�̂n�

)
v

(v + � + 1)(v + 1)

)

= Vara

(√
n

(
1 − �̂n�

�̂n�

))
uv

(u + � + 1)(v + � + 1)(u + 1)(v + 1)

= Vara

(√
n

(
�(̂�n − �) − (̂�n − �)�

�̂�n

))
uv

(u + � + 1)(v + � + 1)(u + 1)(v + 1)
.

From (9) in Proposition 4, we derive that

√
n(̂�n − �) = 1√

n

(
1

�2
(1 + �)2(1 + 2�)

n∑
i=1

(U
�
i − 1) − 1

�
(1 + �)2

n∑
i=1

log(Ui) + n(1 + �)

)
+ oPH0,�(1) (15)

and

√
n(̂�n − �) = 1√

n

(
− �

�2
(1 + �)2(1 + 2�)

n∑
i=1

(U
�
i − 1) + �

�
(1 + �)

n∑
i=1

log(Ui) − 2n�(1 + �)

)
+ oPH0,�(1). (16)

As a consequence,

√
n

(
�(̂�n − �) − (̂�n − �)�

�̂�n

)
= 1√

n

1

�̂�n

[
(1 + �)3(1 + 2�)

�

�2

n∑
i=1

(1 − U
�
i )

+�

�
(1 + �)(1 + 2�)

n∑
i=1

log(Ui) − n�(1 + �)(1 + 2�)

]
+ oPH0,�(1). (17)
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Direct computations lead to the following expression:

Cova(B
′(u), B ′(v)) = (1 + �)2(1 + 2�)

�2

uv

(u + � + 1)(v + � + 1)(u + 1)(v + 1)
.

As the variance of
√

n(̂�n − �) is (1 + �)2 according to Proposition 4, we have

Cova(C
′(u), C′(v)) = uv(1 + �)2

�2(u + 1)2(v + 1)2
.

We have now to compute the covariances between the terms A′, B ′ and C′.
Using (15) and (17), we obtain

Cova

(
1√
n

n∑
i=1

(
Us

i − 1

s + 1

)
,
√

n(̂�n − �)

)
= s(1 + �)(s − �)

(s + 1)2(s + � + 1)
,

Cova

(
1√
n

n∑
i=1

(
Us

i − 1

s + 1

)
,
√

n

(
1 − �̂n�

�̂n�

))
= − s2(1 + �)(1 + 2�)

�(s + 1)2(s + � + 1)
,

Cova

(√
n

(
1 − �̂n�

�̂n�

)
,
√

n(̂�n − �)

)
= −1

�
(1 + �)(1 + 2�).

It follows that

Cova(A
′(u), B ′(v)) + Cova(A

′(v), B ′(u)) = − u2v(1 + �)(1 + 2�)

�(u + 1)2(u + � + 1)(v + � + 1)(v + 1)

− v2u(1 + �)(1 + 2�)

�(v + 1)2(v + � + 1)(u + � + 1)(u + 1)
,

Cova(A
′(u), C′(v)) + Cova(A

′(v), C′(u)) = uv(1 + �)(2uv + u + v − 2�2 − 2�)

�(u + 1)2(v + 1)2(u + � + 1)(v + � + 1)
,

Cova(B
′(u), C′(v)) + Cova(B

′(v), C′(u)) = −uv(1 + �)(1 + 2�)[(u + 1)(v + � + 1) + (v + 1)(u + � + 1)]
�2(v + � + 1)(u + � + 1)(u + 1)2(v + 1)2

.

Finally, the asymptotic variance of Zn(̂�n) follows:

Vara(Zn(̂�n)) =
[

uv

(u + v + 1)(u + 1)(v + 1)
− uv(1 + �)(uv + � + (u + 1)(v + 1))

(v + � + 1)(u + � + 1)(u + 1)2(v + 1)2

]∣∣∣∣
u,v=1,...,J

.

