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Abstract

A numerical framework allowing insight in fluid dynamics inside patient-

specific human hearts is presented. The heart cavities and their wall dynam-

ics are extracted from medical images, with the help of a non-linear image

registration algorithm, in order to obtain a patient-specific moving numer-

ical domain. Flow equations are written on a conformal moving computa-

tional domain, using an Arbitrary Lagrangian-Eulerian framework. Resulting

equations are solved numerically with a fourth-order finite-volume technique.

Application of this framework to compute a patient-specific left heart flow is

presented as well. The blood flow is characterized by its transitional nature,

resulting in a complex cyclic flow. Flow dynamics is analysed in order to

reveal the main fluid phenomena and to obtain insights into the physiologi-

cal patterns commonly detected. It is demonstrated that the flow is neither

laminar nor fully turbulent, thus justifying a posteriori the use of Large Eddy

Simulation.
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1. Introduction

Intracardiac hemodynamics is closely related to the morphology and func-

tion of the heart: changes in the heart shape or in its wall kinetics alter the

blood flow patterns. Therefore, analysing the blood flow spatial and temporal

distribution in the heart may provide information on cardiac abnormalities.

However, in clinical routine, hemodynamics is mostly observed indirectly

through global variables as the cardiac output in order to assess the cardiac

performance. Indeed, a synthetic description of the available information

and its relation with the heart function is still lacking. Note also that the

hemodynamics analysis may not only improve early diagnosis but also open

up new perspectives for the understanding of cardiovascular physiology.

Recent technological innovations in imaging techniques have provided

valuable opportunities for non-invasive assessment of hemodynamics. Blood

flow velocities can be measured in vivo using phase-contrast magnetic reso-

nance imaging (PC-MRI) or by echocardiography techniques.
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PC-MRI studies have contributed to the understanding of hemodynamic

features [1, 2, 3, 4, 5, 6, 7]. Although very comprehensive, the PC-MRI

velocity mapping is not real-time. Hence, beat-to-beat variations in the flow

cannot be recorded (the k-space is filled over many cardiac cycles). Moreover,

PC-MRI suffers from a relatively low spatio-temporal resolution, precluding

the observation of small-scale and fast time-varying flow features [8, 9].

Echocardiography techniques [10, 11], with higher spatio-temporal resolu-

tion make an alternative to PC-MRI. However, echocardiography only gives

access to velocity components directed towards or away from the ultrasonic

beam, while one would want to measure the full 3D flow vectors. Never-

theless, investigations have been conducted on normal and abnormal hearts

leading to potential hemodynamics-based biomarkers for cardiac health. [12,

13, 14].

In order to obtain more information about the heart hemodynamics, in

vitro investigations have been performed in fully controlled experiments [15,

16, 17, 18]. Blood patterns in heart chambers replications have been studied

thanks to particle image velocimetry in healthy and abnormal configurations.

In addition to these studies, computational fluid dynamics (CFD) has

been more and more used to predict blood flow in the heart over the last

decade. In silico replications of heart chambers, mainly the left ventricle

(LV), have been considered. Simulations in idealised ventricles [19, 20, 21] or

in more realistic geometry [22] have been performed. As in vitro experiments,

such fundamental CFD studies are particularly useful to isolate and elucidate

the effect of well-controlled parameters on the blood flow. However, inher-

ent simplifications raise the question of the relevance of their conclusions
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for individual clinical cases. In this context, numerical simulation using a

combination of computational methods and medical imaging techniques for

determining vascular geometry appears to be a relevant strategy. CFD starts

to be a mature technique for arterial flows [23, 24, 25, 26], but its application

to heart haemodynamics faces additional challenges:

• the geometry of the blood domain is complex and it undergoes large

deformations,

• opening and closing valves make the topology of the domain change

over the cardiac cycle,

• the flow is the result of a complex electrical-fluid-structure interaction

problem,

• the flow regime is most probably transitional between laminar and tur-

bulent and varies over the cardiac cycle.

Two main different strategies have been developed to obtain simulation of

the blood flow in realistic heart geometries. The most natural one is to extract

the heart geometry at one chosen moment in the heart cycle and to solve an

electrical-fluid-structure interaction (EFSI) problem [27, 28, 29, 30, 31, 32].

In this approach, patient-specific data are needed [33, 34]. What is the ex-

act rheology of the myocardial muscle? What is the load produced by the

heart environment? How to reproduce the mechano-electric coupling in the

heart muscle? All these questions make such an approach extremely chal-

lenging. Another strategy consists in using realistic heart wall movements

extracted from cine MRI or Computed Tomography (CT) scan data. Heart
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movement is not computed, but prescribed from the patient-specific med-

ical images, which can be acquired using standard clinical imaging proce-

dures. Such a computational approach, where the geometry and the move-

ments are extracted from images will be referred to as image-based compu-

tational fluid dynamic (IB-CFD). Different research teams have developed

IB-CFD methods for heart flows, more specifically to study the left ventricle

alone [35, 36, 37, 38]. Recently, more advanced work has been published,

using a full heart model obtained from CT images [39] or a heart model fed

from MR images [40]. The feasibility of cardiac IB-CFD has been shown,

but the flow results notably suffered from limited spatial resolution or par-

tial geometries (LV only in the majority of the cases). Furthermore, there

has been remarkably little focus on the presence of turbulence in the heart,

except in experimental works [16, 18].

In the present paper, an image-based CFD method is presented. As in

the aforementioned IB-CFD works [35, 36, 37, 38], medical images are used

to generate a moving patient-specific domain, in which the blood flow equa-

tions are solved. The geometry movements are generated from a 4D sequence

(MRI or CT scan images) treated by an appropriate image registration algo-

rithm [41, 42]. This approach has been used before to compute blood flow

in aortas [43]. It is further developed for application to the left heart flow,

notably by introducing valve modeling. In order to demonstrate the ability

of the method to compute flow in the heart, its application to a full patient

left heart using 4D CT scan images is presented. Extensive description of the

flow obtained is provided and the main flow characteristics usually reported

in the literature are emphasised. First numerical insight into turbulence in
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the left heart is reported as well.

The numerical method is detailed in § 2. The characteristics of the ap-

plied case is presented in § 3 and the flow field obtained is described in § 4.

Concluding remarks are given in § 5.

2. Methodology

In this section, the image-based computational fluid dynamics approach is

detailed. First, the fluid problem resolution is detailed in an ALE framework.

Next, § 2.2 presents how the moving computational domain is obtained from

the medical images. Specific valve modeling is needed and is the object

of § 2.3. Finally the method to obtain the inflow and outflow boundary

conditions is described.

