
Space-time simulations of extreme rainfall : why and how ?

G. Toulemonde1,2∗, J. Carreau3, V. Guinot3,2

February 28, 2020

1 Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Montpellier,
France.
2 LEMON, Inria CRISAM, Montpellier, France.
3 HydroSciences Montpellier, CNRS, IRD, Univ. Montpellier, Montpellier, France.

Abstract1

Rainfall-induced urban floods may trigger considerable damage. Free surface flow models2

incorporating the rainfall forcing are powerful tools for urban flood risk assessment. However,3

an accurate mapping of the flood risk requires space-time rainfall field resolutions that are4

not currently available from standard meteorological products (e.g. rainfall radar images).5

Relying on stochastic rainfall generators may provide promising surrogate rainfall fields.6

Key aspects that such a generator should reproduce are the alternance of rainy and dry time7

steps; within a rainy time step, spatial rainfall intermittency; the spatio-temporal dependence8

structure of rainfall fields and extreme events. The last aspect is especially relevant as9

far as rainfall-induced urban floods are concerned. However, existing stochastic generators10

are not designed explicitly to deal with extreme events. We present a review of spatial11

and spatio-temporal processes for extreme events arising from the extreme value theory12

framework. The main two classical types of processes are the max-stable and threshold13

exceedance processes which both assume that the process being modelled is asymptotically14

dependent. Flexible approaches have been proposed recently allowing also asymptotically15

independent framework. We discuss the inclusion of processes dedicated to extreme event16

modelling in a stochastic generator which raises a number of issues. In particular, transitions17

between regular and extreme events should be modelled, this being especially challenging for18

the dependence structure. Incorporating stochastic rainfall generators in operational systems19

flood risk assessment and/or warning systems requires fast running hydraulic simulation20

engines. Using stochastic generators in combination with upscaled hydraulic models appears21

as a promising research path.22
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1 Why1

1.1 Rainfall-induced urban floods2

Floods are regarded as the most widespread and globally costly natural disaster. Their human3

and economic impact is obviously the largest in the most densely populated areas. Since the4

fraction of the world’s population living in urban areas increases steadily, the impact and cost5

of urban floods can be expected to rise in the future.6

In Mediterranean areas, heavy rainfall events occur mostly in autumn owing to temperature7

contrasts between the moisture coming from the sea and the land surface. Orographic factors8

may also play a significant role. These rainfall events, that could be either very localized, with9

high intensities and lasting a few hours, or could be long-lasting events with moderate intensities10

affecting large areas, might lead to floods.11

Not only does urbanization induce an increase in population density (and with it the density12

of stakes) but it also induces dramatic changes in land use. The fraction of impervious and/or13

low permeability areas increases. This contributes to reduce the infiltration capacity of soils.14

Intense to moderate rainfall events that would otherwise infiltrate are retained on the ground15

and generate large runoff volumes. Roads, parking lots, etc. being significantly smoother than16

natural grounds, they contribute to speed up the propagation of the runoff signal. Urban drainage17

networks may also contribute to enhance the dynamics of urban catchments.18

Urban flood crisis management gathers a wide variety of stakeholders. These include local19

authorities, urban planning divisions, rescue and civil protection services, weather forecasting20

and warning services, insurance and reassurance companies, etc. Not all stakeholders have the21

same needs. Urban planning divisions and insurance companies are mostly concerned with22

long-term measures for disaster mitigation and vulnerability reduction. Warning services, local23

authorities and civil protection play a key role during the crisis, by managing communications,24

rescue actions, and establishing priorities for stake protection.25

Ideally, decision-makers would like to be supplied with real-time knowledge or a forecast of26

the rainfall event (i.e. how is the rainfall field likely to vary in space and time). The knowledge27

of the space-time behaviour of the rainfall field would allow rainfall-runoff models to be operated28

to forecast the consequences of the rainfall event in terms of flood-induced risk and damages on29

the scale of the conurbation.30

An "ideal" urban flood forecasting and warning chain should include meteorological monitor-31

ing and forecasting modules, one or several rainfall-runoff and/or free surface flow models, and32

a decision support system prioritizing and synthesizing information for the crisis management33

group. The design of flood crisis management systems is beyond the scope of the present chapter.34

Only rainfall generating and free surface modelling aspects are covered hereafter.35

The following subsection presents hydraulic simulations of a rainfall-induced urban flood.36

