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Abstract
To better manage the risks of destructive natural disasters, impact models can be fed with simulations of extreme scenarios

to study the sensitivity to temporal and spatial variability. We propose a semi-parametric stochastic framework that enables

simulations of realistic spatio-temporal extreme fields using a moderate number of observed extreme space-time episodes

to generate an unlimited number of extreme scenarios of any magnitude. Our framework draws sound theoretical justi-

fication from extreme value theory, building on generalized Pareto limit processes arising as limits for event magnitudes

exceeding a high threshold. Specifically, we exploit asymptotic stability properties by decomposing extreme event episodes

into a scalar magnitude variable (that is resampled), and an empirical profile process representing space-time variability.

For illustration on hourly gridded precipitation data in Mediterranean France, we calculate various risk measures using

extreme event simulations for yet unobserved magnitudes, and we highlight contrasted behavior for different definitions of

the magnitude variable.

Keywords Extreme-value theory � Precipitation � Risk analysis � Space-time Pareto processes � Stochastic simulation

1 Introduction

Extreme events of geophysical processes such as precipi-

tation extend over space and time, and they can entail

devastating consequences for human societies and

ecosystems. Flash floods in Southern France constitute

highly destructive natural phenomena causing material

damage and threatening human lives (Vinet et al. 2016), as

for example during two relatively recent catastrophic flash-

flood events in the Gard department in September 2002

(Delrieu et al. 2005), and near Montpellier in October 2014

(Brunet et al. 2018). Since damage and costs of floods have

been increasing over the last decades, the understanding of

temporal and spatial variability of rainfall patterns gener-

ating such floods receives considerable attention from the

authorities (European Environment Agency 2007). To help

with this understanding, we develop a method to stochas-

tically simulate realistic spatio-temporal extreme scenarios,

which can be fed to impact models. Examples of impact

models are urban flood models, such as the shallow water

models of Guinot and Soares-Frazão (2006) and Guinot

et al. (2017), which produce hydrological variables such as

water height or water speed, based upon which experts

make decisions about flood risk.

Spatial extreme-value theory (EVT) has become a very

active field of research and proposes data-based stochastic

modeling of such extreme events for predicting probabilities,

risks and uncertainty behavior (Coles 2001; de Haan and

Ferreira 2006; Davison et al. 2012; Ferreira and de Haan

2014; Davison and Huser 2015). Throughout this paper, the

notion of space will refer to planar geographic space (R2) if

not stated otherwise, in contrast to space augmented by the

time dimension (i.e., R2 � R). In physical processes, very

complex deterministic patterns (e.g., physical laws, or spa-

tio-temporal trends in the statistical sense) and probabilistic
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2 IMAG, CNRS, Inria, Université de Montpellier, Montpellier,

France

3 HydroSciences Montpellier, CNRS/IRD, Université de
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patterns (variability at relatively small spatial and temporal

scales) may arise. In combination with the high dimension of

datasets, realistic spatio-temporal modeling is challenging.

In this work, we develop a data-driven non-parametric spa-

tio-temporal resampling approach by transforming observed

quantiles in a spatially and temporally coherent way, i.e., by

appropriately accounting for spatio-temporal extremal

dependence.We illustrate ourmethod on a high-dimensional

data set of gridded hourly reanalysis data. Our procedure

draws sound justification from asymptotic theory for

threshold exceedances with a strong probabilistic interpre-

tation. We will explain how it allows us to flexibly define

extreme episodes in space-time data based on different ways

of aggregating marginal return periods over space and time.

Recall that return levels are quantiles at a given probability

level q 2 ð0; 1Þ and correspond to an event magnitude that is

exceeded with probability 1� q. Then, 1=ð1� qÞ is the

associated return period.

The block-maxima and peaks-over-threshold (POT)

methods are two widely known strategies in univariate EVT

to identify extreme events in a data set. While the block-

maxima method is based on the partition of the observation

period into equally-sized blocks (for instance months or

years) to extract the maximum observation in each of these

subperiods (Ferreira and de Haan 2015), the POT method

consists in the study of exceedances above a given high

threshold (Pickands III 1975; Embrechts et al. 1997; Beir-

lant et al. 2004). Max-stable processes, introduced by

de Haan (1984), are the natural infinite-dimensional gener-

alization of the univariate generalized extreme value (GEV)

distribution, which constitutes the only limiting distribution

of block maxima when block sizes increase to infinity. Fer-

reira and de Haan (2014) and Dombry and Ribatet (2015)

showed that generalized Pareto processes are the only pos-

sible asymptotic limits for threshold exceedances of

stochastic processes. Both approaches are closely linked

through theoretical tail stability properties. In practice, the

application of block-maxima or POT methods may yield

very different approaches and results, as illustrated by Wi

et al. (2016). Using stochastic process models defined over

continuous space allow us to capture fine-scale behavior of

extreme events, and it bypasses the implementation of ad-

hoc partitioning methods of space prior to applying uni-

variate or multivariate extreme-value models in alternative

approaches; see Mornet et al. (2017) and Carreau et al.

(2017) for examples of space-partitioning.

Davison and Gholamrezaee (2012) remark that max-

stable models with appropriately chosen dependence speci-

fication enable successful spatial modeling of extremes.

Indeed, max-stable processes have been widely applied

(Davison and Gholamrezaee 2012; de Fondeville and Dav-

ison 2018; Tyralis and Langousis 2019; Shin et al. 2019, and

references therein), and several approaches to stochastic

simulation of spatial max-stable fields have been proposed

(Dombry et al. 2013, 2016; Oesting and Stein 2018; Oesting

et al. 2018a, b). Since max-stable processes are linked to the

block-maxima approach, their realizations often aggregate

information of several of the underlying original events,

which may limit the physical interpretation of the simulated

processes. Consequently, modeling based on max-

stable processes fitted to block maxima data, and the

resulting simulations, seem appropriate for studying long-

term events. On the other hand, generalized Pareto processes

represent the original events that satisfy a threshold excee-

dance condition. For specific choices of marginal distribu-

tions, they can be represented constructively by multiplying

a random scaling variable with a so-called spectral process,

the latter characterizing the spatial variation in the extreme

events (Ferreira and de Haan 2014; Dombry and Ribatet

2015; Thibaud and Opitz 2015; Opitz et al. 2020).

In current practice, one usually first fits a parametric

model for the spectral processes, and the estimated values

of dependence parameters are then plugged in to define the

model used for simulation. de Fondeville and Davison

(2018) propose high-dimensional parametric POT infer-

ence for data with margins normalized in a first step; they

develop estimation based on proper scoring rules instead of

likelihood expressions, since the normalizing constants in

the latter become unwieldy in moderately high dimension

(say, more than 50 spatial locations). They illustrate the

potential and flexibility of their approach by modelling

extreme rainfall with different purely spatial risk func-

tionals (also called cost functionals in the following); a

spatio-temporal variant of the risk functional is used by the

same authors in de Fondeville and Davison (2020).

In contrast, we here develop an algorithm for extracting

observed spectral processes from data, and we then com-

bine them with newly sampled scaling variables to generate

new realizations of the extreme events. Since extreme

events are frequently spatio-temporal in nature (i.e., they

span over several time steps, often with stochastic temporal

dependence), their spatial extension and duration have to

be accounted for properly. In recent work, Chailan et al.

(2017) build on the semi-parametric approach of Caires

et al. (2011) and the simulation technique of Ferreira and

de Haan (2014) and propose a semi-parametric method

with low computational cost to simulate extreme bivariate

spatio-temporal fields of wave heights in the Gulf of Lions

along the French Mediterranean coast. The notion of

‘‘simulation’’ that we adopt here refers to resampling of

observed events, i.e., we ‘‘recycle’’ patterns found in the

observed data. Chailan et al. (2017) use this idea to assess

event-scale coastal hazards by conducting a risk analysis

for some simulated storms from a reanalysis data set.

While their approach provides an appropriate simulation

technique, several aspects call for improvement.
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The method developed in this paper generalizes the

approach of Chailan et al. (2017) to overcome some of its

drawbacks. It uses probabilistic representations of extreme

event episodes, similar to de Fondeville and Davison

(2018), and related to the framework of functional

extremes as proposed by de Fondeville and Davison

(2020). With respect to Chailan et al. (2017), we provide

three major novelties. First, our procedure allows for an

infinite number of stochastic simulations, instead of lifting

to deterministically specified return levels. Second, we

embed our semi-parametric resampling scheme in the

framework of generalized Pareto processes. Third, a flex-

ible general procedure is presented to identify extreme

events and quantify their magnitude by accounting for

space-time aggregation through homogeneous cost func-

tionals that encapsulate operations such as averaging or

taking maxima. Our space-time aggregation provides a

generalization of spatial cost functionals used in the

application of de Fondeville and Davison (2018), but here

we resort to a nonparametric dependence specification, thus

bypassing the issue of model mis-specification. With

respect to multivariate extreme value analysis (i.e., when

the observation domain consists of a finite and small

number locations), our approach is closely related to

empirical spectral measures, which have become a standard

tool for estimating extremal dependence (e.g., Beirlant

et al. 2004; Opitz et al. 2015).