2.1. Fluid problem

2.1.1. Governing equations

Blood can be modelled as an incompressible fluid, but red blood cells

induce a complex rheological behaviour [44]. However, for high stress levels

and in large vessels, non-Newtonian effects are usually neglected and blood

is usually modelled as an incompressible Newtonian fluid in numerical sim-

ulations [24, 39]. Taking the incompressible flow assumption into account

and assuming blood as a Newtonian fluid, the fluid motion is described by

the Navier-Stokes (NS) equations. These equations are solved on the moving

blood domain Ωf (t) ⊂ R3 bounded by ∂Ωf (t). The boundary ∂Ωf (t) is such

that ∂Ωf (t) = ∂Ωi
f (t) ∪ ∂Ωw

f (t) ∪ ∂Ωo
f (t) and ∂Ω

i
f (t) ∩ ∂Ωw

f (t) ∩ ∂Ωo
f (t) = ∅

where ∂Ωi
f (t) represents a fluid inlet boundary where a Dirichlet condition is
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prescribed on the velocity field, ∂Ωw
f (t) represents the vessels and heart wall

boundary and ∂Ωo
f (t) represents a fluid outlet boundary. The NS equations

read:

∂uf

∂t
+ (uf · ∇)uf = −1

ρ
∇p+ ν∇2uf + f ,

∇ · uf = 0,











on Ωf(t) (1)

where uf is the fluid velocity field, p is the pressure field, ν the kinematic

viscosity, ρ the density and f a volumetric force. The corresponding initial

and boundary conditions are,

uf (x, 0) = u0
f(x) on Ωf(0), (2)

uf(x, t)|x∈∂Ωw
f
(t) = us(x, t) on ∂Ωw

f (t), (3)

uf (x, t)|x∈∂Ωi
f
(t) = −U in(x, t)no(x) on ∂Ωi

f (t), (4)

where U in(x, t) is the inlet velocity profile imposed as a Dirichlet condi-

tion, no the outward normal at the inlet faces, and us is the endocardium

surface velocity field imposed as a Dirichlet condition as well. A convective

outlet boundary condition is imposed on ∂Ωo
f (t) as,

∂uf (x, t)

∂t
+ U conv ∂uf (x, t)

∂n
= 0, (5)

where n is the outward normal at the outlet patch and U conv the convective

velocity. The uniform convective velocity U conv is imposed in such a way to

meet the global mass conservation over Ωf (t). The surface velocity us is not

computed but extracted from the medical images and applied as boundary

conditions for the fluid problem (see section 2.2.2).
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2.1.2. Time advancement scheme

The time advancement scheme is an explicit low-storage four-step Runge-

Kutta scheme [45] recast in an ALE formalism and coupled with the Chorin’s

projection correction method [46] for the pressure term. The grid is displaced

during the prediction step only.

The starting point for deriving the time-advancement scheme is the in-

tegral form of the NS equations on a node-centred control volume ω(t), its

boundary St moving with the mesh velocity ug. The equations integrated

in time between tn=t0 + n∆t (∆t being the time step size) and tn+1 are

classically [47]:

∫ tn+1

tn

d

dt

∫

ω(t)

u dωdt +

∫ tn+1

tn

∫

ω(t)

∇ · ((uf − ug)uf ) dωdt = RHS, (6)

where the RHS containing the viscous fluxes and the pressure gradient is

omitted in the following. The four sub-steps of the time advancement are

computed as:

u0
f = un

f ,

ui
f = un

f

Ωn

Ωi
+ αi

∆t

Ωi

∫

ω(t)

∇ · (ui−1
f − un+1

g )ui−1
f dω for i = 1, ..., 4

un+1
⋆ = u4

f ,

(7)

where un+1
⋆ =u⋆(t

n+1) is the predicted (non-solenoidal) velocity field, αi is a

coefficient as αi = [1/4, 1/3, 1/2, 1] and Ωn (resp. Ωi) the cell volume at time

tn (resp. ti=tn + αi∆t).

The presented numerical method must satisfy a discrete version of the so-

called Geometric Conservation Law (GCL) [48, 49]. Referring to the classical

interpretation of the GCL, the numerical method has to preserve the state of
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a constant flow. Considering a constant flow c, a discrete GCL arises from

the presented numerical scheme for each sub-step as:

Ωi − Ωn = −αi∆t

∫

ω(t)

∇ · un+1
g dω for i = 1, ..., 4. (8)

Grid nodal velocity ug is constant and the metrics evolve linearly during the

computational time step. In order to satisfy exactly the Eq. (8), the integra-

tion is computed at the midpoint configuration for each sub-step. Thus, the

numerical scheme (7) satisfies the Discrete GCL for each sub-step.

At the end of this prediction step, the grid reaches the final position of

the time step. Hence, the projection step to calculate pressure is performed

over a fixed grid. A Deflated Preconditioned Conjugate Gradient algorithm

is used to solve the Poisson equation [50] involved in the projection step.

A homogeneous Neumann condition is applied for the pressure calculation

and the pressure constant is fixed as the averaged pressure in the numerical

domain so that the volume-averaged pressure over Ωf (t) is zero.

This ALE method has been implemented in the YALES2BIO1 solver [51].

This code is an adaptation of the YALES22 [52] research solver for biomedical

applications. As such it inherits from YALES2 4th-order central scheme

in space on unstructured meshes and its capabilities of massively parallel

computations of turbulent flows [53].

2.1.3. Large Eddy Simulation

Direct numerical simulation (DNS) is suitable for low Reynolds number

flow: all the large and small scales are resolved in this approach, requiring

1www.math.univ-montp2.fr/∼yales2bio
2www.coria-cfd.fr/index.php/YALES2
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high grid densities. Reynolds Averaged Navier-Stokes (RANS) approaches

for modelling turbulence are not appropriate here, because of the transitional

nature of the flow. In the present work, the Large Eddy Simulation (LES)

approach is used. While the large scales of the flow are resolved, the smaller

subgrid scales (SGS) are modelled using SGS models, usually eddy-viscosity-

based models.

In this work, a SGS model able to handle wall bounded flows in complex

geometries is used [54] as well as a well established Dynamic Smagorinsky

formulation [55]. Filtering is here performed implicitly, the filter width being

equal to the grid spacing. When using the Dynamic Smagorinsky model,

coefficient Cs obtained by the dynamic procedure was locally averaged and

the obtained SGS viscosity satisfies the condition ν + νSGS > 0.0.

2.2. Computational Domain

2.2.1. The left heart

The normal left heart has two cavities: the left atrium (LA) which col-

lects blood from four pulmonary veins and the left ventricle (LV) that receives

blood from the LA to propel it into the primary blood system through the

aorta (AO). The four pulmonary veins are distinct vessels named by their

position: the right superior pulmonary vein (RSPV), the right inferior pul-

monary vein (RIPV), the left superior pulmonary vein (LSPV) and finally

the left inferior pulmonary vein (LIPV).