These simulations illustrate the need for space-time simulations of extreme rainfall highlighting37

the effect of the localization and the extension of the rainfall field on the flooding pattern.38

The second section deals with the question "how to perform space-time simulations of extreme39

rainfall?". After discussing the spatial stochastic rainfall generators, the emphasis is put on40
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extreme events modelling to understand the main associated issues. The key challenges for the1

construction of a stochastic rainfall generator geared toward extreme events are then presented.2

Finally the third section is devoted to outlooks from an operational point of view and a possible3

framework for an integrated rainfall-induced urban flood crisis management system is proposed.4

1.2 Sample hydraulic simulation of a rainfall-induced urban flood5

The present section illustrates the sensitivity of the flooding pattern to the localization and6

extension of the rainfall field. A two-dimensional model of a part of the Ecusson district (Mont-7

pellier city, France) is built. Synthetic rainfall fields are used as inputs to the model in the form8

of a source term in the two-dimensional shallow water equations Guinot & Soares-Frazão (2006).9

The rainfall fields are assumed time-independent and follow a radial distribution in the form

Pθ(x, y, t) = Pmax × exp

(
−(x− x0)2 + (y − y0)2

R2

)
∀t (1)

where (x, y, t) are the space and time coordinates and θ = (x0, y0, R, Pmax) with (x0, y0) the10

coordinates of the centre of the field, R a scaling radius and Pmax the maximum precipitation.11

Four such fields are generated with the parameters in Table 1. It is acknowledged that the12

assumption of a time-independent and static rainfall field undermines the realistic character of13

the simulations. However, the purpose here is only to illustrate the sensitivity analysis of the14

computed runoff to the location of the centre of the rainfall field. Figure 1 shows the normalized15

rainfall fields Pθ
Pmax

(x, y, t) for the four simulations. It should be noticed that these four rainfall16

fields have almost the same average value when averaged on the scale of a 1 km × 1 km radar17

pixel centred on the modelled area. Although unusual, intensities of 125 mm/day and 50018

mm/day are commensurate with values observed in the South of France during extreme rainfall19

events (Delrieu et al. , 2005; Brunet et al. , 2018).20

Simulation Pmax (mm/d) R (m) x0 (m) y0 (m)
1 125 200 300 500
2 125 200 700 300
3 500 100 300 500
4 500 100 700 300

Table 1: Rainfall field parameters

Figure 2 shows the maximum water depth fields obtained by forcing a software package21

solving the two-dimensional shallow water equations (Guinot & Soares-Frazão (2006)) with the22

aforementioned rainfall fields. The maximum water depth field hmax(x, y) is computed from the23

simulated water depth field hθ(x, y, t) as24

hmax(x, y) = max
0≤t≤T

hθ(x, y, t) (2)

where T is the simulated period. In the present simulations, T = 15 minutes. This corre-25

sponds to the time needed for the hydraulic fields to reach the asymptotic, steady state under a26
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Simulation 1 Simulation 2

Simulation 3 Simulation 4

Figure 1: Normalized rainfall fields Pθ(x, y, t)/Pmax. x− and y− grid spacing: 100 m.

steady state rainfall forcing. The maximum water depth is selected because it has been identi-1

fied as danger indicator, in particular for pedestrians, and as a damage indicator for buildings2

(Blanco-Vogt & Schanze (2014), Merz et al. (2010), Wagenaar et al. (2016)).3

Figure 2 allows the following conclusions to be drawn.4

• The maximum rainfall intensity does not exert a significant influence on the range of hmax.5

While Pmax varies by a factor 4 between Simulations 1 and 3, it yields very similar hmax6

maps (see Figure 2, left). The same holds for Simulations 2 and 4 (see Figure 2, right). In7

contrast, Pmax appears to be a controlling factor for the extension of the flooded area.8

• Comparing Simulations 1 and 2 (Figure 2, top) with 3 and 4 (Figure 2, bottom) shows that9

shifting the centre (x0, y0) of the rainfall field from (300 m , 500 m) to (700 m , 300 m)10

also induces significant differences in the mapped hmax(x, y). The contrast is all the more11

significant as the scaling radius R is smaller.12

To conclude, a 1 km × 1 km rainfall field resolution is too coarse for an accurate mapping of the13
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flood hazard in urban areas. A 100 m × 100 m resolution appears more appropriate. Note that1

only static rainfall simulations are used in the present example, while rainfall fields are known2

to exhibit strong space-time dependencies (Cox & Isham, 1988; Kleiber et al. , 2012; Baxevani3