Combining the Central Limit Theorem with the representations (13), (15) and (17), we deduce that

Zn(̂�n)�N(0, J (�)).

By (10) and continuity the proof of Proposition 5 is complete. �

Proof of Proposition 7. Let 	r = EH0,�(Xr) < ∞, r = 1, 2, 3, 4. We have

	1 = �

1 − �
,

	2 = 2�2

(1 − �)(1 − 2�)
,

	3 = 6�3

(1 − �)(1 − 2�)(1 − 3�)
,

	4 = 24�4

(1 − �)(1 − 2�)(1 − 3�)(1 − 4�)
.
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We can express the parameter � as a function of 	1 and 	2.
To this aim, we write �[
] = h
(	1, 	2) with h1 : (0, ∞) × (0, ∞) �→ (0, ∞) and h2 : (0, ∞) × (0, ∞) �→ (0, ∞).

Then, we have

�[1] = � = h1(	1, 	2) = 1

2
	1

(
	2

1

	2 − 	2
1

+ 1

)
,

�[2] = � = h2(	1, 	2) = 1

2

(
1 − 	2

1

	2 − 	2
1

)

with 	2 − 	2
1 > 0. For every (y1, y2) ∈ (0, ∞) × (0, ∞), y �→ h
(y, y2) and y �→ h
(y1, y) are two continuous

functions.
Since by the strong law of large numbers, (1/n)

∑n
i=1 Xr

i

a.s.→ EH0,�(Xr) = 	r for r = 1, 2, the moment estimator

�̃n[
] = h
((1/n)
∑n

i=1Xi, (1/n)
∑n

i=1X
2
i ) for 
 = 1, 2 defines a sequence of estimators which is strongly consistent.

The partial derivatives of h1 and h2 exist, they are continuous and H(�, �), defined as

H(�, �) = �h	

�y

(y1, y2)

∣∣∣∣
(y1,y2)=(�/(1−�),2�2/[(1−�)(1−2�)])

, 	, 
 = 1, 2

has rank 2. Therefore, by Pfanzagl (1994, Propositions 7.6.8 and 7.2.1) we have the locally uniformly
√

n-consistency
of �̃n[
]. More precisely, we have

√
n(̃�n − �)�N(0, H(�)(�)H(�)t ) locally uniformly on B

with H(�) and (�) defined as follows:

H(�) =
⎛⎝ (3 − 4�)(1 − �) − 1

2�
(1 − �)(1 − 2�)2

2

�
(1 − �)2(1 − 2�) − 1

2�2
(1 − �)2(1 − 2�)2

⎞⎠ ,

(�) = VarH0,�

(
X

X2

)
=
(

	2 − 	2
1 	3 − 	1	2

	3 − 	1	2 	4 − 	2
2

)

=

⎛⎜⎜⎝
�2

(1 − �)2(1 − 2�)

4�3

(1 − �)2(1 − 2�)(1 − 3�)

4�3

(1 − �)2(1 − 2�)(1 − 3�)

20�4 − 44��4

(1 − �)2(1 − 2�)2(1 − 3�)(1 − 4�)

⎞⎟⎟⎠ .

Now, in order to establish our results under the alternatives H1,n, we use LeCam’s First and Third Lemma (see

van der Vaart, 1998, 6.4 and 6.7). By
H0� (respectively,

H1,n� ) we denote weak convergence under H0 (respectively, under
H1,n). �

LeCam’s First Lemma. Let Pn and Qn be sequences of probability measures on measurable spaces (�n,An). Then
the following statements are equivalent:

(i) Qn�Pn, i.e. Qn is contiguous with respect to Pn.

(ii) There exists some subsequence m(n) such that if dPm(n)/dQm(n)

Qm(n)� U , then P(U > 0) = 1.

(iii) There exists some subsequence m(n) such that if dQm(n)/dPm(n)

Pm(n)� V , then E(V ) = 1.