The LA and the LV are separated by the mitral valve (MV) which prevents

blood from flowing back from the LV to the LA. The MV has two leaflets

which are prevented from prolapsing by the chordae tendineae and papillary

muscles running from the cusps of the valve leaflets to the side of the LV. The
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LV is approximately conical in shape and presents a nearly circular outline

in its transverse section. The LV and the AO are separated by the aortic

valve (AV) positioned at a stenosis between the two cavities, inserted into

the walls of the sinuses of Valsalva at the root of the aorta. The aortic

valve has three simple leaflets without any attachments that come together,

providing mutual support when they are closed.

Two periods can be distinguished during the cardiac cycle: the diastolic

period (the AV is closed, the MV open) and the systolic one (the AV is

open, the MV closed). During diastole, the oxygenated blood comes from

the LA to the LV. During systole, the myocardium contracts and blood is

ejected from the ventricle. During these two phases, the LA and LV walls

have inhomogeneous and rapid movements with large volume variations (up

to 60% for the LV).

2.2.2. Extraction of the heart motion

In order to extract the movement of the endocardium from the medical im-

ages, image registration is used. It is a classical image processing technique,

which consists in finding a transformation to map two images called to the

template image and the reference image. It is commonly applied to cardiac

images [56], notably to obtain clinical information about the myocardial con-

tractile function. Here, a classical image registration problem [57] is solved to

reconstruct the movement of the frontiers of the computational domain. The

algorithm used is based on a voxel similarity measures method [58], which

directly relies on the images grey levels.

A set of N 3D images Ii of a patient heart are taken at different times

ti, 0 ≤ t0, t1, ..., tN−1 < T during the heart cycle of period T . One of the
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N images is selected as a template image and N − 1 transformations ψi

between the template image and the i-th image Ii (successively considered

as the reference image) are computed. Transformation ψi is searched so that

I0(ψi(x)) = Ii(x) for each voxel, where Ii(x) stands for the voxel grey-level

value at position x in the i-th 3D discrete image. Each transformation ψi is

computed through an optimisation problem reading: given two images I0 and

Ii, find a mapping ψi such that the squared intensity difference d between

I0(ψi(x)) and Ii(x) is minimized for each voxel. However, the problem is ill-

posed and the solution ψi is not unique: additional constraints are needed.

A constraint based on the Jacobian matrix of the local voxel deformation

J and its singular values is applied on ψi, thanks to prior knowledge of

the sought deformation [59]. A detailed description of this procedure can

be found in [60]. This additional constraint plays the role of a regularization

term. The multi-objective problem is dealt with by scalarization, a parameter

λ weighting the regularization term (see Eq. 11). A compromise for the value

of λ has to be found (here empirically) for each set of images, in order to

avoid partial deformations (λ too high) or non-physical deformations due to

excessive warping (λ too small).

In addition, in order to avoid local minima and to promote smooth trans-

formations, a two-loop algorithm is used, with evolving weighting of the ob-

jective functions (inner loop) and progressively refined image filtering (outer

loop). During computation of the deformations, d, the sum of the squared

intensity difference of each voxel, is weighted. For the j-th iteration of the

inner loop, the weight is defined as the inverse of the residual sum of the

squared differences computed at the previous inner iteration j − 1 and is
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denoted by 1/dj−1 (see Eq. 9). Because dj−1 has a high value for the first it-

erations, more weight is initially given to the regularization term, in order to

get smooth deformations. As the algorithm gets close to the final solution, d

decreases, giving less weight to the priors and letting the algorithm compute

more precise deformations.

In order to increase the likelihood of achieving a good solution, a Gaus-

sian pyramid approach is used [61]. A number of outer iterations consisting

in successive lowpass filtering are performed, using a Gaussian smoothing

convolution kernel Gσ of width σk decreasing with k. Finally, the sought

transformation ψj,k
i at the inner iteration j and the outer iteration k mini-

mizes the function f j,k defined as:

f j,k
1 (ψj,k

i ) =
1

2dj−1

∫

Ω

([Gσk ∗ I0](ψj,k
i (x))− [Gσk ∗ Ii](x))2 dΩ, (9)

f j,k
2 (ψj,k

i ) = g(J(ψj,k
i )), (10)

f j,k(ψj,k
i ) = f j,k

1 (ψj,k
i ) + λf j,k

2 (ψj,k
i ), (11)

where f j,k
1 (ψj,k

i ) is the term related to the difference in grey levels and f j,k
2 (ψj,k

i )

the regularization term. The function g is computed from the Jacobian ma-

trix singular values and determinant. Technical details can be found in [59].

2.2.3. Application of the patient-specific movement to the computational left

heart grid

The template image corresponding to volumetric data I0 is imported into

an image processing software (ScanIP;Simpleware Ltd., Exeter, UK). A pre-

processing step is applied on the image before segmentation. The region of

interest in the image I0 is isolated and the image is smoothed thanks to a
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Gaussian filter to erase noise inherent to the medical images protocols. The

segmentation itself is done by a classical thresholding method [62]. A suit-

able image intensity range which encompasses the voxel intensities of the

region occupied by blood in the heart is selected. Note that the quality of

the segmentation relies, at least partially, on the operator’s skills and knowl-

edge of the human heart morphology and the quality of the chosen medical

image. Image resolution plays a role in the potential domain simplification

at this step. Trabeculae, left atrial appendage or papillary muscles can either

be kept or neglected depending on the image quality and spatial resolution

available. The 3D geometric reconstruction covers all the space occupied by

blood in the left heart cavities. The surface of the geometric reconstruction

of the heart is triangulated.

For each couple of images (I0,Ii) a 3D deformation field ψi is computed as

described in the previous section. If wanted, the deformation fields can also

be computed for couples defined as (Ii−1,Ii); this approach is mathematically

equivalent. Trilinear interpolation from each of these deformation fields to the

template surface mesh is done. Thus, a set of N−1 successive surface meshes

matching the physiological cardiac images at different times ti is produced

as schematized in Fig. 1.

Position and velocity of all surface points are needed at any discrete time

of the simulation, not only at the times t0, t1, ..., tN−1. Since all the generated

surface meshes share the same topology (number and connection between

nodes, number of cells), a trigonometric interpolation is used to compute the

position and the velocity of each node, surface position and velocity then

read:
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Figure 1: Mesh deformation procedure applied to a left human heart. The

template mesh segmented from the image at time t0 is deformed thanks to

ψi to obtain the mesh at time ti. This procedure is done for each image in

the cardiac cycle in order to obtain the corresponding meshes.

xs(t) =

m
∑

i=0

[ai cos(2iπ
t

T
) + bi sin(2iπ

t

T
)],

us(t) =
2iπ

T

m
∑

i=1

[−ai sin(2iπ
t

T
) + bi cos(2iπ

t

T
)],



















on ∂Ωf (t) (12)

wherem is the number of Fourier modes (m = (N−1)/2 orN/2 depending

on the parity of N) and ai, bi the Fourier coefficients. Thus, needed surface

velocity us (Eq.3) of the patient heart is entirely extracted from the medical

images.
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2.2.4. Volumetric grid

The template surface is imported in a commercial mesher (Gambit, AN-

SYS) to generate a template unstructured tetrahedral mesh. The computed

boundary Fourier coefficients of Eq. (12) are interpolated in this template nu-

merical domain. The computational mesh boundary now follows the shape

of the patient endocardium and is updated in every step of the simulation.

