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SUMMARY

When analyzing extreme events, assuming independence in space and/or time may not

correspond to a valid hypothesis in geosciences. The statistical modeling of such dependences
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is complex and different modeling roads can be explored. In this article, some basic concepts

about univariate and multivariate Extreme Value Theory will be first recalled. Then a series

of examples will be treated to exemplify how this probability theory can help the practitioner

to make inferences about extreme quantiles within a multivariate context.

1 Introduction - Univariate Extreme Value Theory

Extreme events are, almost by definition, rare and unexpected. Consequently it is very

difficult to deal with them. Examples include the study of record droughts, annual maxima of

temperature, wind and precipitation. Climate sciences is one of the main fields of applications

of Extreme Value Theory (EVT) but we can also mention hydrology (e.g., Katz et al.,

2002), finance and assurance (e.g., Embrechts et al., 1997) among others. Even if the

probability of extreme events occurrence decreases rapidly, the damage caused increases

rapidly and so does the cost of protection against them. The policymakers’ summary of the

2007 Intergovernmental Panel on Climate Change clearly states that it is very likely that hot

extremes, heat waves, and heavy precipitation events will continue to become more frequent

and that precipitation is highly variable spatially and temporally.

From a probabilistic point of view, let consider a sample of n independent and identically

distributed (i.i.d.) random variables (r.v.) X1, X2, . . . , Xn from a distribution function F .

In the same way that we have the Central Limit Theorem (CLT) concerning the mean value

of this sample, asymptotic results are available from EVT about the limit distribution of

the rescaled sample’s maximum value Xn,n = maxi=1,...,nXi as the sample size n increases.

Indeed, according to the classical EVT (e.g., Embrechts et al., 1997; Coles, 2001; Beirlant

et al., 2004; de Haan and Ferreira, 2006), the correctly rescaled sample’s maximum is -under

suitable conditions- asymptotically distributed according to one of the three extreme value

distributions named Gumbel, Fréchet or Weibull.
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More precisely if there exists sequences of constants {an} and {bn > 0} and a non-degenerate

distribution function G such that

lim
n→+∞

P
(
Xn,n − an

bn
≤ x

)
= G(x)

then G belongs to one of the following families (with α > 0):

I - Gumbel:

G(x) = Λ(x) = e−e
−x−a

b with x ∈ R

II - Fréchet:

G(x) = Φα(x) =

 0 if x ≤ a

e−(x−ab )
−α

if x > a

III - Weibull:

G(x) = Ψα(x) =

e
−(−(x−ab ))

α

if x ≤ a

1 if x > a

A specificity of these three distributions is their max-stability property. Furthermore there

are the only max-stable distributions. A distribution G is max-stable if G is invariant, up

to affine transformations, i.e. up to location and scale parameters. In other words, we say

that G is max-stable if there exists sequences {dn} and {cn > 0} such that, for all n ≥ 2,

the sample’s maximum Xn,n is equal in distribution to cnX + dn with X following the same

distribution G, what can be written as follows

Gn(x) = G

(
x− dn
cn

)
.

From a statistical point of view, the interest of this fundamental theorem is limited. Indeed

each situation corresponds to different tail behavior of the underlying distribution F . The

Fréchet distribution corresponds to the limit of maxima coming from heavy tailed distribu-
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tions like the Pareto distribution. The Weibull distribution is associated to distributions

with a finite endpoint like the uniform distribution. The particular case of the Gumbel dis-

tribution has a special importance in EVT because it occurs as the limit of maxima from

light tailed distributions for example from the Gaussian distribution. Moreover, empirically,

the Gumbel distribution fits particularly well in a wide range of applications especially in

atmospheric sciences.

In practice we have to adopt one of the three families but we don’t have any information

about F . That’s why an unified approach would be very appreciated in order to characterize

the limit distribution of maxima.

The previous theorem could be reformulated in an unified way using the Generalized Extreme

Value (GEV) distribution. If there exists sequences of constants {an} and {bn > 0} and a

non-degenerate distribution function G such that

lim
n→+∞

P
(
Xn,n − an

bn
≤ x

)
= Gµ,σ,γ(x)

then Gµ,σ,γ belongs to the GEV family

Gµ,σ,γ(x) = exp

(
−
[
1 + γ

x− µ
σ

]−1/γ
)

with x ∈
{
z : 1 + γ x−µ

σ
> 0
}

.