& Lennartsson, 2015) especially at high spatio-temporal resolution, see for instance Benoit et al.4

(2018). Since free surface flows are governed by wave propagation phenomena, it is most likely5

that the need for highly spatially resolved rainfall fields also comes with a similar need for a6

high temporal resolution. This latter aspect is not covered in the present chapter for the sake of7

conciseness.8

Therefore, any (deterministic or stochastic) rainfall field generator should be developed and9

used with the following questions in mind : (i) what is the minimum required spatial and10

temporal resolution to provide a sound assessment of the free surface flow variables? (ii) how11

can the temporal and spatial distribution of rainfall over a given area be reproduced?12

Stochastic rainfall generators have the potential to characterize several aspects of the space-13

time dependence structure of rainfall fields. These are described in the next section, with an14

emphasis on extreme event modelling.15

2 How16

2.1 Spatial stochastic rainfall generator17

Since the outputs of meteorological models are uncertain in essence, an alternative to providing18

(inevitably biased and inaccurate) deterministic rainfall fields consists in generating ensemble19

rainfall scenarios, the characteristics of which are controlled in a statistical fashion. These rainfall20

scenarios can supply boundary conditions for hydraulic models. The latter can simulate water21

depths, flow velocities and other hydraulic variables, that are in turn used to assess flood risk22

and to map damages. To generate realistic ensemble rainfall scenarios, including dry sequences,23

stochastic rainfall generators may be employed (Ailliot et al. , 2015).24

Spatial generators, that are capable of simulating continuous rainfall fields, are complex25

probabilistic models that combine several stochastic mechanisms in order to reproduce various26

features of the rainfall fields. To estimate the parameters that tune the stochastic mechanisms27

of the generators, statistical inference schemes are designed to draw information from rainfall28

observation series, whether from rain-gauged stations or from other types of data such as radar29

data. Thanks to these inference schemes, simulations of the generators are expected to be as30

close as possible to reality.31

One of the foremost features that stochastic rainfall generators seek to reproduce is the32

alternance of periods with and without rainfall. The alternance of rain and no rain can be33

thought of as basic weather types which are usually modelled with a Markov chain, hidden or34

not (Ailliot et al. , 2015). These weather types can be further refined by decomposing the rainy35

type into several sub-types such as drizzle, moderate intensities and heavy rainfall. The weather36

type decomposition is designed to account for the non-stationarity in time and eventually in space37

if the weather type description includes spatial information (Garavaglia et al. , 2010; Leblois,38

5



Simulation 1 Simulation 2

Simulation 3 Simulation 4

Figure 2: Maximum simulated water depths hmax(x, y). x− and y− grid spacing: 100 m.
The corresponding rainfall fields are shown in Figure 1.

2012). Further spatial non-stationarity due to orographic effects can be modelled by resorting1

to landscape variables (Arnaud et al. , 2006).2

A related feature is the so-called intermittency of rainfall, i.e. for a given time step, the3

alternance of areas with and without rainfall. Intermittency may be modelled by considering4

a binary random variable that indicates whether it is raining or not (Kleiber et al. , 2012;5

Leblois & Creutin, 2013). Alternatively, the random variable that models positive rainfall may6

be truncated below zero thereby enforcing, by construction, consistency in the rainfall amounts at7

the boundaries between dry and wet regions (Allard & Bourotte, 2014; Baxevani & Lennartsson,8

2015).9

Another core feature is the spatio-temporal dependence of the rainfall fields. Within10

rainy periods (that may be related to different weather types), the generator must simulate posi-11

tive rainfall values, i.e. rainfall intensities, with spatio-temporal patterns similar to the observed12

ones. Rodriguez-Iturbe et al. (1987) and Cox & Isham (1988) propose spatio-temporal rain-13
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fall models considering that storm events induce a cluster of rain cells, which are represented1

as cylinders in space-time. Gaussian processes with spatio-temporal covariance functions can2

also be employed (Kleiber et al. , 2012; Baxevani & Lennartsson, 2015). However, the marginal3

distributions of rainfall intensities are well-known to be non-Gaussian. In particular, they are4

asymmetrical and, in some areas such as in the South of France, they are heavy tailed (Car-5

reau et al. , 2017). This non-gaussianity of the marginals can be handled by a transformation6

to suitable univariate non-Gaussian distributions. Nevertheless, this increases significantly the7

complexity of the inference scheme for spatio-temporal gaussian processes (Kleiber et al. , 2012;8