The remainder of this paper is structured as follows.

Section 2 recalls the theory for generalized Pareto pro-

cesses, and we specifically highlight the space-time setting

where the temporal dimension—whose role is fundamen-

tally different from that of geographic space—must be

made explicit. Techniques to practically implement and

validate the spatio-temporal generalized Pareto framework

are proposed in Sect. 3. Our algorithm to generate extreme

space-time scenarios is developed in Sect. 4. We illustrate

our approach on hourly rainfall reanalysis data available on

a 1 km2 grid in Southern France over a 10-year period from

1997 to 2007 in Sect. 5. In this case study, we perform a

comparative analysis based on two commonly used risk

measures using simulated extreme scenarios. Conclusions

and and outlook to future research are given in Sect. 6.

2 Theory of space-time generalized Pareto
processes

We write S for a compact subset of Rd to denote the area of

interest and T for a compact subset of Rþ to denote the

time dimension, and we denote by CðS � T Þ the space of

continuous functions on S � T , equipped with the supre-

mum norm. The restriction of CðS � T Þ to non-negative

functions is written CþðS � T Þ. Similarly, we define the

space of non-negative continuous functions in S as CþðSÞ.
In multivariate EVT, a generalized Pareto limit was

introduced in Rootzén and Tajvidi (2006) by conditioning

on an exceedance event in at least one component. The

aforementioned idea was extended to infinite-dimensional

spaces by the definition of generalized Pareto process in

Ferreira and de Haan (2014) where the condition is based

on exceedances of the supremum over the compact study

domain. To gain flexibility in the definition of the condi-

tioning extreme events, Dombry and Ribatet (2015) pro-

vided the notion of ‘-Pareto processes by considering more

general exceedances defined in terms of a homogeneous

cost functional denoted ‘. Our focus here is on the spatial

and temporal dimensions for the extent of extreme events.

With the aim of modeling phenomena that exceed a certain

extreme threshold, we start by defining and characterizing

space-time generalized ‘-Pareto processes. The following

constructive definition and theoretical results adapt nota-

tions and theory of Dombry and Ribatet (2015) to the

specific context of spatio-temporal modeling, where we

highlight the role of the time dimension, which usually

plays a different role than space.

2.1 Construction of space-time generalized
Pareto processes

We define a risk functional (also called cost functional)

‘ : CþðS � T Þ ! ½0;þ1Þ as a continuous nonnegative

function that is homogeneous, i.e. ‘ðtf Þ ¼ t‘ðf Þ for t� 0.

Examples of such ‘ are the functions of maximum, mini-

mum, average, or the value at a specific point

ðs0; t0Þ 2 S � T .

Definition 2.1 (Standard space-time ‘-Pareto process) Let

W� ¼ fW�ðs; tÞgs2S;t2T be a stochastic process in

CþðS � T Þ. We call W� a standard space-time ‘-Pareto

process if it can be represented as

W�ðs; tÞ¼d RYðs; tÞ ð1Þ

where

1. Y is a stochastic process in CþðS � T Þ satisfying

‘ðYÞ ¼ 1;

2. R has Pareto distribution with scale 1 and shape cR, i.e.,
PðR[ rÞ ¼ r�cR , r[ 1;

3. Y and R are stochastically independent.

The above definition is equivalent to the definition

through the POT stability property: for any u� 1, the dis-

tribution of the renormalized threshold-exceeding process

fu�1W�j‘ðW�Þ � ug is equal to the distribution of W�; see
Theorem 2 of Dombry and Ribatet (2015). By
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construction, we get Y¼d W�=‘ðW�Þ and R¼d ‘ðW�Þ. A gen-

eralized version of such Pareto processes is given in Def-

inition 2.2 by allowing for flexibility in the marginal

distributions according to the location-scale-shape

parametrization commonly used in univariate EVT.

Definition 2.2 (Generalized space-time ‘-Pareto process)

Given an ‘-Pareto process W�ðs; tÞ constructed according

to Definition 2.1 and continuous real functions rðs; tÞ[ 0,

lðs; tÞ and cðs; tÞ in CðS � T Þ, a generalized space-time ‘-

Pareto process is any process constructed as

Wðs; tÞ¼d lðs; tÞ þ rðs; tÞfW�ðs; tÞcðs;tÞ � 1g=cðs; tÞ; cðs; tÞ 6¼ 0;

lðs; tÞ þ rðs; tÞ logW�ðs; tÞ; cðs; tÞ ¼ 0:

(

ð2Þ

2.2 Asymptotic results for space-time
generalized Pareto processes

We shortly recall the two main asymptotic results for

characterizing extremes of stochastic processes : max-

stable processes and Pareto processes. We refer the reader

to the literature for technical details (Lin and de Haan

2001; de Haan and Ferreira 2006; Ferreira and de Haan

2014; Thibaud and Opitz 2015; Dombry and Ribatet 2015).

We use the symbol ‘‘)’’ to represent variants of weak

convergence of random elements from the univariate,

multivariate or functional domain.

Consider independent copies X1; . . .;Xn of a stochastic

space-time process X ¼ fXðs; tÞgs2S;t2T with continuous

trajectories. We say that the process X is in the functional

maximum domain of attraction of a max-stable process

Z ¼ fZðs; tÞgs2S;t2T with continuous trajectories if there

exist continuous functions an [ 0 and bn such that

max
1� i� n

Xiðs; tÞ � bnðs; tÞ
anðs; tÞ

� �
s2S;t2T ) Zðs;tÞf gs2S;t2T :

ð3Þ

Further details about space-time max-stable processes can

be found in Davis et al. (2013a, b).

The convergence in (3) can be decomposed into the

convergence of marginal distributions and the convergence

of the process on a normalized marginal scale (i.e., the

convergence of the dependence structure), such that the

limiting marginal and dependence behavior can be studied

separately; see de Haan and Ferreira (2006, Section 9.2). A

standardised process X� ¼ fX�ðs; tÞg can be defined by

X�ðs; tÞ ¼ H�1ðFðs;tÞðXðs; tÞÞÞ, s 2 S, t 2 T , where H�1

denotes the inverse function of the standard Pareto distri-

bution function H, and Fðs;tÞ denotes the distribution of

X(s, t). If X has continuous marginal distributions Fðs;tÞ,

then X� has marginal standard Pareto distributions. For

an � n; bn � 0, the max-stable limit for X� in (3) is a

standard max-stable process Z� ¼ fZ�ðs; tÞgs2S;t2T with

unit Fréchet marginal distributions; see de Haan and Fer-

reira (2006, Definition 9.2.4).

If X� is in the maximum domain of attraction of a max-

stable process Z� and the cost functional ‘ is continuous at

0, we get the convergence of ‘-exceedances on the standard

scale:

u�1X�ðs; tÞj‘ðX�ðs; tÞÞ[ u
� �

) W�ðs; tÞf g; u!1;

ð4Þ

where W�ðs; tÞ is a standard space-time ‘-Pareto process as

in Definition 2.1 (Dombry and Ribatet 2015, Theorem 3).

Conversely, if the convergence in (4) holds for ‘ chosen as

the maximum norm, then convergence in (3) of the max-

stable process X� to Z� follows. An example of Pareto

processes with log-Gaussian profile process is given in

‘‘Appendix 1’’.

3 Practice of space-time generalized Pareto
processes

In practice, we use the asymptotic theory exposed in

Sect. 2 for conducting statistical analyses on extreme

events based on finite-sample data, which poses a number

of practical challenges. In this section, we propose solu-

tions for three issues: the standardisation of marginal dis-

tributions (Sect. 3.1), the definition of extreme space-time

episodes (Sect. 3.2), the analysis and verification of

asymptotic stability properties (so-called threshold-stabil-

ity, see Sect. 3.3).