Motion of all internal points in the computational mesh is deduced from this

prescribed boundary motion thanks to a harmonic extension of ug onto the

numerical domain. At each iteration, nodal velocity ug is calculated through

the computation of the following problem [63],

∇ · (k(x)∇ug(x)) = 0, on Ωf (t) (13)

and,

ug(x)|x∈∂Ωf (t)
= us(x) on ∂Ωf (t), (14)

where k(x) is the displacement diffusion coefficient. This coefficient is de-

termined to preserve a good computational grid quality. The larger elements

will distort at a faster rate than the smaller ones - a desirable feature for our

application in order to preserve grid quality. The grid quality is monitored

during the simulations. When the boundary displacement becomes too large

compared to the local cell sizes, the cell quality can be highly deteriorated

and some cells can even become degenerated. This can lead to convergence

problems or negative cell volumes. In this case, the numerical domain is re-

meshed and the fluid solution is interpolated on this new discretised domain.

Fourier coefficients of Eq. (12) are interpolated as well.
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2.3. Valves

Since the valves are thin highly-moving structures, their precise move-

ments are not extractable from MRI or CT scan exams. Besides, on the

numerical side, incorporation of moving valve leaflets in the grid topology

would most probably imply a grid quality degradation, making numerous

re-meshing mandatory. Hence, it was chosen to model the valves using an

immersed boundary technique.

Valves annuli geometries are reconstructed by visual inspections of the

medical images. The annulus geometry is represented as a cloud of points

pi, whose nodal coordinates are used to define the valves annulus within the

numerical domain. These markers allow the reconstruction of the aortic and

mitral annuli.

The shape of the aortic valve is simply approximated by the plane passing

through the set of markers and obtained by a least squares method. As the

focus of the study is on the flow in the atrium and the ventricle, it is not

mandatory to develop a more complex model for the aortic valve, since its

morphology has very limited effects on the LA/LV haemodynamics. Note also

that the physiological aortic valve open position offers virtually no resistance

to the main flow passing through the aorta from the LV. The regression

plane modeling the aortic valve is thus made alternatively fully permeable or

impermeable depending on the phase in the cardiac cycle.

The mitral valve is represented by a more complex model, since its shape

is expected to strongly impact the LV haemodynamics. A mitral plane Pα

is defined to fit the set of markers pi with a least squares method and the

mitral annulus geometric center Cα is computed. A plane Pβ parallel to Pα
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is defined at a distance l(t). When the MV is open, it is assumed that the

cross section area seen by blood is elliptical. An ellipse ǫ of axes a(t), b(t)

is defined on Pβ and its angle in its plane set manually to fit the medical

images. The ellipse center Cǫ is not a direct projection of Cα on plane Pβ, an

eccentricity e(t) is defined. The eccentricity e(t) is the distance between the

projection of Cα on plane Pβ and the ellipse center Cǫ. Leaflets are considered

as the surface linking the mitral annulus to the elliptical opening ǫ. Position

of the annulus markers are projected on the ellipse. Therefore, the leaflets

surface is reconstructed by triangles pieces between the annulus markers and

the projected annulus markers on the ellipse (see Fig. 2). To summarize, the

quantities needed to feed this model are:

• the mitral annulus markers pi,

• the average leaflets length l(t) which is the distance between Cα and

the generated plane Pβ,

• the eccentricity e(t) of the ellipse center Cǫ compared to the projection

of Cα on plane Pβ,

• the ellipse axis a(t), b(t) and its angle in the Pβ plane.

The scheme model and its numerical representation are shown in Fig. 2.

Time evolution of the ventricle volume is used to switch between the open

or closed positions for each valve. LV volume decreases during systole, then

increases during diastole: these two parts of the cardiac cycle are determined

by computing the ventricle volume variations. The opening and closing valve

time is less than 5% of the heart cycle duration [64]. Therefore, the opening of
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Figure 2: Top left: annulus markers and modelled MV leaflets. Parameters

a, b of the ellipse ǫ are indicated. Top right: full MV model included in the

numerical domain (the AV is represented as well). Bottom: MV scheme.
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the mitral valve and closing of the aortic valve (vice versa) can be considered

as instantaneous and simultaneous events as a first approximation. This

means that the left heart has only two topological configurations during the

cardiac cycle:

• MV closed, AV open: this corresponds to the systolic phase,

• MV open, AV closed: this corresponds to the diastolic phase.

Note that MV and AV happen to be closed at the same time in physiological

conditions. This corresponds to the isovolumic phases which last for only a

small fraction of the cardiac cycle. Given the poor time resolution reachable

by 4D medical imaging systems (IRM and CT scan), the isovolumic phase

cannot be described accurately anyway. Assuming that the MV and AV are

never closed at the same time is thus an acceptable assumption given the

accuracy of the medical data used to feed the CFD solver.

Knowing the MV leaflets position during the heart cycle, their effect on

the blood flow is accounted for thanks to an immersed boundary method

(IBM) [65]. For this purpose, the leaflets representations (plane for AV and

triangle by parts for the MV) are first given a thickness s so that a few mesh

nodes are located within the valves.

Grid nodes are tested to decide whether they are in the leaflets or not. For

the AV, the distance from the AV plane is computed. If the node distance is

within the closed interval [− s
2
, s
2
] the node is tagged as belonging to the AV

valve. For the MV, each node being at a distance within [− s
2
, s
2
] of one of the

MV triangle are treated. The node is projected on the corresponding triangle

and the triangle barycentric coordinates are computed. The node is tagged
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as belonging to the MV valve if all of the barycentric coordinates are greater

than zero. Then, a force f in the NS equations (1) is set to impose the fluid

velocity to zero within the leaflets. Let us assume that the NS equations are

discretized in time as:

un+1

f
− un

f

∆t
= RHSn + fn, (15)

where ∆t is the simulation time step, fn the force imposed at time tn and

RHSn the right hand side containing the convective, viscous and pressure

terms at tn. Imposing the velocity to be zero at time tn+1 requires:

fn = −RHSn − un

f

∆t
. (16)

This expression is used at each mesh node lying within one of the valve

region. The finite-volume scheme used being node centred and since the force

fn is imposed at nodes lying into valve leaflets, a null velocity is imposed in

the entire dual cell where the governing equations are integrated. Thus, there

is no interpolation of the forcing term and the valves geometry is described

in a stepwise way. fn is set to zero anywhere else.