It is easy to remark that Gµ,σ,γ merges all univariate max-stable distributions previously

introduced. It depends on an essential parameter γ characterizing the shape of the F -

distribution tail. Since a strictly positive γ corresponds to the Fréchet family, this case

corresponds to heavy-tailed distributions. Otherwise a strictly negative γ is associated to

the Weibull family. For γ tends to 0, the function Gµ,σ,γ tends to the Gumbel one.
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Practically, in order to assess and predict extreme events, one often works with so-called

block maxima, i.e. with the maximum value of the data within a certain time interval

including k observations. The maximum can be assumed to be GEV distributed in the case

where k is large enough. If we obtain a sufficient number of maxima and if these maxima can

be considered as an i.i.d. sample, estimation values for the GEV unknown parameters can

be obtained with maximum likelihood procedure or Probability Weighted Moments (PWM)

for instance. The asymptotic behaviors of these estimators have been established (Smith,

1985; Hosking et al., 1985; Diebolt et al., 2008).

In the first considered example, we dispose of temperature daily maxima during 30 years in

Colmar, a city in the east of France. We consider monthly maxima for the summer months:

June, July and August (see Figure 1). By this way we avoid a seasonality in the data.

The choice of the block size denoted in the sequel by r - such as a year or a month - can be

justified in many cases by geophysical considerations but this choice has actual consequences

on estimation tools. In an environmental context, if we can often consider annual maxima as

an i.i.d. sample, this hypothesis is stronger when we deal with monthly or weekly maxima

for instance. Indeed in these latter cases we have typically a seasonality in the data so we

are in a non stationary context.

Coming back to our application, when the GEV distribution (Gµ,σ,γ) is fitted by maximum

likelihood directly on the sample of k = 90 monthly maxima on summer (3*30 years), we

obtain µ̂ = 31.502, σ̂ = 2.456 and γ̂ = −0.256. The corresponding 95%-Confidence intervals

are [30.943; 32.060], [2.058; 2.853] and [−0.383;−0.128]. The quantile plot in Figure 2 is close

to the unit diagonal indicating a good fit of data (Empirical) by a GEV distribution (Model).

The results on the GEV fitting must be taken with care. Indeed, taking the maxima only

on 30 measures may lead to unexpected results (see de Haan and Ferreira, 2006). Here, the

limiting distribution of the maxima may be the Gumbel one even if the estimation of γ is
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Figure 1: The y-axis corresponds to temperature maxima (in ◦C) for the months of June,
July and August from 1980 to 2009 (x-axis) recorded at Colmar (France).

negative (for example, if the original variables are gaussian distributed, the effective gamma

approximately −1/(2 log k) where k is the block size).

A question of interest in this kind of application concerns the estimation of extreme quan-
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Figure 2: Quantile Plot for the GEV distribution - Colmar data.
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tiles of the maxima distribution on a period (a block). In other words, we are looking for z 1
p

such that P
(
Xr,r ≤ z 1

p

)
= 1− p.

Since we have P
(
Xk,k ≤ z 1

p

)
≈ Gµ,σ,γ

(
z 1
p

)
, we obtain

z 1
p
≈ µ− σ

γ
[1− (− log(1− p))−γ] if γ 6= 0

≈ µ− σ log(− log(1− p)) if γ = 0.

The quantity zT is called return level associated to a return period T = 1
p
. The level zT is

expected to be exceeded on average once every T = 1
p

blocks (e.g. months).

We use the following estimator ẑT :

ẑT = µ̂− bσbγ [1− (− log(1− p))−bγ] if γ 6= 0

= µ̂− σ̂ log(− log(1− p)) if γ = 0.

Starting from the asymptotic behavior of the GEV parameters vector estimator, it is possible

to deduce thanks to the δ-method (e.g., van der Vaart, 1988) the asymptotic behavior of ẑT

leading us to associated confidence intervals.