3.1 Marginal transformations

We first discuss suitable marginal transformations of X

such that X� satisfies convergence with respect to ‘-ex-

ceedances in (4). In theory, values of X�ðs; tÞ close to 0 are

pushed to 0 when u!1 in (4), but in practice the use of a

high but finite threshold u leads to non-zero values in

u�1X�ðs; tÞ. Therefore, a certain ambiguity persists in

practice to define the standardisation for relatively small,

non extreme values of X(s, t). In particular, if the minimum

value of the data process X arises with positive and non

negligible probability, such as the value 0 for the absence

of precipitation in our application study, then this mini-

mum value should be mapped to 0 in the standardised

process X�. Here, we develop the general idea of such

transformations and a more specific transformation for

precipitation data is proposed in Sect. 5. We choose a

distribution function G : R! ½0; 1	 whose survival func-

tion �G satisfies: x �GðxÞ ! 1; x!1, and �Gð0Þ ¼ 1; we
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write G for the (generalized) inverse function of G. We

then define the transformation T ¼ Tðs;tÞ : R! ½0;1Þ
towards the standardised process X� as follows:

X�ðs; tÞ ¼ TðXðs; tÞÞ ¼ G ðFðs;tÞðXðs; tÞÞÞ ð5Þ

where Fðs;tÞ : R! ½0; 1	 denotes the distribution of X(s, t).

The (generalized) inverse transformation of T can be

defined as T ðf Þ ¼ F ðs;tÞðGðf ÞÞ for f 2 CþðS � T Þ, with
F ðs;tÞ the (generalized) inverse function of Fðs;tÞ.

Regarding marginal modeling, it is natural to use a tail

representation motivated by univariate EVT, whose

parametrization corresponds directly to the generalized

Pareto process in Definition 2.2. For a fixed high threshold

function u(s, t), we assume that

PðXðs; tÞ[ xÞ ¼ 1� Fðs;tÞðxÞ

¼ 1þ cðs; tÞ x� lðs; tÞ
rðs; tÞ

� ��1=cðs;tÞ
þ

ð6Þ

for x[ uðs; tÞ, with parameter functions for position

lðs; tÞ\uðs; tÞ, for scale rðs; tÞ[ 0 and for shape cðs; tÞ,
such that the right-hand side of (6) is less than 1 (Thibaud

and Opitz 2015). For data values X(s, t) below u(s, t), we

may use appropriately chosen empirical distribution func-

tions or any other useful model, where the probability mass

below u(s, t) should amount to Fðs;tÞðuðs; tÞÞ with Fðs;tÞ
defined in (6). The selection of a good threshold u(s, t) is a

recurrent issue in extreme-value analysis; for instance,

recently, Silva Lomba and Fraga Alves (2020) introduce

an automated threshold selection procedure based on the

method of L-moments.

From a practical point of view, the transformation that

we introduce in (5) does not have a direct physical meaning

in terms of a volume of water in the case of precipitation,

but it can be interpreted as follows. Due to standardisation

towards (approximate) standard Pareto tails, we have

PðTðXðs; tÞÞ[ TðxÞÞ
 1
TðxÞ for large x. Therefore, given an

independent copy X0 of X, we obtain the conditional

probability

PðTðX0ðs; tÞÞ[ TðXðs; tÞÞ j Xðs; tÞ ¼ xðs; tÞÞ

¼ PðTðX0ðs; tÞÞ[ Tðxðs; tÞÞÞ
 1

Tðxðs; tÞÞ :

This means that the transformed value T(x(s, t)) can be

interpreted as the return period of observations larger or

equal to x(s, t). Therefore, at high quantiles (where we have

the standard Pareto tails) we can interpret X� as the space-

time process of (marginal) return periods.

3.2 Defining extreme episodes

For the purpose of simulating realistic spatio-temporal

extreme scenarios, we have to define what ‘‘extreme’’

means. With environmental data, we often have only a

single observation of the space-time process X, and very

high values typically tend to cluster temporally within

relatively short sub-periods. We consider such sub-periods

as extreme space-time events. If it is realistic to assume

that temporal dependence of extremes becomes negligible

for relatively large time lags, theoretical results based on

independent processes as in Sect. 2 can be used. In the

space-time generalized Pareto process framework, the

value of ‘ðXÞ quantifies the magnitude of events. In prac-

tice, we apply ‘ to a large collection of candidate episodes

to extract the most extreme ones. Our extraction algorithm

is designed to avoid temporal intersection of the selected

extreme episodes.

There is no unique definition of an extreme event, i.e. of

the cost functional ‘, rather it depends on the nature of the

considered phenomenon, on the data set, on the objective

of the study, and also on the structure of the mod-

el (McPhillips et al. 2018). For instance, Carreau and

Bouvier (2016) define rainfall susceptible of causing flash

floods in small Mediterranean catchments as rainfall with a

spatial average larger than 50 mm. Expert knowledge may

suggest how to measure the extreme nature of an event,

where the question of how to combine criteria related to

duration, spatial extent and magnitude is recurrent. For

instance, French et al. (2018) develop new visualizations

of extreme heat waves by composing a temporal and spatial

cost functional. Chailan et al. (2017) extract extreme wave

heights based on spatio-temporal maxima in sliding time

windows.

In the following, we use the idea of sliding space-time

windows and specify the support of the cost functional ‘

introduced in Sect. 2.1 as a neighborhood Nðs; tÞ at loca-
tion s 2 S and at time t 2 T . In practice, the window size

defines the maximal time duration and spatial extent of

extreme events. The space index s may be missing if we

consider the full study area for extracting extreme events.

This neighborhood could be defined through an event

duration d in time, and the spatial support could be the full

study area or a sub-region such as a catchment or a certain

distance buffer around a specific site s0. To indicate the

local support of the cost functional defined as a neighbor-

hood around (s, t), we use the notation

‘s;tðX�Þ ¼ ‘ðfX�ðs0; t0Þ; ðs0; t0Þ 2 N ðs; tÞgÞ.
We propose to define Nðs; tÞ as the product of a spatial

neighborhood NðsÞ (for instance, fs0 2 S j ks�
s0k� h kmg with h 2 Rþ) and a temporal neighborhood

NðtÞ (for instance, ft0 2 T j jt � t0j � k hoursg with k 2 N
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), Nðs; tÞ ¼ N ðsÞ � N ðtÞ. The above choice of the spatial

extent and temporal duration of the neighborhood allows

taking into account the spatial and temporal dependence of

extreme episodes in the studied dataset; the resulting space-

time process ‘s;tðX�Þ can be seen as a local smoothing of

X�. For instance, in the application in Sect. 5 we choose

h ¼ 15 km and k ¼ 12 hours. Useful cost functionals ‘ for

space-time episodes are obtained by composing a spatial

functional ‘S with a temporal functional ‘T , the latter

applied to the values of ‘S observed over a number of

consecutive time steps :

‘s;tðX�Þ ¼ ‘Tð‘Ss;t�ðd�1ÞðX�Þ; . . .; ‘Ss;tðX�ÞÞ; ð7Þ

with ‘Ss;tðX�Þ ¼ ‘SðfX�ðs0; tÞ j s0 2 N ðsÞgÞ and d the dura-

tion of the episode. Moreover, based on ‘Ss;tðX�Þ we can

define cost functionals that combine the values obtained for

all spatial neighborhoods NðsÞ by taking their maximum

value (or again, any other spatial aggregation value). In this

case, we define:

‘tðX�Þ ¼ ‘T max
s2S

‘Ss;t�ðd�1ÞðX�Þ; . . .;max
s2S

‘Ss;tðX�Þ
� 	

: ð8Þ

If X� satisfies the functional domain of attraction condition

(3), then

Pð‘ðX�Þ[ uÞ
 h‘=u; u!1; ð9Þ

where h‘ is the ‘-extremal coefficient (for details, see

Engelke et al. 2019). When ‘s;t corresponds to the maxi-

mum function over Nðs; tÞ (i.e., ‘T ¼ max and ‘Ss;t ¼ max),

the ‘-extremal coefficient h‘s;t defines the classical extremal

coefficient of the domain Nðs; tÞ (see Example 4 of

Engelke et al. 2019).

Using (9), we can calculate approximate return levels

for extreme episodes characterized as ‘-exceedances above

a large threshold u. The simplest case arises for h‘ ¼ 1, i.e.,

when h‘ is known beforehand and we do not have to

estimate it from data. For instance, if ðs0; t0Þ 2 S � T is a

fixed space-time point, we can define the cost functional

value ‘ðX�Þ as X�ðs0; t0Þ, and h‘ ¼ 1. Moreover, h‘ ¼ 1 if ‘

is the average, i.e. ‘s;tðxÞ ¼ 1
jN ðs;tÞj

R
Nðs;tÞ xðs0; t0Þ dðs0; t0Þ;

see Ferreira et al. (2012, Proposition 2.2). When h‘ 6¼ 1, an

estimator of h‘ can be plugged into (9), such as an

empirical estimate or alternative estimators (Engelke et al.