Note that, as the opening/closing of the valve is not resolved, valves switch

instantaneously from closed position to open position and vice versa. When

open, some small displacements may be seen because of the displacement of

the valve annulus, but they are here neglected. As a consequence, the source

term used mimics the presence of valves as fixed obstacles.

2.4. Inlet and outlet boundary conditions

Inlet boundary conditions can be extracted from PC-MRI and interpo-

lated on the computational domain inlets surfaces. However, if only CT scan
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images are available, a different strategy must be used. As blood is consid-

ered incompressible, reasoning based on mass conservation can be made to

overcome the lack of inflow and outflow information. As already stated in the

last section, only two topological configurations are considered (MV closed,

AV open or AV closed, MV open). This assumption allows a consistent def-

inition of the inlet/outlet boundary conditions. Indeed, mass conservation

imposes, for the first case (MV closed, AV open):

Qi(t) =
dV1
dt

, (17)

where Qi(t) is the inlet flow rate to be imposed at the pulmonary veins V1,

V2 and V3 are respectively the LA, LV and the aortic root volumes. In the

second case MV open, AV closed, mass conservation imposes:

Qi(t) =
dV1
dt

+
dV2
dt
, (18)

Therefore, the flow rates are only determined by the time evolution of the

studied heart geometry, which is directly related to the medical images. The

function U in
j (x, t) is used for the j-th inlet condition (j=1,..,4). Functions

can be modified to impose velocity profiles if desired. For uniform inflows,

the Dirichlet condition (see Eq. 4) reads:

U in
j (t) =

Qi(t)

Aj
ζj, (19)

Where Aj is the cross-section area of the j-th pulmonary vein and ζj the flow

distribution between the four pulmonary veins (ζj=0.25 for all j correspond-

ing to an equipartition of the inflow).
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Figure 3: Template computational domain extracted from a 3D medical im-

age. The same domain is represented for four different points of view and the

left ventricle (LV), left atrium (LA) and Aorta (AO) are indicated. Black line

passing through the left heart indicates the position of slices used to describe

the flow in section 4.
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3. Application to a left heart: problem formulation

3.1. Heart model and extraction of the deformation

Using the framework described above, deformations along a cardiac cycle

are built from an actual CT exam of a patient treated at the University

Hospital of Toulouse Rangueil (France). The exam consists inN = 10 medical

images of spatial resolution 2×2×2 mm (corresponding to 128 × 148 × 156

voxels) which are available along the cardiac cycle lasting T = 1000 ms.

The template geometry is extracted at a given time t0 taken during the mid-

diastole.

Due to limitations in spatial and temporal resolutions, the complex in-

tracardiac geometry cannot be fully reconstructed from medical images. The

acquisition frequency of the images forbids precise observation of potential

fast heart movement. However, the analysis of the flow features in the next

sections suggests that this frequency is sufficient for this application. As

shown in Fig. 3, the template numerical domain extracted includes the LA,

LV, the aortic root and four pulmonary veins. Left atrial appendum papil-

lary muscles are omitted. The LV has a height of 8.8 cm from the MV to the

apex (the lowest extremity of the LV in Fig. 3) and a maximum diameter of

order of 5 cm. The LA has a height of 5.5 cm from the MV to the upper

pulmonary root and a maximum diameter of order of 4 cm.

A focus on the left atrium and its four pulmonary veins is shown in Fig. 4

(left). Sketch of inflow angles of the four pulmonary veins is also shown,

giving an idea of the flow trajectory in the atrium. Table 1 shows measures

of the ostia in the atrium. Blood velocity at the LA enters will be influenced

by these areas.

24



Figure 4: Left, left atrium with its four pulmonary veins named. Right,

sketch of inflow angles and the four pulmonary veins projected on a plane

which can be seen on the left picture. The dashed line indicates that the flow

is directed a lot more toward the MV compared to the others.

A nearly isotropic surface mesh is generated from the geometry recon-

structed from medical images. The characteristic length of each triangle is

imposed to be close to 2 mm. The template surface grid is deformed based

on the method described in section 2.2.2. The deformation procedure uses

12 outer iterations: the initial Gaussian kernel width being σ0 = 40 voxels

with a decrement between each of the outer iterations of 3 voxels. The inner

iterations are either stopped after 20 iterations or when the total residual

squared difference is under 0.01. The regularization weight λ is set to 1.0.

The boundary Fourier coefficients of Eq. (12) are computed from the obtained

meshes.
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RSPV RIPV LSPV LIPV

Small diameter (mm) 11.8 12.0 14.0 10.3

Large diameter (mm) 14.9 12.7 15.5 15.2

Area (mm2) 138.1 119.7 170.43 123.0

Table 1: Geometric characteristics of the ostia. Ostia are oval in shape. The areas reported

are obtained by assuming elliptic shapes.

3.2. Computational mesh and simulation details

A nearly isotropic grid is created from the heart model described in the

above section using the commercial software Ansys Gambit which was se-

lected for its ability to generate good-quality tetrahedral mesh, appropriate

for finite-volume formulations. The spatial resolution is imposed to be close

to 0.8 mm in all three spatial directions along the cycle, which yields grids of

approximately three-million tetrahedral elements. Computed Fourier coeffi-

cients are interpolated on this model surface. In this study, re-meshing was

used at each acquisition instants ti, i = 0, ..., 9 in order to ensure good mesh

quality and small numerical errors over the whole cardiac cycle.

Valves are modelled as explained in section (2.3). A close examination

of the medical images from the CT scan allowed to set the leaflets length

to l = 12 mm for the MV. The open area presented to the blood flow is

represented by an ellipse of axis a = 15 mm and b = 8 mm. This area is

supposed constant over the time when the MV is open. Eccentricity is fixed

to e = 5 mm from the same medical data.

The simulation time step is fixed by a CFL condition (CFL=0.9) con-

sistent with the explicit time integration used in the CFD solver; this cor-
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Element Umax D = 2
√

A
π

Remax tm/T

AV 0.96 m.s−1 2.20 cm 5300 0.16

MV 1.08 m.s−1 1.87 cm 5000 0.52

Pulm. vein 0.79 m.s−1 1.00 cm 2000 0.52

Table 2: Main flow parameters describing the simulation. The section-averaged maximum

velocity is indicated as Umax. The maximum Reynolds number Remax is calculated thanks

to mean D the diameter. Time when the Remax is reached is reported as tm/T . For valves,

A is the area of the lumen when open.

responds to a time step varying from 3.0 × 10−4 s to 8.0 × 10−4 s in the

present computation.