Coming back to our example, we would like to compute the return level associated to the re-

turn period T = 3×50 months corresponding to 50 years as we consider only 3 months a year.

We easily obtain a return level ẑ150 = 38.43 and a 95%-Confidence interval [37.107; 39.758].

That means that considering only summer periods, the temperature 38.43◦C is expected to

be exceeded on average once every 50 years. So thanks to EVT we are able to estimate a

return level corresponding to 50 years whereas we only consider data since 30 years.
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We have supposed that maxima constitute an i.i.d. sample which is reasonable with regards

of Figure 1. A likelihood ratio test indicates no trend in our data. To support this aim we fit

a GEV distribution with a linear trend in the localisation parameter (Gµ(t),σ,γ). We obtain

with the likelihood procedure µ̂(t) = 30.635 + 0.059 t, σ̂ = 2.439 and γ̂ = −0.281. The

corresponding likelihood ratio test statistic is D = 2× (209.82− 207.91) = 3.82. This value

is small when compared to the χ2
1 distribution, suggesting that the simple model (without

trend) is adequate for these data. Other estimation procedures have been developed in the

non-stationary context. For example Maraun et al. (2010) have proposed various models to

describe the influence of covariates (possible non linearities in the covariates and seasonality)

on UK daily precipitation extremes. In the same way, Ribereau et al. (2008) extend the PWM

method in order to take into account temporal covariates and provide accurate GEV-based

return levels. This technique is particularly adapted for small sample sizes and permits for

example to consider seasonality in data.

If block sizes are sufficiently large and even if the stationary hypothesis is not always satisfied,

the independence one remains very often valid. On the other hand, even if the series could be

considered as stationary, the independence hypothesis is not always satisfied if we consider

too small block size like daily maxima.

As an example, Figure 3 represents a series of daily maxima of CO2 (in part per million), a

greenhouse gas recorded from 1981 to 2002 in Gif sur Yvette, a city of France. The trend in

the series has been removed in order to consider a stationary series.

This example illustrates the connection between light-tailed maxima and the Gumbel dis-

tribution. Indeed, if we fit a Gumbel distribution on the daily CO2 maxima, we see on the

Gumbel Quantile Quantile (QQ-)plot (see left part of Figure 4) that it is quite reasonable to

suppose that these data are Gumbel distributed (with µ̂ = −0.44 and σ̂ = 0.76). But in this

practical case the length of our observations is too short to study yearly maxima, or even
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Figure 3: Series of daily maxima of carbon dioxide.

monthly maxima. As a consequence, when studying daily maxima it is natural to observe

some day-to-day memories. The scatter plot of successive values (see right part of Figure 4)

confirms this short-term temporal dependence.
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Figure 4: Gumbel QQplot (left) and scatter plot of successive values (right) corresponding
to daily maxima of carbon dioxide.

A very simple approach in the time series analysis would be to consider linear autoregressive

(AR) models. Classical hypotheses are noise Gaussianity and model linearity. But in an

9



extreme value context, if Xt is a maximum, then one expects Xt to follow a GEV distribution

and it is impossible to satisfy this distributional constraint with a gaussian additive AR

process.

That’s why Toulemonde et al. (2010) have proposed a linear AR process adapted to the

Gumbel distribution. This model is based on an additive relationship between Gumbel and

positive α-stable variables1 (see for example Crowder, 1989; Hougaard, 1986; Tawn, 1990;

Fougères et al., 2009) and is defined as follows.

First, let consider St,α being i.i.d. positive asymmetric α-stable r.v. defined by its Laplace

transform for any t ∈ Z

E(exp(−uSt,α)) = exp(−uα), for all u ≥ 0 and for α ∈]0, 1[. (1)

Let {Xt, t ∈ Z} be a stochastic process defined by the recursive relationship

Xt = α Xt−1 + α σ logSt,α (2)

where σ > 0. It has been proved first that Equation (2) has a unique strictly stationary

solution,

Xt = σ
∞∑
j=0

αj+1 logSt−j,α (3)

and secondly that Xt follows a Gumbel distribution with parameters (0, σ).