2019). Finally, since Pð‘ððX0Þ�Þ[ ‘ðX�Þ j X� ¼
x�Þ
 h‘=‘ðx�Þ at high quantiles of ‘ðX�Þ for an independent
copy X0 of X, we can interpret ‘ðx�Þ=h‘ as the return period

of an extreme event x�. In addition, by taking into account

(5), the cost functional ‘ (approximately) aggregates mar-

ginal return periods X�ðs; tÞ into return periods ‘ðX�Þ for
space-time episodes.

3.3 Techniques to analyze asymptotic
dependence properties

The functional domain of attraction condition in (3) is the

theoretical basis for using generalized Pareto processes. It

requires that a relatively strong type of extremal depen-

dence, known as asymptotic dependence, prevails in the

data-generating process X, at least for small distances in

space and time. With asymptotic dependence between two

points (s, t) and ðs0; t0Þ ¼ ðsþ Ds; t þ DtÞ, we observe a

strictly positive limit of the probability

P Fðs0;t0ÞðXðs0; t0ÞÞ[ u j Fðs;tÞðXðs; tÞÞ[ u

 �

as u! 1. With

asymptotic dependence, so-called threshold stability holds

when moving towards higher quantiles, such that the typ-

ical spatial and temporal extent of clusters of extreme

values does not depend on event magnitude. In practice, we

should verify that data exhibit such asymptotic depen-

dence, and we need tools to assess the spatial and temporal

range of asymptotic dependence, e.g., for choosing

appropriate cost functionals ‘. We describe two approa-

ches: the study of empirical bivariate tail correlation

coefficients corresponding to the above conditional prob-

abilities [also known as the v-measure, see Coles et al.

(1999)], and the assessment of the independence of

observed scale variable ‘ðX�Þ and profile process X�=‘ðX�Þ
for when the scale variable exceeds a high threshold.

3.3.1 Spatial and temporal tail correlation coefficients

Let ðX1;X2Þ be a bivariate random vector. Following Coles

et al. (1999), the extremal dependence of ðX1;X2Þ can be

analysed through the behavior of the conditional proba-

bility PðX1 [F 1 ðqÞjX2 [F 2 ðqÞÞ as q tends to 1, where

F i , i ¼ 1; 2, denotes the generalized inverse function of

Xi. The distribution of the random vector ðX1;X2Þ is said to

be asymptotically dependent if a positive limit value v
arises for the conditional probability, i.e.,

vðqÞ ¼ PðX1 [F 1 ðqÞ;X2 [F 2 ðqÞÞ
PðX2 [F 2 ðqÞÞ

! v[ 0 ðq! 1�Þ;

ð10Þ

where v is also known as the tail correlation coefficient.

The case v ¼ 0 represents asymptotic independence.

Therefore, we can use the v-measure to obtain a sum-

mary of extremal dependence with respect to distance in

space and lag in time. For a given finite level q\1, we

define vspaðh; qÞ to measure extremal dependence between

sites separated by spatial distance h at a given time. Sim-

ilarly, we define vtimðk; qÞ as the v-index measuring

extremal dependence for a time lag k at a given site. We

calculate vspaðh; qÞ empirically based on observation pairs

with structure ðXðs; tiÞ;Xðsþ Ds; tiÞÞ where Ds ¼ h, and
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we empirically calculate vtimðk; qÞ based on observation

pairs of spatial maxima,

ðmaxs2S Xðs; tiÞ;maxs2S Xðs; ti þ kÞÞ. The estimators for

these two v-functions are obtained by plugging in empirical

survival functions and empirical quantiles in (10). From

now on, we refer to these two estimators as the empirical

vspaðhÞ and vtimðkÞ functions, respectively.

3.3.2 Independence of scale and profile

The POT stability manifests itself through the (approxi-

mate) independence between the profile process Y ¼
X�=‘ðX�Þ and the random scale R ¼ ‘ðX�Þ for ‘ðX�Þ[ u.

In practice, the threshold u should be high enough for this

property to hold approximately, such that the limit process

in (4) becomes a useful approximation to data. Due to the

very high dimension of the profile process in the space-

time setting, it is difficult to check this independence

directly based on observed scales and profiles. Instead, we

propose to check for the absence of strong trends in sum-

mary statistics of Y with respect to the event magnitude R,

which would indicate dependence between Y and R.

In our application, we will focus on checking the scale-

profile independence in space by considering the set of

extreme spatial episodes W�t satisfying ‘St ðW�t Þ[ u, and we

use two summary statistics calculated from the profile

processes Yt ¼ W�t =‘tðW�t Þ in CþðSÞ. First, we consider

fu0 ðYtÞ defined as the proportion of sites s where YtðsÞ� u0:
useful values of u0 are relatively small or large quantiles of

Yt, to check for trends in the magnitude of Yt with respect

to ‘tðW�t Þ. Second, we consider the empirical standard

deviation sdðY 0t Þ of Y 0t ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffi
YtðsÞ

p
: if there are trends with

respect to event magnitude, we usually find trends of

sdðY 0t Þ. The square root transformation ensures finite stan-

dard deviation values.

Another related check consists in ensuring that R/u has

standard Pareto distribution; otherwise, the structure of the

Pareto process is compromised. Simple checks consist in

drawing QQ-plots and associated confidence bounds of

observed versus theoretical quantiles, e.g., by adopting a

uniform scale by transforming to 1� u=R. Theoretical

developments around formal statistical tests to check the

Pareto-distribution of the scale variables have been con-

ducted by Falk and Michel (2009) for multivariate Pareto

distributions (i.e., for the finite-dimensional case), and we

here adopt their idea for stochastic processes through the

analysis of QQ-plots.

Several empirical studies on climatic data show that

extremal dependence may weaken when the event magni-

tude increases (Opitz et al. 2015; Huser and Wadsworth

2018; Le et al. 2018; Tawn et al. 2018). Then, asymptotic

independence may ultimately arise, or the dependence

strength may stabilize at very high but unobserved mag-

nitudes. We cannot check this stability behavior with

absolute certainty in finite samples. If the extremal

dependence strength continues to weaken in data above the

selected threshold u, we acknowledge that the generalized

Pareto process framework leads to rather conservative

probability estimates for observing concomitant high val-

ues. A tendency towards weakening extremal dependence

would imply that, at higher quantile levels, extreme epi-

sodes tend to have smaller extent in space, and tend to

stretch less far in time, i.e., have smaller temporal extent.

4 Methodology for uplifting observed
extreme episodes

We now describe the general procedure for the extraction

of extreme space-time episodes (Sect. 4.1) and the algo-

rithm to resample new space-time scenarios (Sect. 4.2). A

probabilistic interpretation of this resampling scheme is

given in Sect. 4.3. Throughout and without loss of gener-

ality, we here use the same notation for the single obser-

vation of the space-time process X(s, t) and the stochastic

process itself.

4.1 Selection of extreme episodes

Algorithm 1 describes the extraction of extreme episodes

from standardised data X�. To start, we define the space-

time neighborhoods Nðs; tÞ whose intensities are assessed

by applying the cost functional ‘. In particular, it is pos-

sible to restrict extraction to subsets S0 of S and T 0 of T ;
for instance, sites s whose neighborhoodNðs; tÞ is not fully
contained in the study domain should be removed in S0. If
the neighborhood is the full study region, we may drop the

index s and simply writeNðtÞ. We choose a threshold u for

the cost functional for which the asymptotic stability

properties underpinning our approach are (approximately)

satisfied. There must be at least one exceedance of the cost

functional above the threshold in the data set. The first step

of the algorithm is to compute the values of ‘ for each

neighborhood Nðs; tÞ. We select as the first extreme epi-

sode the neighborhood Nðs1; t1Þ where ‘s;t reaches its

maximum value ‘1. We aim at extracting a collection of

extreme episodes that are at most weakly dependent;

therefore, the algorithm needs a mechanism to ‘‘decluster’’

extreme episodes. The second extracted extreme episode

corresponds to the maximum value of ‘s;tðX�Þ arising in the

data set X�ðs; tÞ with t in the set of reduced time steps after

removal of time steps that intersect with Nðs1; t1Þ or, more

generally, with a larger temporal buffer zone N bufferðt1Þ
around t1 involving a buffer parameter b� 0 to remove
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more time steps. We then iterate this procedure of episode

extraction and data set reduction. The stopping criterion for

the extraction of extreme episodes is two-fold: either a

fixed target number m0 of extreme episodes is reached, or

the extreme condition ‘s;tðX�Þ[ u for a fixed high

threshold u cannot be fulfilled any longer in the reduced

data set.