(iv) For any statistic Tn : �n �→ Rk : if Tn
Pn→ 0, then Tn

Qn→ 0.
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LeCam’s Third Lemma. Let Pn and Qn be sequences of probability measures on measurable spaces (�n,An) and
let Xn : �n �→ Rk be a sequence of random vectors.

Suppose that Qn�Pn and(
Xn

log
dQn

dPn

)
Pn�Nk+1

((
	

−1

2
�2

)
,

(
 �
�t �2

))
then Xn

Qn�Nk(	 + �, ).

Proof of Proposition 8. This result is a consequence of LeCam’s First Lemma. By choosing dPn =∏n
i=1 f (Xi, �)

(corresponding to the assumption H0) and dQn =∏n
i=1 gJ (Xi, �n, �) (corresponding to the alternatives H1,n), in view

of (7) and (14), the Central Limit Theorem entails that Ln converges weakly under H0 to N(− 1
2�t I�, �t I�).

Now we can check statement (iii). Indeed, log V follows a N(− 1
2�t I�, �t I�) distribution implying that E(V ) = 1.

Moreover, in (ii), with the roles of Pn and Qn interchanged, log U follows a N(− 1
2�t I�, �t I�) distribution implying

that P(U > 0) = 1. Consequently, by (i), the sequences Pn and Qn are mutually contiguous and this is denoted by

Pn��Qn. Now by (iv), Tn
Pn→ 0 if and only if Tn

Qn→ 0. �

Proof of Proposition 9. By the multivariate Central Limit Theorem and by Proposition 4, we obtain that(
Zn(�)

1√
n

∑n
i=1�

(.)(Xi, �)

)
H0�N

[(
0
0

)
,

(
I I�
I t
� I��

)]
.

Under H0 the loglikelihood ratio Ln converges weakly to the normal distribution N(− 1
2�t I�, �t I�). Moreover, Ln is

essentially a function of Zn(�) (see (7)). Hence, the vector⎛⎜⎜⎜⎝
Zn(�)

1√
n

∑n
i=1�

(.)(Xi, �)

log
∏n

i=1
gJ (Xi, �n, �)

f (Xi, �)

⎞⎟⎟⎟⎠
is asymptotically Gaussian. Its asymptotic covariance matrix has the entries

Cova

(
log

n∏
i=1

gJ (Xi, �n, �)

f (Xi, �)
, Zn(�)

)
= Cov

(
�tZn(�) − 1

2
�t I�, Zn(�)

)
= �t Var(Zn(�)) = �t I ,

Cova

(
log

n∏
i=1

gJ (Xi, �n, �)

f (Xi, �)
,

1√
n

n∑
i=1

�(.)(Xi, �)

)
= Cov

(
�tZn(�) − 1

2
�t I�,

1√
n

n∑
i=1

�(.)(Xi, �)

)

= �tCov

(
Zn(�),

1√
n

n∑
i=1

�(.)(Xi, �)

)
= �t I�

and, consequently, we have⎛⎜⎜⎜⎝
Zn(�)

1√
n

∑n
i=1�

(.)(Xi, �)

log
∏n

i=1
gJ (Xi, �n, �)

f (Xi, �)

⎞⎟⎟⎟⎠ H0�NJ+3

⎡⎣⎛⎝ 0
0

−1

2
�t I�

⎞⎠ ,

⎛⎝ I I� I�
I t
� I�� I t

��

�t I �t I� �t I�

⎞⎠⎤⎦ .
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By LeCam’s Third Lemma, we obtain that(
Zn(�)

1√
n

∑n
i=1�

(.)(Xi, �)

)
H1,n� NJ+2

[(
I�
I t
��

)
,

(
I I�
I t
� I��

)]
.

Now, using Proposition 4, the following asymptotic representation holds:

√
n(̂�n − �) = I−1

��
1√
n

n∑
i=1

�(.)(Xi, �) + oPH0,�(1).

Also, by Proposition 8, this asymptotic representation is also true under H1,n, i.e.