This model is a linear AR model and has consequently the associated advantages such

that their conceptual simplicity and their flexibility for modeling quasi-periodic phenomena

(e.g. sunspots time series) and short-term dependencies (e.g. day-to-day memories in weather

systems). Moreover, whereas one drawback of current linear AR models is that they are

1A random variable S is said to be stable if for all non-negative real numbers c1, c2, there exists a positive
real a and a real b such that c1S1 + c2S2 is equal in distribution to aS + b where S1, S2 are i.i.d. copies of S.
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unable to represent the distributional behavior of maxima, a key point of parameterization

(2) is that Xt follows a Gumbel distribution. In other words this process is suitable for

maxima data coming from light-tailed distributions. Even if our process is specific to the

Gumbel distribution, it is possible to extend it for maxima coming from bounded or heavy

tailed distribution. Nevertheless this leads to a process which is not additive anymore.

Coming back to our example, identifying the temporal structure among the largest CO2

measurements is of primary interest for the atmospheric chemist because this can help to

predict future maxima of CO2 at a specific location. As an illustration, Figure 5 presents

one-step previsions of CO2 daily maxima on the year 2001.

Ma
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Figure 5: One-day previsions of daily maxima of CO2 (y-axis) on the year 2001 (x-axis). The
black line corresponds to the observed series and the dotted line corresponds to the estimated
series (median). The grey area is delimited by the first and third empirical quartiles.

This method, presented in Toulemonde et al. (2010), is exemplified in their paper on daily

maxima series of two other greenhouse gas, the methane (CH4) and the oxide nitrous (N2O)

recorded at LSCE (Laboratoire des Sciences du Climat et de l’Environnement) in Gif-sur-
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Yvette (France). Since the beginning of 2007, the LSCE has proceeded to record daily

maxima of CH4 but has stopped the regular recordings of N2O daily maxima. That’s why

in a recent paper, Toulemonde et al. (2012) proposed a method adapted to maxima from

light-tailed distribution able to reconstruct a hidden series. In this state-space context, they

take advantage of particle filtering methods. In an extreme adapted model, they compute

optimal weights for the use of the auxiliary filter (Pitt and Shepard, 1999) and they denote

this filter by APF-Opt. Basing on observations of CH4 and N2O from 2002 to the middle of

2006, they obtain similar results than those presented in Figure 6 for the reconstruction of

N2O daily maxima.

 

N
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6
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Estimated mean by the APF-Opt 250
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Figure 6: Mean values of particles from APF-Opt and punctual empirical IC80% with 250
particles for the series of N2O daily maxima in Gif-sur-Yvette from June to December 2006.

Concerning inference procedure, as usually in the block maxima approach, only the maxima

are used. To remove this drawback, another technique consists in modeling exceedances

above a given threshold u. In the so-called Peaks-over-Threshold (PoT) approach, the dis-

tributions of these exceedances are also characterized by asymptotic results.

Let X1, . . . , Xn a sample of n i.i.d. r.v. from a distribution function F . We consider the Nu
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of them which are over the threshold u. The exceedance Yi corresponding to the variable Xi

is defined by Xi − u if Xi > u.

The distribution function Fu of an exceedance Y over a threshold u is given for y > 0 by

Fu(y) = P(Y ≤ y|X > u) = P(X − u ≤ y|X > u)

=
P(u < X ≤ u+ y)

P(X > u)
=
F (u+ y)− F (u)

1− F (u)
.

If the threshold is sufficiently high, we can approximate this quantity by the distribution

function of the generalized Pareto distribution Hγ,σ(y). We defined its survival function as

follows

Hγ,σ(y) =
(
1 + γ y

σ

)−1/γ
if γ 6= 0

= exp
(
− y
σ

)
otherwise.

This function is defined on R+ if γ ≥ 0 or on [0;−σ/γ[ if γ < 0 where σ > 0 is a scale

parameter and γ ∈ R a shape parameter.

The famous theorem of Pickands (1975) establishes the following equivalence:

lim
n→+∞

P
(
Xn,n − an

bn
≤ x

)
= Gµ,σ,γ(x)

if and only if

lim
u→xF

sup
y∈[0;xF−u]

∣∣F u(y)−Hγ,σ(u)(y)
∣∣ = 0.