If the maximum of ‘s;tðX�Þ is not unique and is realized

at several coordinates (s, t), we must define a rule to extract

a single (s, t) that identifies the corresponding extreme

space-time episode. In particular, if we find several con-

secutive time steps t where ‘tðX�Þ in Eq. (8) is equal to the

maximum, we fix the anchor time step t of the extreme

episode as follows. In this situation, typically d consecutive

values are equal, and we then set t to the closest value

below or equal to the median of these time steps. This rule

will tend to center the extreme space-time episode on the

strongest values in X�. That is, if the maximum arises at

time steps t0; . . .; t0 þ d� 1, we fix t ¼ t0 þ bd2c as the

anchor time step of the extreme space-time episode.

4.2 Semi-parametric simulation method

The simulation procedure detailed below is an extension of

the simulation method of Ferreira and de Haan (2014) to

the spatio-temporal setting. To sample new extreme space-

time scenarios, we proceed as follows:

1. Standardisation: Estimate marginal tail parameter

functions cðs; tÞ, rðs; tÞ and lðs; tÞ in (6), and denote

by X� ¼ fTðXðs; tÞÞgs2S;t2T the resulting standardised

process (5).

2. Selection of extreme episodes: Fix the maximum

number of extreme episodes m0. Use Algorithm 1 to
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extract the collection of m�m0 extreme episodes X�½i	,

i ¼ 1; . . .;m.
3. Lifting: Sample Ri, i ¼ 1; . . .;m according to a Pareto

distribution with shape 1 and scale a[ 0, i.e.

PðRi [ xÞ ¼ a=x, x 2 ½a;1Þ, and generate lifted

extreme episodes as

Viðs; tÞ ¼ Ri

X�½i	ðs; tÞ
‘i

¼ RiYiðs; tÞ; ðs; tÞ 2 N ðsi; tiÞ:

ð11Þ

4. Back-transformation to original scale: Lifted

extreme episodes are transformed back to the original

marginal scale by Wiðs; tÞ ¼ T ðViðs; tÞÞ,
ðs; tÞ 2 N ðsi; tiÞ.

When fixing the value m0 of the number of extreme epi-

sodes to extract, we aim for a representative sample of

spatio-temporal extremal patterns in the data, but have to

keep in mind that for a large value of m0 the POT stability

property may not be satisfied.

4.3 Interpretation of the model and the lifting
procedure

Our methodology draws justification from the framework

of generalized space-time Pareto processes as given in

Definition 2.2. For each extreme episode, the above pro-

cedure allows us to sample new realizations of generalized

space-time Pareto processes, i.e., there is an appropriate

probabilistic interpretation of extreme events resampled

through our lifting procedure.

We outline the mathematical derivation of this property.

Suppose that we have fixed a threshold u[ 0 corre-

sponding to a relatively high quantile of the cost functional

‘. Our modeling assumption in (4) can be informallys

written as

W�ðs; tÞ�d X�ðs; tÞ
u

conditional to ‘ðX�ðs; tÞÞ� u;

where W� represents a standard ‘-Pareto process. There-

fore, the extreme episodes on the standardized marginal

scale,

X�ðs; tÞ conditional to ‘ðX�ðs; tÞÞ� u;

have distribution according to a generalized Pareto process

with lðs; tÞ ¼ u, rðs; tÞ ¼ u and cðs; tÞ ¼ 1, using notations

from Definition 2.2.

Next, we recall that the structure of the marginal model

with parameters for shape, scale and location in (6) is

equivalent to

Xðs; tÞ ¼ rmargðs; tÞ
ðX�ðs; tÞÞcmargðs;tÞ � 1

cmargðs; tÞ
þ lmargðs; tÞ;

given that we consider the (univariate) tail of X(s, t).

Combining the two points above leads to

Xðs; tÞ � rmargðs; tÞucmargðs;tÞ ðW
�ðs; tÞÞcmargðs;tÞ � 1

cmargðs; tÞ

þ lmargðs; tÞ þ
rmargðs; tÞðucmargðs;tÞ � 1Þ

cmargðs; tÞ

 !
;

conditional to ‘ðX�ðs; tÞÞ� u, where the rmarg; lmarg; cmarg-

functions are those from the univariate distributions.

Therefore, the extracted and lifted extreme episodes pos-

sess (approximately) the distribution of a generalized Par-

eto process as given in Definition 2.2, with parameters

cðs; tÞ ¼ cmargðs; tÞ; rs;t ¼ ucmargðs;tÞrmargðs; tÞ; and

lðs; tÞ ¼ lmargðs; tÞ þ
rmargðs; tÞðucmargðs;tÞ � 1Þ

cmargðs; tÞ
:

We do not use the marginal location-scale-shape

parametrization below the marginal thresholds, which

means that the structure of our processes differs from the

generalized Pareto process below the threshold in the

margins, i.e., the generalized Pareto approximation may be

cruder below the threshold. However, asymptotically (for

increasingly high thresholds), we can expect that the

transformation of values far below the threshold has little

influence.

The following property holds for the return periods of

resampled extreme episodes. Using the extracted observed

episodes, the lifting procedure in Sect. 4.2 samples new

realizations Vi of a space-time Pareto process with support

Nðsi; tiÞ for each extreme episode i. Let X0 be an inde-

pendent copy of X, and drop the indices si; ti of ‘ in the

following equations. Since Pð‘ððX0Þ�Þ[ xÞ
 h‘=x for

large x, we can write

Pð‘ððX0Þ�Þ[ ‘ðRX�=‘ðX�ÞÞjR ¼ r;X� ¼ x�Þ
¼ Pð‘ððX0Þ�Þ[ ‘ðrx�=‘ðx�ÞÞjR ¼ r;X� ¼ x�Þ
¼ Pð‘ððX0Þ�Þ[ rÞ
 h‘=r:

Since we resample scale variables Ri that are larger than a

lower bound a, we obtain that the minimum return period is

a=h‘ for resampled extreme episodes V, and larger a leads

to longer return periods. By construction, uplifted scenarios

have the same spatial patterns of variability as observed

scenarios, but they correspond to longer return periods if a
is chosen larger than ‘ðx�Þ.

To go further, it is possible to theoretically show (see

‘‘Appendix 2’’ for details) that, after marginal standardis-

ation, the resampled and backtransformed episodes Wiðs; tÞ
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have approximately the same probability distribution as the

observed extreme episodes in X(s, t). Our procedure

therefore generates a threshold-stable stochastic process at

a higher level than the observed one when a[ ‘i.

5 Application to precipitation
in Mediterranean France

We use our resampling algorithm to produce large numbers

of realistic spatio-temporal extreme precipitation scenarios

in a region in Mediterranean France where flash floods are

frequent. Furthermore, we show how to calculate two risk

measures for the most extreme observed space-time epi-

sodes before and after lifting them to different return

periods.

5.1 Description of the data set

Our semi-parametric approach does not provide a mecha-

nism to spatially interpolate observations. Therefore, pre-

cipitation measurements should be available over a

sufficiently dense network of sites. We use hourly precip-

itation reanalysis data over a 1 km2 grid, constructed by

merging radar signals and observed hourly precipitation

totals (Tabary et al. 2012). The grid has 10, 914 cells

covering a 133.2 km � 104.3 km area in Mediterranean

France, see Fig. 1, with 87, 642 hourly time steps covering

the 10-year period from 1997 to 2007. The unit of mea-

surement is mm/h. This data set was provided by Météo-

France (http://www.meteofrance.com). The large dimen-

sion of the data set allows us to disregard restrictive

parametric assumptions in favour of a nonparametric

approach for the extremal dependence model.

Empirical return levels of rainfall intensities at the 98%

level (i.e., of strictly positive observations) and the maxi-

mum precipitation values observed over the complete study

period are reported for each grid cell in Fig. 1.

5.2 Standardisation of marginal distributions

The first step of our lifting procedure is the definition of a

marginal transformation T, appropriate for extreme hourly

precipitation data, to obtain the standardised process X� in
(5). We first discuss our choice of the target distribution G.