√
n(̂�n − �) = I−1

��
1√
n

n∑
i=1

�(.)(Xi, �) + oPH1,n
(1).

Hence, the result follows. �

Proof of Proposition 10. This proof is based on the delta method with the function h : R2 �→ R defined as follows:

h

(
x

y

)
= y�

x�
.

Denoting by ḣ its gradient, we have

ḣ

(
x

y

)
=
(−y�/(x2�)

�/(x�)

)
.

The delta method relies on the following development which is easily obtained using Proposition 9 and a Taylor
expansion:

√
n(h(̂�n) − h(�)) = ḣ(�)t

√
n(̂�n − �) + oPH1,n

(1). (18)

Therefore, since we have
√

n(̂�n − �)
H1,n� N(I−1

�� I t
��, I−1

�� ) by Proposition 9, we also get

√
n(h(̂�n) − h(�))

H1,n� N(ḣ(�)t I−1
�� I t

��, ḣ(�)t I−1
�� ḣ(�))

and therefore

√
n

(
1 − �̂n�

�̂n�

)
H1,n� N

(
−�t u2(1 + �)(1 + 2�)

�(u + 1 + �)(u + 1)2

∣∣∣∣
u=1,...,J

,
(1 + �)2(1 + 2�)

�2

)
. �

Proof of Proposition 11. According to Proposition 8, the asymptotic representation of Zn(̂�n) under H1,n is the same
as the one previously obtained, i.e.

Zn(̂�n) = Zn(�) + √
n

(
1 − �̂n�

�̂n�

)
s

(s + � + 1)(s + 1)

∣∣∣∣
s=1,...,J

+ √
n(̂�n − �)

1

�̂n

s

(s + 1)2

∣∣∣∣
s=1,...,J

+ oPH1,n
(1). (19)
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By Propositions 9 and 10, we then obtain with I defined in (12)

EH1,n
(Zn(�)) = I� = uv

(u + v + 1)(u + 1)(v + 1)

∣∣∣∣
u,v=1,...,J

�,

EH1,n

(
√

n

(
1 − �̂n�

�̂n�

)
v

(v + � + 1)(v + 1)

∣∣∣∣
v=1,...,J

)

= − u2v(1 + �)(1 + 2�)

�(u + 1 + �)(v + 1 + �)(u + 1)2(v + 1)

∣∣∣∣
u,v=1,...,J

�,

EH1,n

(
√

n(̂�n − �)
v

�̂n(v + 1)2

∣∣∣∣
v=1,...,J

)
= uv(1 + �)(u − �)

�(u + 1 + �)(u + 1)2(v + 1)2

∣∣∣∣
u,v=1,...,J

�. (20)

Direct computations lead to the following expression for the asymptotic expectation of Zn(̂�n) under H1,n:

Ea;H1,n
(Zn(̂�n)) =

[
uv

(u + v + 1)(u + 1)(v + 1)
− uv(1 + �)(uv + � + (u + 1)(v + 1))

(v + � + 1)(u + � + 1)(u + 1)2(v + 1)2

]∣∣∣∣
u,v=1,...,J

�

= J (�)�. (21)

Using representation (18), (19) and Propositions 8 and 9, it is obvious to see that the covariance terms are unchanged
under H1,n or under H0. Indeed, looking at LeCam’s Third Lemma, only expectation terms are affected. Consequently,
we have Vara ;H1,n

(Zn(̂�n)) = J (�). Now, from (19), we observe that the quantity Zn(̂�n) can be decomposed into
three terms plus a remainder one. According to Propositions 9 and 10 and Slutsky’s lemma, the vector formed by
these three terms is asymptotically Gaussian under H1,n. As a consequence, under H1,n, Zn(̂�n) converges weakly to

a NJ (J (�)�, J (�)) distribution. Therefore, Zt
n(̂�n)

−1
J (�)Zn(̂�n)

H1,n� �2
J,�tJ (�)�

. Then, by Proposition 9 and by

continuity, the result follows. �
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