It is important to mention that the shape parameter in the block maxima approach coincides

with the shape parameter in the PoT approach.
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Coming back to extreme quantiles estimation, we have for xp ≥ u, the following approxima-

tion

p = F (xp) ≈ F (u)

[
1 + γ

xp − u
σ

]− 1
γ

if γ 6= 0

≈ F (u) exp

(
−xp − u

σ

)
if γ = 0

which implies

xp = F
−1

(p) ≈ u+
σ

γ

([
p

F (u)

]−γ
− 1

)
if γ 6= 0

≈ u− σ log

(
p

F (u)

)
if γ = 0.

By construction, xp is the return level associated to the 1
p
−observation. In other words this

level xp is expected to be exceeded on average once every 1
p
-observations.

If we are interested on a return level associated to the a return period T blocks (e.g. months)

denoted by zT and supposing we have r observations per block (e.g. month), we will consider

p = 1
rT

.

Finally, a PoT estimator ẑT of the return level T-block with r observations per block is given

by

ẑT = F̂
−1
(

1

rT

)
= u+

σ̂

γ̂

([
n

rTNu

]−bγ
− 1

)
if γ 6= 0

= u− σ̂ log

(
n

rTNu

)
if γ = 0.

The choice of the threshold is difficult and is clearly a question of trade-off between bias

and variance for the estimation of the parameters (γ, σ). There is no perfect solution but
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only tools based for example on the mean Excess Function (MEF) which help us to make

a choice. Again, as in the block maxima approach, the GPD approximation for excesses is

asymptotic and results obtained on finite sample size should be considered carefully.

2 Multivariate Approach

The probabilistic foundations for the statistical study of multivariate extremes are well de-

veloped. Since the classical work of Resnick (1987), many books (see for example Beirlant

et al., 2004; de Haan and Ferreira, 2006 and Resnick, 2007) have paid considerable attention

to this particular case.

We will focus here on analog of block maxima results discussed in previous sections for uni-

variate extremes. Suppose that (X1, Y1), (X2, Y2), ...., (Xn, Yn) is a sequence of i.i.d. random

vectors with same common distribution function F . Examples of such variables are Max-

imum and Minimum temperatures or precipitations in two locations. As in the univariate

case, the characterization of the behavior of extremes in a multivariate context is based on

the block maxima. Denote

Mx,n = max
i=1,...,n

{Xi} and My,n = max
i=1,...,n

{Yi}

Mn = (Mx,n,My,n) .

Mn is the vector of component-wise maxima. Note that the maximum of the Xi can occur at

a different time than the one of the Yi, so Mn does not necessarily correspond to an observed

vector. The multivariate EVT begins with the study of the Mn behavior. If z = (z1, z2) and
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Mn ≤ z meaning that Mx,n ≤ z1 and My,n ≤ z2, we have

P(Mn ≤ z) = F (z)n.

We assume that there exists two rescaling sequences of vector {an} and {bn} where an,j > 0

and bn,j ∈ R for j = 1, 2 and G a distribution function with non-degenerate margins such

that

F n(anz + bn)→ G(z)

where anz+bn = (an,1z1 +bn,1, an,2z2 +bn,2). If such sequences exist, G is a bivariate extreme

value distribution. With the same notations, another consequence is that

Gk(akz + bk) = G(z)

that is G is max stable. The problem of the limiting distribution G is partially solved

considering separately (Xi)i and (Yi)i since the univariate EVT can be applied directly.

2.1 Characterization theorem

As the margins of the limiting distribution are GEV distributed, that means we can get

easier representation by assuming that the margins are known. Simple representations arise

when assuming that both Xi and Yi are unit Fréchet distributed with distribution function

G1,1,1(z) = exp(−1/z).

Once the margins transform to unit Frechet, we should consider the re-scaled vector
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M∗
n =

(
M∗

x,n,M
∗
y,n

)
= (Mx,n/n,My,n/n) ,

in order to obtain standard univariate results for each margin.