The flow waveform imposed at the four inlet conditions of the compu-

tational domain is calculated based on the mass conservation principle as

explained in section (2.4). Having no information on the velocity profile, it

is assumed uniform for this simulation. The resulting flow rate varies in time

during the cycle and is periodic. The partition of the inflow is not known

in this case and detailed information about averaged flowrates repartition

between PVs have not been found in the literature. From data presented by

Dahl [66], it has been chosen to set the flow rate at each of the pulmonary

vein equally distributed (ζj = 0.25). Note that the resulting blood flow, in

particular in the atrium, may be sensitive to this repartition. Figure 5 rep-

resents flow rates at the aortic valve (top plot), mitral valve (middle plot)

and the heart inflow (bottom plot). Two verticals dotted lines separate the

systolic phase and the diastolic one. For this heart, systole lasts t/T=0.36

(from t/T 0.015 to 0.375) and diastole t/T=0.64.
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Figure 5: Flow rates at the aortic valve (top plot), mitral valve (middle plot)

and the total heart inflow (bottom plot) imposed at the pulmonary veins

during the heart cycle. Vertical dotted lines mark the limit between the

systolic phase (t/T between 0.015 and 0.375) and the diastolic phase. The E

wave, L wave and A wave are indicated on the mitral flow.
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The pulmonary flow rate is coherent with classical medical data, the

flow reversal associated with the atrial contraction being even visible from

t/T=0.86 onward. The aortic valve flow rate behaves as expected: it in-

creases during systole until its maximum (Q=320 mL.s−1) and then decreases

until its shutting at t/T=0.375. The aortic flow rate stays null until the

next systolic event. The mitral flow rate is usually composed by two peaks.

The E wave or rapid filling and a second one, the A wave corresponding to

the late diastole separated by a phase with almost no heart motions called

the diastasis. The flow rate shows three peaks in this case: the first one

(t/T=0.51, Q=410 mL.s−1) represents the E wave, the last one a weak A

wave (t/T=0.98, Q=75 mL.s−1). A weak third pic is also present during

diastasis phase (t/T=0.78, Q=85 mL.s−1). This peak may correspond to the

so called L wave [67].

The fluid density ρ and the fluid kinematic viscosity ν are supposed to

be constant: ρ = 1040 kg.m−3 and ν = 4 × 10−6m2.s−1.

Table 2 reports the maximum velocity magnitude and the maximum

Reynolds number for different elements of the heart model: pulmonary veins,

mitral valve and aortic valve. Inlet Reynolds number for each pulmonary

vein varies from 0 to approximately 2000, based on the vein diameter where

the flow is imposed. The Reynolds number at the mitral tips varies from

0 to approximately 5000 (based on the effective mitral mean diameter D =

2Ra = 2
√
ab, the area of the open mitral, the kinematic viscosity and the

maximum flow rate). The maximum transmitral velocity Umax falls into the

usual measurements [68]. The Reynolds number of the aortic valve is about

5300. These ranges of Reynolds numbers, the complex moving geometry of
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the heart and the pulsating nature of the inlet flow indicate that the nature

of this complex cyclic flow may be transitional if not turbulent.

3.3. Phase-averaged and fluctuating velocity definitions

Using the framework described before, twenty cardiac cycles were simu-

lated and phase-averages were gathered over the last n=15 cycles. The phase

average over n cardiac cycles is defined as,

uf(x, t) =
1

n

n−1
∑

k=0

uf (x, t+ kT ), (20)

where uf (x, t) is the fluid velocity, x denotes the spatial coordinates and t

the time. Root mean square (r.m.s.) velocity urms is defined as,

urms(x, t) =
√

u2
f(x, t)− u2

f (x, t). (21)

3.4. LES quality assessment

The Kolmogorov length scale η was assessed using the fluctuating part

of the velocity u′ = uf - uf (uf being defined in the section 3.3) over the

last 15 heart cycles: η = ν3/4/(2(ν + νSGS)S
′

ijS
′

ij)
1/4 (S ′

ij is the symmetric

part is the fluctuating strain rate tensor). Smallest length scales are of order

of 2 × 10−5 m in the domain and the spatial averaged value is of order of

10−4 m. Such length scale makes the DNS of numerous heart cycles hardly

reachable today: more than one billion cells would be needed to resolve all

turbulence scales. Proper computation are still manageable thanks to LES,

as discussed in the section 2.1.3.

In order to achieve a quality assessment of the presented simulation, the

Pope criterion [69] is used. The evaluation of the LES quality is estimated
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through the fraction of the turbulent kinetic energy in the resolved scales.

This fraction M(x, t) is defined as,

M(x, t) =
ktot(x, t)− ksgs(x, t)

ktot(x, t)
, (22)

= 1− ksgs(x, t)

ktot(x, t)
, (23)

where ksgs is the SGS kinetic energy, kres the resolved kinetic energy of the

velocity fluctuations and ktot is the summation of kres and ksgs. Evaluation of

this fractionM(x, t) requires computing the resolved turbulent kinetic energy

which is defined as,

kres(x, t) =
1

2

(

u′1(x, t)
2 + u′2(x, t)

2 + u′3(x, t)
2
)

, (24)

The SGS kinetic energy ksgs was estimated from the expression [70]:

ksgs(x, t) =
νsgs(x, t)

2

(∆(x, t)Cs(x, t))2
, (25)

where νsgs is the SGS turbulent viscosity given by the dynamic Smagorin-

sky–Lilly model, Cs the dimensionless dynamic coefficient of this model and

∆ the filter width (equal to the characteristic grid size in this work). Accord-

ing to the Pope criterion, a good LES should be able to resolve at least 80%

of the turbulent kinetic energy. Looking at the phase where the turbulent

activity is the highest (t/T=0.65), it was found that computation captures

more than 80% of the turbulent kinetic energy in 85% of the numerical do-

main. The last 15% are mainly located on the atrium surface and in the

atrial cavity.
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Figure 6: Volume rendering of non-dimensional vorticity magnitude of the

phase-averaged velocity fields at different times of the simulation. First row,

left plot: t/T=0.25. Center plot: t/T=0.35. Right plot: t/T=0.45. Second

row, left plot: t/T=0.55. Center plot: t/T=0.65. Right plot: t/T=0.99.

Sketch of the inflow flow rate presented in Fig. 5 is reported with a time

indication. The mapping relating vorticity magnitude with opacity is linear.

Heart wall is made partially transparent to allow observation of the flow

behaviour.
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4. Results and discussion

4.1. Global description of the flow

Figure 6 shows the 3D vorticity magnitude map of the phase-averaged

velocity field, nondimensionalised by the period T . Six salient instants of the

heart cycle are shown: the ventricular mid-systole (t/T=0.25), the end of the

ventricular systole (t/T=0.35), the beginning of the E wave (t/T=0.45), its

peak (t/T=0.55), its end (t/T=0.65) and the end of the A wave, just before

the beginning of the next ventricular systole (t/T=0.99).

In the first row of Fig. 6, the first two images correspond to systole. The

mitral valve is closed, while the aortic valve is open. The ventricle volume is

conspicuously decreasing, causing ejection of the blood into the aorta. The

narrowed geometry of the aorta root generates high vorticity through shear

layer clearly shown at t/T=0.25, while the ventricle remains free of vorticity.