Baxevani & Lennartsson, 2015). In addition, although anisotropy can be accounted for (Baxe-9

vani & Lennartsson, 2015), the dependence structure of gaussian processes may be inadequate10

owing to its symmetry (Carreau & Bouvier, 2016) or to its properties regarding extreme events11

(in particular, the asymptotic independence property, see § 2.2).12

With the exception of Evin et al. (2018) in the multivariate case, no spatial stochastic rain-13

fall generator has stochastic mechanisms specially dedicated to account for the spatio-temporal14

behaviour of extreme events (Ailliot et al. , 2015). This is a crucial feature in the context15

of urban flood risk studies. The following § 2.2 presents an overview of existing approaches to16

model extreme events, in terms of both intensity and spatial and spatio-temporal patterns.17

2.2 Modelling extreme events18

The key result of Extreme Value Theory (EVT) is due to Fisher & Tippett (1928) and has found19

many applications in domains such as finance and insurance (Embrechts et al. , 1997) along with20

environmental sciences (Katz, 2002). Interest in extreme value analyses in climate science is21

relatively recent (Kharin et al. , 2007; Goubanova & Li, 2006; Salvadori & Rosso, 2007). The22

result of Fisher & Tippett (1928) shows that the behaviour of the maximum, i.e. the largest value23

of a sample, correctly centered and standardized, converges in distribution to the Generalised24

Extreme Value (GEV) distribution. The GEV distribution encompasses the three extreme-value25

distributions that share the max-stability property, i.e. the maximum of two independent copies26

of random variables from a given extreme-value distribution belongs to the same extreme-value27

distribution.28

In practice, modelling is performed on block maxima where each block represents a given time29

interval. Obviously, this approach is debatable since it may include rather low values for blocks30

in which no large events occurred and it leaves unexploited information contained in other large31

values of the sample, e.g. when several large events occurred in the same block. An alternative32

approach consists in considering the largest values of the sample defined as excesses above a high33

threshold. The distribution of these strictly positive excesses can then be approximated by a34

Generalised Pareto Distribution (GPD) (Pickands III, 1975).35

In both cases (working on block maxima or excesses), we obtain an approximation of the36

upper tail of the distribution of the variable of interest. This allows to extrapolate beyond the37

largest observed values. In particular, probabilities of exceeding high thresholds or high quantiles,38

i.e. levels that are exceeded with a very low probability, can be estimated thanks to the upper39
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tail approximation by the GEV distribution or by the GPD. Similar approaches allow to obtain1

a lower tail approximation.2

In a spatial context, max-stable processes are the straightforward extension of the max-3

ima approach defined previously since they appear as the natural limits for spatial maxima4

taken site by site (de Haan, 1984). By definition, a max-stable process fulfills the max-stability5

property which implies, in particular, that its margins follow a GEV distribution. More pre-6

cisely, a stochastic process Z is max-stable if for each n ≥ 1 there exist normalizing functions7

an > 0 and bn ∈ R such that maxi=1,...,n Zi(x)−bn
an

d
= Z with Z1, . . . , Zn a sequence of indepen-8

dent copies of the stochastic process Z. Max-stable processes spawned a very rich literature9

with various proposed parametric models (Brown & Resnick, 1977; Smith, 1990; Schlather, 2002;10

Kabluchko et al. , 2009; Davison & Gholamrezaee, 2012; Opitz, 2013) and were widely used as11

models for spatial extreme events especially for environmental phenomena. A common repre-12

sentation of a max-stable process is the one due to Schlather (2002) in which the process Z(x),13

a stationary max-stable process on Rp with unit Fréchet marginal distributions, is written as14

maxj Sj max{0,Wj(x)}, where {Sj}∞j=1 are the points of a Poisson process on R+ with intensity15

ds/s2 and {Wj(x)}∞j=1 are independent replicates of a stationary process W (x) on Rp satisfying16

Emax(0,Wj(o)) = 1 with o denoting the origin.17

As we aim to simulate fields of extreme phenomena, we focus in this chapter on unconditional18

stochastic simulations. As a first example of climate extreme modelling, Blanchet & Davison19