THEOREM 1 Let (Xi, Yi) be i.i.d. random vectors with unit Frechet marginals and define(
M∗

x,n,M
∗
y,n

)
as previous. If :

P
(
M∗

x,n ≤ x,M∗
y,n ≤ y

)
−→ G(x, y)

where G is a non degenerated distribution, then G is of the form :

G(x, y) = exp (−V (x, y)) , x > 0, y > 0

where

V (x, y) = 2

∫ 1

0

max

(
ω

x
,
1− ω
y

)
dH(ω)

and H is a distribution on [0, 1] verifying the following mean constraint :

∫ 1

0

ωdH(ω) = 1/2. (4)

For example, if H is such that :

H(ω) =

 1/2 if ω=0 or 1

0 else

the corresponding bivariate extreme value distribution is

G(x, y) = exp
{
−(x−1 + y−1)

}
17



for x > 0 and y > 0. This distribution is a product of a function of x and another of y

and therefore corresponds to the independence. Another interesting case of distribution H

is a measure that place mass equal to 1 in 0.5. In that case, the bivariate extreme value

distribution is

G(x, y) = exp
(
−max

{
x−1, y−1

})
for x > 0 and y > 0. It is the special case of variables X and Y which are unit Fréchet

distributed and perfectly dependent i.e. X = Y a.s.

As any function verifying the mean constraint defines a bivariate extreme distribution, there

is a one-to-one relation between the set of bivariate extreme distributions with unit Fréchet

margins and the set of distributions on [0, 1] satisfying (4). So any parametric family for H

satisfying (4) defines a class of bivariate extreme value distribution.

One classical family is the logistic one. In that case, we have :

G(x, y) = exp
(
−
(
x−1/α + y−1/α

)α)

for x > 0 and y > 0 and for α ∈ (0, 1). The popularity of this family is its simplicity and its

flexibility. Indeed, as α→ 1, it is easy to check that we get the independence. In contrast, if

α → 0 we get the perfect dependence. So the logistic family covers all levels of dependence

but the model is limited since the variables x and y are exchangeable because of the symmetry

of the density h. In order to avoid this limitation, there exists two generalizations of this

model.

The first one is the asymmetric logistic family for which we have

G(x, y) = exp

{
− (1− t1)x−1 − (1− t2) y−1 −

[(
x

t1

)−1/α

+

(
y

t2

)−1/α
]α}

where 0 < α ≤ 1 and 0 ≤ t1, t2 ≤ 1. The parameter α controls the dependence while t1 and

t2 control asymmetry. When t1 = t2 = 1 we get the logistic family.
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As α→ 1 or as t1 or t2 equal to 0, we get the independence, while if α→ 0 and t1 = t2 = 1,

we have the perfect dependence.

The second generalization is the bilogistic model defined by :

G(x, y) = exp
(
−x−1q1−α − y−1(1− q)1−β)

where q = q(x, y, α, β) is the solution of the following equation:

(1− α)x−1(1− q)β − (1− β)y−1qα = 0,

and 0 < α, β < 1. When α = β, the bilogistic family reduces to the logistic class. The

complete dependence arises when α = β tends to 0 while independence is obtained when

α = β tends to 1 or when one of the two parameters is fixed and the other tends to 1.

2.2 Other representations of bivariate extremes

We can obtain other kind of representations of bivariate extreme value distribution. For

example, the following theorem presents a point process approach. Let the set E denote

here E = [0,∞]2\{0}, ‖.‖ any norm of R2 and B ⊂ E the associated unit sphere.

THEOREM 2 The following assertions are equivalent :

• G is a bivariate extreme value distribution with unit Fréchet margins as mentioned in

Theorem 1.

• There exists a non homogeneous Poisson process on [0,∞)×E with intensity Λ defined
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for t > 0 by Λ ([0, t]×B) = tµ∗(B), where for all A ⊂ B and r > 0,

µ∗
(
x ∈ E : ‖x‖ > r;

x

‖x‖
∈ A

)
= 2

H(A)

r
, (5)

where x = (x1, x2) and H is a finite measure such that (4) holds and

G(x) = exp (−µ∗ {(x1,∞)× (x2,∞)}) .