At the same time, the LA volume increases and is filled with blood. Four

jets are present, three of them colliding head on, while the lower part of the

LA remains vorticity-free. Blood coming from the RSPV (on the left side of

the images) follows a trajectory tangential to the atrial wall giving rise to a

net swirling motion in the atrium as observed in vivo [3] and in experimental

work [17]. High vorticity is visible at the pulmonary veins roots due to their

narrowed geometry. At the end of systole, the vorticity begins to decrease

in the entire heart, as shown at t/T=0.35 (top center plot in Fig. 6). At the

end of the ventricle contraction, the aortic valve closes and the mitral valve

opens: ventricle filling starts.

The ventricle diastole starts at t/T=0.375 (not shown): the LV volume in-

creases and blood passes from the LA to the LV, forming a strong jet through
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the MV. The shear layer between the jet generated and the surrounding qui-

escent fluid rolls-up and shapes the jet head as a vortex ring [32]. The top

right plot in Fig. 6 depicts this vortex ring at t/T=0.45. This mechanism

was reported and studied by several authors, notably by Domenichini et al.

[21]. A similar process is visible in the LA where formation of four vortex

rings takes place at the four pulmonary veins (only two are visible in the top

right image in Fig. 6).

At the E wave peak (bottom left image in Fig. 6, t/T=0.55), three of the

LA jets collide head on, as described before, but in a more intense way, as the

pulmonary veins flow rate is higher at the E wave peak than at t/T=0.25.

Again, Fig. 6 shows that blood coming from the RSPV follows clearly a

trajectory tangential to the atrial wall. As the E wave head jet is getting

closer to the wall with an angle of approximately 50 degrees, a shear layer is

generated at the lateral heart wall (the right one on plots). The part of the

vortex ring that is closer to the lateral wall interacts with it and dissipates.

The other part of the vortex ring is marginally affected and thus remains

almost intact, moving towards the apex of the ventricle, as described in the

literature [39].

As expected for a flow at such a Reynolds number [71], small-scale vor-

tices are also generated with the vortex-wall interaction at t/T=0.65 (Fig. 6,

bottom center plot). At the end of the E wave, numerous small vortices are

present in the whole LV.

As inlet flow decreases, the vorticity magnitude decreases as well in the

entire heart. The LV volume remains stable during this phase called diasta-

sis. Vorticity magnitude progressively decreases in all the left heart due to
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dissipation of the vortices by viscosity.

This is confirmed by the vorticity levels observed in Fig. 6 at t/T=0.99

(bottom right image). Vorticity is now small everywhere, except near the

mitral valve, due to the small A wave. Note that contrary to what is seen

during the E wave, blood is not entering the LA during the A wave. Contrac-

tion of the LA to finish the LV filling results in a small outward flow through

the pulmonary veins resulting in non-zero vorticity values.

4.2. Velocity fields

The velocity vector fields of the averaged flow solutions are shown in

Fig. 7, for the same instants shown in Fig. 6. The non-dimensional velocity

vector fields uf/ua are shown over the slice through the left heart indicated

in Fig. 3. The reference velocity ua is computed as ua = q̇ls/Vs = 0.1 m.s−1

where q̇ is the cardiac output (q̇=7.50 × 10−5 m3.s−1), Vs the end systolic

volume (Vs=5.55 × 10−5 m3) and ls is the ventricle length at the end of the

systole (ls=7.40 × 10−2 m). Note that due to the strong velocity variations

along the cycle, the vector scale is adapted for the different instants. Again,

the first two images of Fig. 7 correspond to systole. At the beginning of

systole, high velocity is mainly observed in the ascending aortic root as shown

in Fig. 7 left top image. Towards the end of systole at t/T=0.35 (top center

image in Fig. 7), just before the opening of the MV, blood entering the LA is

already directed towards the LV. In the lower half part of the LA, coexistence

of an axial movement toward the MV and a rotational movement is observed.

This helical flow has been reported in-vivo by Kilner et al. [2] and Markl

et al. [5]. In order to see this flow feature hardly discernible in Fig. 7, Fig. 8

(left plot) shows the velocity field projected on a plane perpendicular to the
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Figure 7: Average non-dimensional velocity field (uf/ua) projected on a slice

of the heart. Velocity vector scale is not constant though the heart cycle

and is indicated for each plot. First row, left plot: t/T=0.25. Center plot:

t/T=0.35. Right plot: t/T=0.45. Second row, left plot: t/T=0.55. Cen-

ter plot: t/T=0.65. Right plot: t/T=0.99. Sketch of the inflow flow rate

presented in Fig. 5 is reported with a time indication.

36



cutting plane of Fig. 7. Above the MV at t/T=0.35: a net swirling motion

is visible in this area. The axial movement towards the MV is actually much

smaller than the intensity of this rotational structure.

In the ventricle, the contraction resulting in blood ejection through the

aorta generates a small recirculation under the MV (on the right of the plot).

Another recirculation area is noticeable in the aorta: a normal anatomic

feature of the ascending aorta is a dilatation of the vessel just above the

AV. During the whole systole, blood recirculation occurs in it [72], which

can be observed clearly in the velocity field shown at t/T=0.35. However,

the aortic valve leaflets dynamics are not modelled here when the valve is

open. Consequently, the flow dynamics observed in that region may change

if a more realistic aortic valve model were used.

At the beginning of diastole (top right image in Fig. 7), blood enters the

LA and the LA contracts, resulting in the E wave through the MV. In the

LA, blood is clearly directed towards the MV [3]. The E wave vortex ring

signature can also be seen in the right top plot in Fig. 7 at t/T=0.45 and

its evolution can be followed to the left bottom plot, at t/T=0.55. There,

the vortex ring is no more symmetric, as the lateral wall prevents its full

development. On the other side, the vortex ring gains strength, as described

in the previous section. At the same time, the atrial flow seems separated in

two halves again. Blood in the lower half is directed to the MV while in the

upper half, the flow is a more chaotic due to the collision of the pulmonary

veins blood streams.

At t/T=0.65 (bottom, center plot in Fig. 7), a large recirculating cell

is visible in the LV, as described classically in the literature [13, 5, 37]. It
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Figure 8: Phase-averaged non-dimensional velocity (uf/ua) vectors field pro-

jected on planes and velocity magnitude. Planes are indicated on the heart

sketches and are viewed from the top of the heart in the apex direction

(plane’s orientation is indicated). The MV leaflets are visible in the right

bottom plots and are coloured in gray. Left: t/T=0.35. Right: t/T=0.65.

Sketch of the inflow flow rate presented in Fig. 5 is reported with a time

indication.
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is characteristic of the flow in the ventricle after the E wave. Note that

the intense upward motion along the septum wall is responsible for the high

values of vorticity which can be seen in Fig. 6 at t/T=0.65. Two less intense

blood recirculation zones can be detected: one at the apex, which is visible

during the whole diastole and an intermittent one between the aortic valve

and one of the MV leaflet. These blood recirculations are also described

in-silico by Mihalef et al. [39], Doenst et al. [40] and Schenkel et al. [38].