(2011) proposed complex models based on max-stable processes designed for heavy snow events.20

One of their results consists in a risk analysis by computing joint survival probabilities of group-21

wise annual maxima. Max-stable models can also help to characterize significant heights of22

extreme waves in the Golf of Lions (Chailan, 2014) and to establish different long-term scenarios23

of littoral erosion that depend on different inputs like wind.24

Max-stable processes in space were extended to the space-time context in Davis et al. (2013a).25

Moreover Davis et al. (2013b) proposed statistical inference for such models based on pairwise26

likelihood. Huser & Davison (2014) obtained consistent estimation thanks to a pairwise censored27

likelihood to model extreme values of space-time rainfall data.28

Max-stable processes being constructed from the pointwise maxima of underlying processes,29

Dombry et al. (2016) presented an algorithm for the exact simulation of a max-stable process at a30

finite number of locations by focusing on the processes that effectively contribute to the maxima.31

An extension with a reduced computational cost but restricted to Brown-Resnick processes is32

introduced in Oesting et al. (2018) when the number of locations is large.33

The physical interpretation of spatial max-stable processes is not straightforward since they34

represent maxima of spatial fields. In general, one simulation of a spatial max-stable process do35

not represent a real event since pointwise maxima are likely to occur at different times. It is36

even more flagrant in a space-time framework where their use and interpretation for simulation37

purposes become extremely difficult.38

As explained before, in the univariate context, an alternative to maxima models are thresh-39

old exceedance models. The generalisation of the GPD to spatial processes yields the so-called40

Pareto processes (Ferreira & de Haan, 2014; Opitz et al. , 2015; Dombry & Ribatet, 2015; Thibaud41
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& Opitz, 2015; de Fondeville & Davison, 2018). Constructively, the Pareto process corresponds1

to the product of a scale component and a component on the spatial structure called spectral2

process.3

There is no unique definition of a spatial extreme event. Dombry & Ribatet (2015) defined4

the notion of `-Pareto processes by considering general exceedances introducing a homogeneous5

cost functional denoted by `. In practice, the choice of ` must mainly depend on the nature6

of the considered phenomenon. Possible examples are functions of the maximum, minimum, or7

mean. For rainfall, the spatio-temporal mean is a good option combining duration, spatial extent8

and magnitude of the event. Clear advantages of thresholding techniques are their potential to9

exploit information from more data and to explicitly model the original event. This last point is10

really essential for the stochastic spatial generator construction purposes.11

So far, Pareto processes were mostly used in a parametric framework, thereby using assump-12

tions on the choice of the underlying dependence structure that may be too strong. In this13

context, Thibaud & Opitz (2015) are interested in `-Pareto processes and proposed an exact14

simulation procedure for the limiting processes of threshold exceedances of all asymptotically de-15

pendent elliptical processes. It is also possible to relax the parametric assumption for the spectral16

processes by relying on non-parametric estimates deduced from observed spectral processes.17

Building on this non-parametric idea and stemming from original works of Caires et al.18

(2011) and Ferreira & de Haan (2014), Chailan et al. (2017) developed a semi-parametric19

approach to generate extreme spatio-temporal fields of waves in the Gulf of Lion (South of20

France). The first step consists in selecting space-time extreme events called storms among a 52-21

year hindcast of wave features over the north-western Mediterranean sea. In the second step, the22

selected storms are uplifted after proper standardisation. As a result, extreme storms of greater23

intensity than observed ones are generated and are illustrated on a case-study concerning the24

quantification of the long-shore mass flux of energy in a coastal area. Palacios-Rodríguez et al.25

(2018) extended this semi-parametric approach by setting up a sound space-time framework26

thanks to links with Pareto processes. A key benefit of the proposed method is the possibility27

to generate an unlimited number of realisations of extreme storms. Another extension concerns28

the selection of extreme episodes with a general space-time cost functional ` quantifying how29

extreme episodes are, in other words the extremeness of episodes.30

The aforementioned simulation approaches for spatial extremes, in the max-stable framework,31

rely on the hypothesis of asymptotic dependence. This entails that dependence is assumed to32

remain constant regardless of the extreme level under consideration. These approaches are33

not suitable when the dependence strength decreases at high levels and may vanish ultimately.34

This behaviour, called asymptotic independence (AI), is very difficult to detect in practice.35