This last representation gives an interesting interpretation of the distribution H. Let ‖x‖ =

x1 + x2, the transformation used in (5) : x = (x1, x2) → (x1 + x2, x1/(x1 + x2)) = (r, ω)

is a transformation from cartesian to pseudo-polar coordinates, in which r is a measure of

distance from origin and ω measures angle on a [0, 1] scale. It is easy to check that the case

ω = 0 corresponds to the case x1 = 0 and ω = 1 to the case x2 = 0. Equation (5) implies

that the measure µ∗ is a product measure of a simple function of the radial component and

a measure H of the angular component. In other words, the angular spread is determined

by H and is independent of the radial distance.

Interpretation in the case that H is differentiable with density h is easier: since ω measures

the direction of the extremes, h(ω) measures the relative frequency of extremes in this di-

rection. With this representation, it is easy to understand what was previously mentioned :

when h(ω) is large for values of ω close to 0 and 1 , we tend to the independence because

large values of x correspond to small values of y and vice versa. On the contrary, if the

dependence is very strong, large values of x will correspond to large values of y, so h(ω) will

be very large for values of ω close to 1/2 and small elsewhere.

In dimension 2, there exists a popular approach of the bivariate extreme value distribution

based on the dependence function.
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THEOREM 3 (Representation using Pickands dependence function) G is an extreme bivari-

ate distribution with unit Fréchet marginals if and only if

G(x, y) = exp

(
−
(

1

x
+

1

y

)
A

(
x

x+ y

))

where A(.) is a convex function on [0, 1] in [1/2, 1] such that

max(t, 1− t) ≤ A(t) ≤ 1

for all t in [0, 1] and

A(0) = A(1) = 1

−1 ≤ A′(0) ≤ 0 and 0 ≤ A′(1) ≤ 1

A′′(t) ≥ 0.

The form of the Pickands function provides important informations on the dependence be-

tween marginals :

- if A(t) = 1 we get the independence in the extremes,

- if A(t) = max(t, 1− t), we have the complete and perfect dependence.

Obviously, there is a link between the function A and the measure H :

A(u) = 2

∫ 1

0

max (u(1− ω), (1− u)ω) dH(ω).

Other methods can be implemented to model the bivariate behavior between two consecu-

tive maxima. The copula approaches (e.g., Joe, 1997; Gudendorf and Segers, 2010) allow

to construct bivariate distributions under the assumption that all marginals are identified.
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We can also mention Naveau et al. (2009) and Bacro et al. (2010) who take advantage of

bivariate EVT, i.e. they choose and estimate a bivariate extremal dependence function.

2.3 Inference and estimation

There exists a wide range of bivariate extreme distribution families. For example, in the R

package evd (Stephenson, 2002), there are 8 different classes.
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Figure 7: Summer Maxima of minimum daily temperature (x) and maximum daily temper-
ature (y) of the Colmar data

The Figure 7 shows the summer maximum of minimum daily temperature against the corre-

sponding maximum daily temperature. Obviously, there seems to be a trend for large values

of the minimum temperature to correspond with large maximum temperature.

In order to better visualize the dependence in our data, it is possible to proceed to a transfor-
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Figure 8: Summer Monthly Maxima of minimum daily temperature (x) and maximum daily
temperature (y) with a Fréchet margins transformation (logarithm scale).
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µx σx γx µy σy γy α
Estimates 17.59 1.37 -0.28 31.56 2.41 -0.21 0.63

Standard Error 0.16 0.11 0.06 0.28 0.19 0.07 0.06

Table 1: Results of fitting a logistic bivariate extreme value distribution to the Colmar data.
Values given are maximum likelihood estimates of the GEV parameters of both margins and
maximum likelihood estimates of α.

mation of the margins. A usual choice consists in transforming the two margins distributions

into unit Fréchet distribution. If we fit a GEV distribution to the xi, we get the following

estimates

µ̂ = 17.62, σ̂ = 1.38, γ̂ = −0.33

while on the yi the estimates are

µ̂ = 31.59, σ̂ = 2.41, γ̂ = −0.25.