Due to the hourly temporal resolution, zero values occur

with very high frequency in the data. Therefore, we include

a discrete mass p0 at 0 to represent the absence of pre-

cipitation. Following Opitz (2016), we construct G to have

a mass p0� 0 at 0, a uniform density on ð0; x0Þ, and a

standard Pareto distribution for x[ x0 where x0 [ 1. The

junction point x0 is chosen to ensure the continuity of the

density of G for x[ 0:

GðxÞ ¼

0; x\0;

p0; x ¼ 0;

p0 þ
ð1� p0Þ2

4
x; 0\x� 2=ð1� p0Þ;

1� 1=x; x[ 2=ð1� p0Þ:

8>>>>><
>>>>>:

ð12Þ

An illustration of G for p0 ¼ 0:7 is provided in Fig. 2.

By keeping the value 0 in the distribution G for dry cells

(i.e., for values 0 in the original data), we impose that the

lifting procedure does not modify dry cells since a value 0

will always remain at 0. This may not always be realistic,

but our focus is on extreme rainfall, such that very accurate

modeling of dry cells during extreme episodes goes beyond

the scope of this work. However, our approach ensures that

observed 0 values will not be lifted to positive precipitation

values; otherwise, one could generate unrealistically large

regions with positive precipitation in the lifting simula-

tions. Next, we choose the distribution function Fðs;tÞ of

X(s, t) as the empirical distribution function FðsÞ (i.e., at

each grid cell s) when Xðs; tÞ� uðs; tÞ, and according to (6)

when Xðs; tÞ[ uðs; tÞ. We use spatial models for the

marginal tail parameters, whose estimators l̂ðsÞ, r̂ðsÞ and
ĉðsÞ in FðsÞ are obtained by estimating the marginal dis-

tributions site by site using a threshold u(s) chosen as a

high empirical quantile for fixed s; here, we choose the

0.95-quantile of hourly rainfall intensities. Thanks to the

consistency of these estimators and the continuity of T, we

can apply the continuous mapping theorem such that the

transformation T̂ (with estimators plugged in) provides a

consistent estimate of T.

5.3 Choice of spatio-temporal cost functionals

We here consider two cost functionals. Our first choice ‘
ð1Þ
s;t

is the spatio-temporal median, i.e., the median of obser-

vations X�ðs; tÞ from the spatio-temporal neighborhood

Nðs; tÞ given as a space-time cylinder, calculated for all

(s, t) whose neighborhood is fully contained in the study

region. Regarding spatial neighborhood (i.e., the base of

the cylinder), we specify it through a 15 km disc centered

at s, where the choice of 15 km is further motivated in the

following subsection presenting empirical extremal

dependence properties; regarding temporal neighborhood

(i.e., the height of the cylinder), we set it to extend back-

ward from t, such that NðtÞ ¼ ft � ðd� 1Þ; . . .; tg with

duration d ¼ 12 h, again motivated by considerations

detailed in the following section. Our choice of a diameter

of 30 km for spatial discs can also be explained by

hydrological considerations. The dimension of catchments

in the study area is heterogeneous, but the 30 km-diameter

is close to the diameter of some important catchments in
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the study area, especially the catchment of the Lez river

flowing through Montpellier, the largest city in the study

area, which is often affected by urban flooding. With

respect to the temporal length of episodes, we follow the

twin aims of representing heavy rainfall in a relatively

short time period (e.g., convective precipitation episodes)

and moderate rainfall over a larger time period (e.g.,

cyclonic precipitation episodes). To this end, we here

consider 12 hours a good compromise for the temporal

window in both cases.

The second cost functional ‘
ð2Þ
s;t is chosen as the spatio-

temporal maximum and does not depend on spatial location

as the spatio-temporal median above; its value ‘
ð2Þ
t ðX�Þ

corresponds to the maximum over the whole study area at

time t. Using notation from Equation (7), we have

NðsÞ ¼ S, ‘Ss;t ¼ max and ‘T ¼ max.

To achieve declustering of extreme episodes in the time

domain, we set b ¼ 1 to separate extreme episodes by at

least 1 hour in Algorithm 1.

While the median in the first cost functional puts focus

on the central tendency of the sample of (local) values, its

behavior may be very different from the maximum in the

second cost functional, which does not take into account

the variation of values around the maximum. For the

median, the local specification makes sense, since other-

wise the value of the cost functional would be too strongly

dominated by mostly small or zero values arising far from

the high-intensity region of the precipitation episode.

For both choices, we would need an estimate of the

extremal coefficient h
‘
ðiÞ
s;t
, i ¼ 1; 2, to set or obtain return

periods of the lifted events. For this purpose, we propose to

use a maximum censored likelihood for estimating the

scale parameter h
‘
ðiÞ
s;t

of a Pareto distribution with fixed

shape 1, using observed magnitudes ‘
ðiÞ
s;t ðX�Þ, i ¼ 1; 2,

censored below a high threshold u.

5.4 Analysis of extremal dependence properties

Using techniques proposed in Sect. 3.3, we first illustrate

pairwise empirical tail correlation functions with respect to

spatial distance and temporal lags. We also check if

threshold stability is a valid assumption for the data set at

high quantiles.

Figure 3 shows the estimates of spatial (left panel) and

temporal (right panel) tail correlation functions, using

empirical quantiles at 0.98 and 0.99 probability level.

Pointwise block bootstrap confidence intervals at 95% are

constructed using variable size blocks with block length

following a geometric distribution with mean 300 hours

(Politis and Romano 1994; Davis et al. 2011). Lower

confidence bounds remain clearly separated away from 0

for spatial distances below 100 km and for time lags

shorter than 12 hours, hinting at substantial extremal

dependence at finite, observed quantile levels. There is a

certain sensitivity of the estimated curves with respect to

the probability used for fixing the threshold u to the cor-

responding empirical quantile, with a slight tendency

towards decreasing dependence strength at higher levels;

see Fig. 3.

We complement these findings by checking threshold

stability based on the independence of scales and profiles

for high event magnitudes, and based on the Pareto dis-

tribution of the cost functionals; see Sect. 3.3.2 for

methodological background.

Certain calculations for extreme episodes were quite

sensitive to the high proportion of 0 values (i.e., absence of

precipitation) in the data set, which amounts to around

92%. With p0 ¼ 0:92 in the marginal standard distribution

G, the standard Pareto tail holds only for values above

Fig. 1 Empirical return levels at 98% level (left panel) and maxima (right panel) of hourly precipitation intensities for each grid cell in our study

area from 1997 to 2007. Grey and black contour lines indicate altitude (400 and 800 m respectively)
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2=ð1� p0Þ ¼ 25, i.e., at very levels, which may be the

reason. Therefore, we add a preprocessing step where we

remove hourly time steps ti from the data set if the pre-

cipitation totals in a sliding 24 h-window centered at ti,

cumulated over all grid cells, are smaller than 550 mm,

corresponding to a spatially averaged precipitation total per

grid cell of 0.05 mm over 24 h. The resulting data subset

contains only around 23% of 0 values, and we work with

this subset for our lifting procedure. Moreover, by applying

this prepocessing step, we avoid to consider too heteroge-

neous weather patterns, i.e., we avoid to pool together very

dry periods and relatively wet periods.

For checking the scale-profile independence at high

levels, we first calculate ‘
ðiÞ
s;t , i ¼ 1; 2, for all

ðs; tÞ 2 S0 � T 0, and then use our selection algorithm 1 to

extract the declustered extreme space-time episodes based

on setting the maximum number of extracted episodes (m0)
to 1, and we set the threshold u of the cost functional

above which episodes are considered as extreme to the

99:5%-quantile of all ‘
ð1Þ
s;t -values.

Denote by Yi ¼ fYiðs; tÞg the extracted profile pro-

cesses, i ¼ 1; . . .;m. Figure 4 shows exploratory plots for

the local spatio-temporal median (first row) and the spatio-

temporal maximum (second row). In the leftmost and

second-to-left displays, the proportion of profile process

values Yiðs; tÞ below or equal to a threshold u0 � 0, denoted

by fu0 ðYiÞ, is plotted for u0 ¼ 0, and for u0 fixed to the

empirical 0.95-quantile of all episodes Yi taken together. In

particular, the value u0 ¼ 0 corresponds to the proportion of

dry pixels. The empirical standard deviation sdðY 0i Þ of the
square root Y 0i ðs; tÞ of profile process values Yiðs; tÞ is

depicted in the third displays (from the left) of Fig. 4. For

easier visual interpretation, the summary statistics are

plotted against the observed cost functionals on uniform

scale, i.e. 1� u=‘�i . Finally, we recall that a distribution of

transformed cost functionals 1� u=‘�i that deviates from

uniformity on [0, 1] may cast doubt on the threshold sta-

bility property. A QQ-plot of 1� u=‘�i is shown in the

fourth display of Fig. 4 with pointwise confidence bounds.