However, analyses of hourly precipitation in the South of France (Bacro et al. , 2019) suggest36

AI behaviour (see also Davison et al. (2013); Thibaud et al. (2013); Le et al. (2018)). Models37

allowing for AI behaviour requires the development of specific approaches. Stationary Gaussian38

processes are examples of AI processes because, except in case of perfect correlation, bivariate39

Gaussian variables are AI (Sibuya, 1960). AI processes can also be obtained by inverting max-40

stable processes (Wadsworth & Tawn, 2012) or as pointwise maxima of samples from a ratio of41
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Gaussian processes with common correlation function (Padoan, 2013).1

Models with flexible dependencies such as max-mixture models (Wadsworth & Tawn, 2012;2

Bacro et al. , 2016) for maxima and other processes for threshold exceedances such as Gaussian3

scales mixture processes or related works (Opitz, 2016; Huser et al. , 2017; Huser & Wadsworth,4

2018) constitute inspiring and promising works. Following an idea of Wadsworth & Tawn (2012),5

Bacro et al. (2016) exploited a max-mixture approach to propose a general spatial model which6

is capable to deal with extremal dependence at small distances, possible independence at large7

distances and AI at intermediate ones.8

These models, allowing AI behaviour commonly assume temporal independence for inference9

purposes. However, developing flexible space-time modelling for extremes is crucial to char-10

acterize the temporal dynamics and the persistence of extreme events spanning several time11

steps. Bacro et al. (2019) proposed a two-stage model for spatio-temporal exceedances that12

remains physically interpretable in an AI context. Following Bortot & Gaetan (2014), they use13

the representation of the GPD as a Gamma mixture of an exponential distribution to formulate14

a hierarchical model integrating space-time dependence thanks to a latent space-time Gamma15

process (Wolpert & Ickstadt, 1998). This Gamma process relies on an elliptical cylinder allowing16

a nice physical interpretation in terms of storms. Statistical inference of model parameters is17

performed thanks to a pairwise log-likelihood for the observed censored excesses. The inter-18

est of this model was exemplified on a real dataset of rainfall in the South of France and it19

was validated by computing empirical estimates of various multivariate conditional probabili-20

ties involving spatio-temporal aspects. This hierarchical model is related to the temporal trawl21

processes (Barndorff-Nielsen et al. , 2014; Noven et al. , 2015) of which Opitz (2017) proposed22

spatial extensions.23

2.3 Stochastic rainfall generator geared toward extreme events24

As argued in § 2.1, to be useful for urban flood risk studies, a spatial stochastic rainfall generator25

should be capable of mimicking the spatio-temporal patterns of extreme events. Therefore, the26

stochastic mechanisms associated with extreme events should draw from the modelling techniques27

described in § 2.2. We identify the following three key challenges.28

As extreme events modelling is not adapted for regular events, a natural strategy would29

be to define a special weather type dedicated to extreme events. To our knowledge, in existing30

approaches, although extreme weather type may be identified a posteriori, no particular technique31

has been proposed for their identification (Leblois, 2012). Both intensity and spatio-temporal32

pattern information should enter in the definition of this extremal weather type. To this end,33

non-parametric descriptors of the extremal dependence structure, such as the madogram, could34

be useful (Cooley et al. , 2006; Vannitsem & Naveau, 2007; Erhardt & Smith, 2012).35

Within the weather type dedicated to extreme events, regular and extreme events are likely36

to be present in different areas and in different time periods. Transitions between regular and37

extreme events must be modelled both in the univariate marginal distributions and in the spatio-38

temporal dependence structure. Therefore, a second issue to consider is the need to rely on mixed39
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univariate marginal distributions that can characterize both regular and extreme events. To this1

end, Carreau & Bengio (2009) stitched together a Gaussian distribution for the lower part and2

a GPD for the upper tail. This hybrid Pareto distribution was used in a mixture model. It3

was shown to be able to adapt to various complex heavy tailed distributions. One drawback of4

this approach is the presence of a potentially non-negligible lower tail which may be inadequate5

to model phenomena such as precipitation. A recent alternative to this hybrid was proposed in6

Naveau et al. (2016) who take benefit from EVT for both large and low values (excluding zeros).7

Their statistical model ensures a smooth transition between the upper and the lower tails with8

a reasonable number of parameters.9

The last and probably most challenging issue concerns the need to design spatio-temporal10

processes with transitions in the dependence structure between extreme and ordinary events.11