Here again, the approximation is made on a finite sample and may lead to errors on the

dependence structure estimation of the model. This unit Fréchet margins transformation

leads to the representation in Figure 8. The sample seems symmetric so a logistic model

could be appropriated. Even if, for sake of simplicity, we have presented in Section 2.1

the logistic model with common unit Fréchet margins, practically, it is straightforward to

estimate jointly the six GEV margins parameters and the dependence parameter α using

maximum likelihood. The Table 1 represents the corresponding results.

The value of the dependence parameter α estimation is equal to 0.63 with an asymptotic

confidence interval of [0.51, 0.75] which corresponds to the first impression one can have

looking at Figure 8 : reasonably weak level of dependence but significatively different from

independence. The maximized log-likelihood is equal to −344.27.
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Figure 9: Nonparametric estimate of the Pickands dependence function for the Colmar data
(dashed line) and the Pickands dependence function corresponding to the fitted logistic model
(full line).
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µx σx γx µy σy γy α β
Estimates 17.59 1.37 -0.28 31.54 2.40 -0.20 0.64 0.60

Standard Error 0.14 0.10 0.05 0.23 0.17 0.06 0.09 0.09

Table 2: Results of fitting a bilogistic bivariate extreme value distribution to the Colmar
data. Values given are maximum likelihood estimates of the GEV parameters of both margins
and maximum likelihood estimates of α.

According to the Theorem 3, the Pickands dependence function is a convex function and

their theoritical borders are represented with dotted lines in Figure 9 and 10. The Pickands

dependence function corresponding to the fitted logistic model (Table 1) is represented in

Figure 9 with the full line. A non-parametric estimate of the function is also presented with

the dashed line. This figure seems to indicate that the fitting of the data may be improved by

using a more complex model. That’s why we represent in Figure 10 the Pickands dependence

function corresponding to the fitted bilogistic model (Table 2).
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Figure 10: Nonparametric estimate of the Pickands dependence function for the Colmar data
(dashed line) and the Pickands dependence function corresponding to the fitted bilogistic
model (full line).

26



Since the logistic model is a subset of the bilogistic model, we can apply a deviance test to

choose the model. For the bilogistic model the maximized log-likelihood is equal to −344.24.

The Deviance statistics is then equal to 0.06 which is very small respect to the 95% quantile

of the χ2
1 distribution. The benefit brought by the asymetric logistic model is not sufficient.

This is expected because of the estimation of α and β, the case α = β corresponding to the

logistic model.

Finally, the Figure 11 represents the α quantile curves for the fitted logistic model for α = 0.7,

0.8 and 0.9 generalizing quantiles to the bivariate case.
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Figure 11: α quantile curves for the fitted logistic model for α = 0.7, 0.8 and 0.9 for the
Colmar data.

Conclusion

Through a series of extreme data analysis, univariate and multivariate basic concepts in

EVT have been presented in an environmental context. These concepts can be extended
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to the spatial case through max-stable fields, see for instance de Haan (1984) and Smith

(1990). Inference on such processes can be obtained using composite likelihood as described

in Lindsay (1988) and Varin (2008) (see Padoan et al. (2010) for an application in an extreme

value context with an illustration on US precipitation extremes and Blanchet and Davison

(2011) for an illustration on annual maximum snow depth).
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Bacro JN, Bel L, Lantuéjoul C. 2010. Testing the independence of maxima : from

bivariate vectors to spatial extreme fields. Extreme, 13:155-175.

Beirlant J, Goegebeur Y, Segers J, Teugels J. 2004. Statistics of Extremes: Theory

and Applications; Wiley Series in Probability and Statistics.

Blanchet J, Davison A. 2011. Spatial Modelling of extreme snow depth. The Annals of

Applied Statistics, 5(3):1699-1725.

Coles S. 2001. An introduction to statistical modeling of extreme values; Springer Series in

Statistics, Springer-Verlag, London.

Crowder MJ. 1989. A multivariate distribution with Weibull components. J. Roy. Statist.

Soc. B, 51:93-108.

28



Diebolt J, Guillou A, Naveau P, Ribereau P. 2008. Improving Probability Weighted

Moment Methods for the Generalized Extreme Value Distribution. REVSTAT, 6:33-50.
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