Judging from the shape of the local regression curves in

Fig. 4, we do not discern strong systematic trends in profile

summaries with respect to event magnitude, although some

slight trends are perceptible. The QQ-plots hint at slight

deviation from uniformity. Overall, there are only weak

signs of some nonstationary behavior, and we do not detect

strong signals for asymptotic independence. We conclude

that our lifting framework based on threshold-stability is

appropriate for the data, and for the lifting procedure we

work with the extreme episodes extracted for the current

analysis. If data were truly asymptotically independent, we

acknowledge that our resampling procedure would lead to

rather conservative estimates of aggregated extreme risks.

5.5 Comparison of cost functionals and risk
analysis

We first highlight differences in the ranking of the most

extreme episodes according to the two cost functionals, and

we provide some maps to contrast the original and the

standarized marginal scale. Ending times ti for the 6 most

extreme precipitation episodes are reported in Table 1.

There is no overlap between the extreme episodes

according to the two cost functionals, which underscores

their fundamentally different approach to measuring the

overall magnitude – either by considering only the stron-

gest value in the case of the spatio-temporal maximum, or

by using a statistical measure of central tendency of all the

observations recorded during the episode in the case of the

spatio-temporal median. We also see that the most extreme

precipitation scenarios tend to arise during the autumn

season.

Figures 5 and 6 show the original precipitation data

X(s, t) and a corresponding uplift W(s, t) for several time

steps with extreme episodes extracted using the spatio-

temporal median or the spatio-temporal maximum,

respectively. The new magnitude variable R in the lifting

step is respectively fixed to twice the maximum value of

observed magnitudes, such that we obtain a clear increase

of precipitation values.

Risk is a complex notion, in particular for space-time

resolved processes. The most commonly used risk measure

in hydrology corresponds to the univariate return level

(RL) at a probability level q 2 ½0; 1	, denoted as Qq.

However, the return level fails to give any information

about the thickness of the tail of the distribution above this

level. An alternative risk measure was proposed in actuarial

science, the so-called Conditional Tail Expectation (CTE,

Denuit et al. 2005). Information about the thickness of the

tail of the distribution is included in the CTE, defined for a

given level q 2 ½0; 1	 and for a random variable X by

CTEqðXÞ ¼ EðXjX[QqðXÞÞ.

Fig. 2 Distribution function G for p0 ¼ 0:7
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We perform a risk analysis that aims at exploring dif-

ferences in lifted extreme episodes that can be imputed to

the choice of cost functionals, and of the Pareto scale

parameter a used for sampling new scale variables Ri in the

lifting step; see Eq. 11. We here consider the 50 largest

declustered space-time episodes extracted for each of the

two cost functionals ‘
ð1Þ
s;t and ‘

ð2Þ
s;t . For each scenario, we

generate 500 lifted simulations, i.e., we sample 500 values

of the scale variable Ri and combine each one of them with

one of the extreme episodes selected at random. We con-

sider two choices for the Pareto scale parameter a. Our first
choice a1 is the 20th largest value of the respective cost

functional. Given the 10-year observation period of data,

this value approximately corresponds to a return level for 6

months, if we assume temporal stationarity. For the second

choice, we set a2 ¼ 10a1, i.e., we increase the return level

(and therefore the return period) by 10.

We compute RL and CTE with q ¼ 0:98 and q ¼ 0:99

for the values of each lifted episode Wi, where we first

aggregate values W(s, t) for each spatial grid cell by taking

pixel-wise temporal means over the 12 time steps. There-

fore, the return level measure reports the precipitation level

that is exceeded in 100ð1� qÞ% of all pixels (i.e., in 2% or

1% of the surface of the study region with q ¼ 0:98 and

q ¼ 0:99, respectively), while the CTE measure reports the

average precipitation value over the pixels where this

return level is exceeded.

Fig. 3 Empirical tail correlation functions for quantiles at probability

levels 0.98 and 0.99. Left: empirical vspaðhÞ, based on a subsample of

1500 pairs of grid cells, with a smoothed curve based on local

polynomial regression (turquoise and orange lines for 0.98 and 0.99,

respectively). Right: empirical vtimðkÞ, based on pairs of spatial

maxima separated by a time lag k (same color code). Block bootstrap

confidence intervals at 95% (dashed lines; blue for 0.98, red for 0.99)

Fig. 4 Exploratory plots for threshold stability using two cost

functionals: spatio-temporal median (top row); spatio-temporal max-

imum (bottom row). Summary statistics: fu0 ðYiÞ for u0 ¼ 0 (first

panel); same for u0 ¼ 0:95-quantile (second panel); sdðY 0i Þ (third

panel). QQ-plots (fourth panel) of observed cost functionals at

uniform scale 1� u=‘�i with pointwise confidence interval at 95%
(dashed lines)
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Figure 7 presents boxplots of the RL and CTE values

calculated for the 500 simulations and different scenarios:

different cost functionals; q ¼ 0:98 and q ¼ 0:99; and

lifting parameters a1 and a2. By construction, the CTE

values are systematically higher than the RL values. All

risk measures appear to be relatively heavy-tailed, which

we impute to the heavy tails in the precipitation data.

Moreover, the ten times higher scale parameter a2 leads to
substantially higher risk than a1, and this increase trends to

be stronger than the one observed between risk measures

when changing from q ¼ 0:98 to q ¼ 0:99. Furthermore,

the aggregation through the spatio-temporal median leads

systematically to higher risk measures than the spatio-

temporal maximum. Indeed, the spatio-temporal maximum

‘ may tend to select episodes with highly localized peaks,

i.e., there may be a large majority of zeros or small values

with a few spatially strongly confined clusters of very large

precipitation intensities. On the other hand, risk measures

based on the spatio-temporal median better account for the

persistence of moderate to high precipitation intensities

through space and time. We underline that the mechanism

of spatio-temporal cost functionals allows for a flexible

choice according to the modeling context.

6 Conclusion and outlook

In this work, we set up a general framework for space-time

generalized Pareto process. It allows developing a semi-

parametric method to simulate extreme space-time sce-

narios of phenomenona such as precipitation. The extremal

dependence structure is fully data-driven, and we require

parametric assumptions only for the univariate tails, based

on asymptotic theory. A crucial component is the cost

functional defined over a sliding space-time window. It

characterizes extreme episodes as episodes whose return

period, appropriately aggregated over space and time,

exceeds a high threshold. The application of our method to

a gridded precipitation data set in Mediterranean France

was used for a relatively simple risk analysis. It illustrates

how spatio-temporal cost functionals can be defined, how

they affect the selection of extreme episodes, and how the

magnitude of the newly sampled scale variables impacts

the magnitude of the lifted extreme episodes on the original

marginal scale. The proposed methodology requires den-

sely gauged networks or gridded data as spatial interpola-

tion is currently not enabled. While model fitting and

choice with parametric models for gridded data is hard due

to the large sample size and further bears risks of model

mis-specification, semi-parametric techniques such as ours

are appealing alternatives for gridded data and scale well

with the size of the dataset.

In practice, it is difficult to find extreme value data with

long observation periods to empirically study extreme

value properties for long return periods without strong

modeling assumptions. For practitioners, we provide a

methodology that allows them to create extreme scenarios

where they can control return levels or periods for aggre-

gated data without any need to explicitly model depen-

dence at extreme quantiles. Since our method identifies

extreme episodes based on local conditions (e.g., for spatial

discs of diameter 30 km), it would be possible to ‘‘trade

space for time’’ in order to obtain a satisfactory number of

approximately independent replicates of extreme episodes,

given the following conditions: the process should be close

to stochastic independence at larger distances in space, the

study region should be relatively large, and the assumption

of spatial stationarity should be realistic. Indeed, while it

may be difficult to extract a large number of extreme

episodes occurring locally around a fixed location, we may

‘‘borrow’’ extreme episodes from other, relatively distant

locations and just shift them in space towards the location

where we wish to obtain more observed extreme episodes.