As far as we know, there is no proposition along these lines. Nevertheless, one possibility to12

simulate spatial fields that contain both regular and extreme events is to rely on the approach in13

Thibaud et al. (2013) in which a single dependence structure, inherited from either a max-stable14

or an inverted max-stable process, is employed. A related problem is the non-stationarity of the15

dependence structure in space and time where few proposals exist. For instance, Fox & Dunson16

(2015) developed dynamic latent factor models in the Gaussian framework. In the max-stable17

framework, Huser & Genton (2016) integrated covariates in the dependence structure. In both18

cases, the dependence structure is non-stationary but is not able to change of distribution family,19

as would be required to make a transition between ordinary and extreme rainfall events.20

3 Outlook21

As far as an operational use is concerned, using the fields from a stochastic rainfall generator22

as inputs for a free surface flow model such as that presented in Section 1 raises a number of23

issues. In each of the 15 minute shallow water simulations presented in Section 1, 2 CPU seconds24

are needed to simulate 1 second using a standard PC. This is because the urban geometry is25

complex. Refined computational grids are needed to capture hydraulic singularities accurately.26

The typical computational cell width in a two-dimensional urban shallow water model is 1 m.27

This precludes refined shallow water models to be used on the scale of the district (let alone28

the entire conurbation) for real-time purposes. Besides, a stochastic rainfall generator implies29

that many realizations of the rainfall field are to be used as inputs for as many shallow water30

simulations, so as to obtain a statistical description of danger/damage over the area of concern.31

This increases the computational effort even more.32

An alternative consists in upscaling the free surface flow model. Fast-running free surface33

flow models can be obtained by averaging the shallow water equations over large domains (the34

size of e.g. a house block). The properties of the buildings and other singularities that influence35

the flow are described in a statistical fashion. A key parameter that emerges from averaging is36

the porosity of the urban medium, that is, the plan view fraction of the urban area available for37

the storage and transport of water. A wide variety of porosity models (Guinot & Soares-Frazão38

(2006); Sanders et al. (2008); Guinot (2012); Özgen et al. (2016); Guinot et al. (2017, 2018);39
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Viero (2019)) have been proposed and the field is in rapid development. Porosity models have1

been reported to run two to three orders of magnitude faster that their classical shallow water2

counterparts (Sanders et al. (2008); Guinot et al. (2018)). Such computational rapidity is3

compatible with the stochastic simulation of multiple rainfall scenarios.4

A possible framework for an integrated rainfall-induced urban flood crisis management system5

could be the following.6

1. Generate stochastic rainfall fields on the scale of the conurbation, with the temporal and7

spatial resolution required by the free surface flow model (i.e. 100 m, see Section 1).8

2. Use the multiple realizations of the rainfall fields to run fast, porosity-based shallow water9

simulations. This allows the urban areas with the higher risk to be identified on a coarse10

scale.11

3. Select those areas where the flood risk has been identified as the higher, and where a12

detailed mapping of the risk on the metric scale is deemed necessary. For these, run13

refined simulations covering the (limited) spatial extension where the detailed mapping is14

needed. To do so, the initial and boundary conditions for the refined flow model must be15

interpolated from those of the porosity model. The same goes with the rainfall field.16

Although simple in its principle, the above sequence is not straightforward to implement.17

Concerning point 1, with a few exceptions (Benoit et al. , 2018), observation series are not18

available over a sufficiently dense network of sites and over long enough observation periods at the19

desired resolution. In these cases, downscaling techniques can be employed by making use of aux-20

iliary information such as rainfall radar data (Delrieu et al. , 2014). Few downscaling techniques21

were proposed in the extreme value framework. Very recently, Engelke et al (2019) developed22

a method based on a theoretical link between the extremal distribution of the aggregated data23

and the corresponding underlying process.24

Concerning Step 3, very little is known about the constraints attached to initial and boundary25

condition scale transfer from the porosity model to the local, refined shallow water model. This26

specific issue is currently under study in the Inria Lemon research team.27

As far as urban floods are concerned, the generation of rainfall scenarios is not the only28

possible application field of the extreme value theory. In coastal areas, urban flooding may29

also result from storm surges. Applying the EVT to wave forcing so as to obtain probabilistic30

assessments of the marine submersion risk is also a path for research.31

12
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