The assumption of spatial stationarity may not be realistic

in practice for processes such as precipitation, but we could

work with milder assumptions, e.g., by borrowing extremal

episodes between locations or zones for which hydrological

expertise suggests similar behavior of extremes. Assume

that we want to extract empirical extreme profile processes

with spatial support A, where A is compact in R2. We can

extract such observed extreme episodes at sþ A, centered

at some pixel s, and then simply shift them by �s to obtain

the desired support A. Through this approach, we may

attain a moderately large number of observed extreme

episodes (say, around 50–100) even if the length of the

observation period is short. The lifting procedure then

Table 1 Last time steps of the 6

most extreme space-time

episodes after declustering,

using two different cost

functionals

Episode Spatio-temporal median ‘
ð1Þ
s;t Spatio-temporal maximum ‘

ð2Þ
s;t

1st 2000-07-25 18:00:00 1999-09-14 10:00:00

2nd 2003-09-22 17:00:00 2005-09-07 01:00:00

3rd 2002-09-08 07:00:00 1999-09-03 15:00:00

4th 1999-11-12 15:00:00 1999-08-28 22:00:00

5th 1999-08-08 14:00:00 2001-07-07 06:00:00

6th 1997-08-11 05:00:00 2006-10-12 02:00:00
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Fig. 5 Original precipitation data X(s, t) (left column) and uplifted

episodes W(s, t) (right column) based on the spatio-temporal median

‘
ð1Þ
s;t . First row: most extreme episode, shown for t ¼2000-07-25,
18:00:00; second row: second most extreme episode, shown for

t ¼2003-09-22, 17:00:00; third row: third most extreme episode,

shown for t ¼2002-09-08, 07:00:00. Red dots indicate the center si of
the neighborhood Nðsi; tiÞ with maximum cost functional. Grey and

black contour indicate altitude
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Fig. 6 Original precipitation data X(s, t) (left column) and uplifted

episodes W(s, t) (right column) based on the spatio-temporal maxi-

mum ‘
ð2Þ
s;t . First row: most extreme episode, here shown for t ¼1999-

09-14, 04:00:00; second row: second most extreme episode, here

shown for t ¼2005-09-06, 15:00:00; third row: sixth most extreme

episode, shown for t ¼2006-10-11, 20:00:00. Grey and black contour

indicate altitude
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further allows us to substantially increase the number of

available extreme episodes for impact studies, and we can

draw reliable statistical inferences on summary statistics

related to the extreme episodes, such as statistical sum-

maries (mean, variance etc.), risk measures in the actuarial

context, or output variables of impact models (e.g., models

to study flooding in urbanized areas).

Besides precipitation reanalyses, other types of inter-

esting applications include resampling from regional or

global climate model reanalyses or projections. The work

of Opitz et al. (2020) focused on spatial resampling of

heatwaves in France; they combined a lifting step with

nonparametric resampling techniques such as Multiple-

Point Statistics (Mariethoz and Caers 2014), and Direct

Sampling in particular (Mariethoz et al. 2010), such that

new profile processes inheriting spatial dependence pat-

terns from the observed extreme episodes were sampled.

The application of such resampling techniques allows for a

strong increase in the variety of newly sampled extreme

episodes and could be extended to our spatio-temporal

setting, but it also implies additional (although rather mild)

assumptions on the spatial and temporal structure of

extremes.

In future work, space-time distance metrics other than

the Euclidean distance could be used to define the space-

time neighborhoods Nðs; tÞ. To account for orographic

structures, the crossing distance could be used, which

includes a vertical component related to the crossing of

crests and valleys (Gottardi et al. 2012). Instead of fitting

the marginal tail parameters separately for each spatial grid

cell, a generalized additive regression approach could be

implemented to borrow information from nearby sites (-

Gardes and Girard 2010; Carreau et al. 2017; Castro-

Camilo et al. 2020, e.g.,). In addition, more sophisticated

validation methods for POT stability in large dimensions

could be studied. Finally, we note that there are events such

as karstic aquifer floods where not only the extreme rainfall

but also dry and moderate rainfall periods have to be

considered. By extending ideas in Cantet et al. (2011) and

in Yiou (2014), we plan to implement our method as part of

a spatial precipitation generator that simulates complete

rainfall series. Rain-flow models will then be fed by sim-

ulated series from a precipitation generator, and we will be

able to study the impact of the flood by applying risk

measures to the outputs of rain-flow models.
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Fig. 7 Boxplots for spatial RL and CTE at q ¼ 0:98 at q ¼ 0:99. First row: spatio-temporal median cost functional. Second row: spatio-temporal

maximum cost functional. With a1 approximately a RL for 6 months (red boxplots), and a2 ¼ 10a1 (blue boxplots).
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Appendix 1: Example—Pareto processes
with log-Gaussian profile process

If Gaussian process models are not well adapted to mod-

eling extremes, they can nevertheless be used to construct

flexible spatial or spatio-temporal limit models (Kabluchko

et al. 2009; Engelke et al. 2015). For instance, de Fon-

deville and Davison (2018) analyse the extreme rainfall in

the east of Florida by fitting a spatial generalized Pareto

process based on log-Gaussian profile processes. More-

over, Oesting and Stein (2018) focus on the spatial mod-

eling of extreme drought events in Rwanda using log-

Gaussian profile processes. Tyralis and Langousis (2019)

apply log-Gaussian profile processes for intensity–dura-

tion–frequency curves estimation to hourly precipitation in

Arkansas (US). A sample-continuous max-stable process

fZðs; tÞgs2S;t2T with unit Fréchet margins can be charac-

terized constructively as (de Haan 1984; Schlather 2002)

Zðs; tÞ ¼ max
i� 1

niwiðs; tÞ; s 2 S; t 2 T ; ð13Þ

where fni; i ¼ 1; 2; . . .g is a point process on ½0;1Þ with
intensity function n�2dn, and wiðs; tÞ are independent

copies of a nonnegative random function with

Ewiðs; tÞ ¼ 1, and independent of fnig. Specifically, one
may choose wiðs; tÞ ¼ expfXðs; tÞ � r2ðs; tÞ=2g with a

centered Gaussian process fXðs; tÞg possessing variance

function r2ðs; tÞ. Regarding the ‘-Pareto processes equiv-

alent to such max-stable processes, the choice of ‘ðxÞ ¼
xðs0; t0Þ for a fixed space-time point ðs0; t0Þ is particularly
interesting. In this case, the profile process Y(s, t) in the

generalized Pareto process is a log-Gaussian process given

by Yðs; tÞ¼d expfXðs; tÞ � Xðs0; t0Þ � 1
2
varðXðs; tÞ �

Xðs0; t0ÞÞg where var denotes the variance. The idea of

conditioning on a fixed component of a process is more

widely known as the conditional extremes approach (Hef-

fernan and Tawn 2004; Wadsworth and Tawn 2018), and it

arises as a special case of the cost functional ‘:

Appendix 2: Details for Section 4.3

We use arguments similar to Ferreira and de Haan

(2014, Section 4) and Chailan et al. (2017, Appendix). As

suggested by EVT, we choose the univariate normalizing

sequence bn in the max-stable convergence (3) as the

ð1� 1=nÞ-quantile of the marginal distribution Fðs;tÞ. We

denote the resampled scale variable by Ri ¼ ri, i.e. the

value ri has been sampled for Ri, and the originally

observed scale variable is denoted by ‘i; recall Sects. 4.1–

4.2. Let be given a Borel set

A � ff 2 CþðS � T Þ j ‘s;tðf Þ[ 1g. By using the

properties of the standard marginal distribution G given in

Sect. 3.1, we obtain that G�1ð1� xÞ
 1=x, which is a

consequence of the properties of regular varying functions;

see de Haan and Ferreira (2006). Therefore, we can write

TðXðs; tÞÞ ¼ G ðFðs;tÞðXðs; tÞÞÞ 
 1þ cðs; tÞXðs; tÞ � bnðs; tÞ
anðs; tÞ

� �1=cðs;tÞ
þ

:

We drop the (s, t)-indexes in the following for the sake of

simplicity, we define c ¼ ri=‘i, and we then get

P
Wi � bnc

anc
2 A



Ri ¼ ri; ‘s;tðX�Þ ¼ ‘i

� 	

� P
an
anc

ðcX�½i	Þ
c � 1

c
� bnc � bn

anc
2 A

 !
:

ð14Þ

In the right-hand side of Eq. (14), we now take into account

the limit relations for an, anc, bn and bnc given in Chailan

et al. (2017, Appendix), and we get

P
Wi � bnc

anc
2 A



Ri ¼ ri; ‘s;tðX�Þ ¼ ‘i

� 	

� P
X½i	 � bn

an
2 A



Ri ¼ ri; ‘s;tðX�Þ ¼ ‘i

� 	
;

as n!1. Therefore, the resampled and marginally

backtransformed episodes Wiðs; tÞ have approximately the

same probability distribution as the corresponding

observed extreme episodes of X(s, t), except for bn and an
replaced by bnc and anc. This confirms that the ratio c

between the new and old value of the cost functional ‘s;t is

a multiplier of the original return period, and we have

threshold stability. If a[ ‘i, then c[ 1 and bnc [ bn. That

is, our procedure then generates a threshold-

stable stochastic process at a higher level than the observed

one.
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