Figure 8 (right image) shows the averaged non-dimensional velocity field on

another plane at t/T=0.65. As at t/T=0.35, in the lower part of the atrium,

the downward axial movement towards the MV is rather low compared to

the rotational movement: Fig. 8 shows a net swirling motion, visible not only

above the MV (right top plot) but also at the tip of the leaflets (right bottom

plot). The swirling motion at the MV is visible during all the remainder of

diastole, supporting the fact that the velocity profile at the MV is not only

skewed [68, 66] but has also a non-negligible rotational component. This

flow feature can actually be observed at each of the decelerations at the

pulmonary veins inflow: a swirling motion in the lowest part of the atrium

maintains blood motion in the LA even without net incoming flow through

the pulmonary veins. Figure 8 (right image) shows the phase-averaged non-

dimensional velocity magnitude on the same planes. Velocity fields show that

for this heart simulation, a skewed velocity profile is obtained. Both the order

of magnitude and the structure of the velocity fields show similarities with

the ones presented by Dahl and al [66]. Note however that the velocity field

at the MV may depend on the chosen flow distribution at the pulmonary

veins.
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Between the E wave and the A wave, the recirculating cell core in the

LV moves from the ventricle center to the septum wall. During the A wave

(bottom, right plot in Fig. 7) occurring at t/T=0.99, the blood flux passing

though the MV strengthens the recirculating cell in the LV, as classically

reported. Atrial contraction expels blood from the LA, both through the

MV, as seen in the lower half part of the LA and through the pulmonary

veins, as shown by the upward velocity vectors visible in the upper half part

of the LA.

4.3. Instantaneous structures and cycle-to-cycle variations

4.3.1. Instantaneous structures

Instantaneous flow features have been ignored in the previous sections. In

order to describe them, the Q criterion, first introduced by Hunt et al. [73],

is displayed. This criterion uses the second invariant of the velocity gradient

tensor,

Q =
1

2
(Ω2 − S2), (26)

where Ω and S are respectively the antisymmetric and the symmetric compo-

nents of the velocity gradient tensor. Thus, a positive Q criterion indicates

a higher rotation rate in comparison to the strain rate, allowing to detect

vortical structures. Images of Q criterion isosurfaces are presented in Fig. 9

at different instants of the heart cycle. The instants are the same as in the

previous sections and the isosurface at Q = 30u2a/R
2
a is shown.

At the beginning of systole (Fig. 9 left top image), the flow vortical struc-

tures are the remnants of the late diastole flow field. The late diastole in-

stantaneous flow structure can be observed in the bottom right image in

Fig. 9).
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Figure 9: Evolution of Q criterion isosurface (Q = 30u2a/R
2
a) showing struc-

tures present in the instantaneous field though the heart cycle. First row, left

plot: t/T=0.25. Center plot: t/T=0.35. Right plot: t/T=0.45. Second row,

left plot: t/T=0.55. Center plot: t/T=0.65. Right plot: t/T=0.99. Sketch

of the inflow flow rate presented in Fig. 5 is reported with a time indication.
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In the course of the following systole, such structures are convected and

smoothly elongated towards the aorta. During this process, a unique vortical

structure of length up to 10 Ra is formed as shown in Fig. 9 top left and

center plots. Pieces of this structure remain in the ventricle even after the

aortic valve is closed. Figure 9 shows the remnant structure under the aortic

valve even after the beginning of the E wave at t/T=0.55. The LV remains

almost free from vortical structures during systole, as the lower half part

of the LA. However, the upper half of the LA shows many structures and

swirling flow is noticeable thanks to the Q criterion at the pulmonary veins

on the top left plot in Fig. 9.

At t/T=0.45 (top right plot in Fig. 9), vortex rings are created at the

ostia of the pulmonary veins, due to the unsteady flow entering the LA. Two

of the vortices are clearly visible in the figure. The vortex ring at the MV

described before is also visible. The MV vortex ring travels about two radius

Ra in direction of the apex during a time interval of T/10 before it hits the

lateral wall. The Q criterion isosurfaces in the left and center bottom images

in Fig. 9 show the evolution of the vortical structures in the LV from the

initial ring-like shape to the final complex 3D flow, when the ventricle cavity

is almost completely filled by vortical structures at t/T=0.65.

During the late ventricle filling, the atrium contracts and generates a

small vortex ring (right bottom plot in Fig. 9). However, its intensity is

much lower than the one generated during the E wave, and it is hardly visible.

The vortex head only travels about one radius Ra within a time span of T/12

which corresponds to a velocity 60% smaller than the vortex ring created by

the E wave. Finally, vortical structures dissipate almost everywhere in the

42



heart. It has to be noticed that the swirling flows visible at the pulmonary

veins at t/T=0.25 and t/T=0.65 through the Q criterion are also visible at

t/T=0.99: the pulmonary veins geometry seems to generates this swirling

motion.

4.3.2. Velocity fluctuations

The studied flow configuration is a breeding ground for weak turbulence.

The transitional nature of this cyclic flow due to high Reynolds numbers and

unsteady inflows results in cycle-to-cycle variations. Investigation of these

variations can be quantified through the non-dimensional kinetic energy of

the velocity fluctuations. This fluctuating kinetic energy (FKE) is defined

as,

Ek =
1

2
(u2rms + v2rms + w2

rms), (27)

where urms, vrms and wrms are the root mean square values of the veloc-

ity fluctuations in the three directions. Note that in the present case, Ek

measures not only the turbulent activity, but more generally cycle-to-cycle

variations. Hence, the choice of naming this quantity FKE instead of turbu-

lent kinetic energy was made.

Figure 10 shows the spatial distribution of the FKE along the heart cycle,

over the same cutting plane as in Fig. 7.The beginning of systole is associated

with a relaminarization process in the LV. FKE intensity levels across the

ventricle during systole (top left and center plots in Fig. 10) stay almost null.

The highest FKE levels are present in the root of the aorta between t/T=0.25

and 0.35. Note however that the FKE levels downstream of the AV may be

mispredicted here, due to the absence of AV leaflets modelling when the AV
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Figure 10: Nondimensional fluctuating kinetic energy Ek/u
2
a. First row, left

plot: t/T=0.25. Center plot: t/T=0.35. Right plot: t/T=0.45. Second row,

left plot: t/T=0.55. Center plot: t/T=0.65. Right plot: t/T=0.99. Sketch

of the inflow flow rate presented in Fig. 5 is reported with a time indication.
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is open. Meanwhile, fluctuations are increasing in the upper half of the LA

(up to 10 u2a) where the inflowing jets collide.

During the formation of the MV vortex ring at t/T=0.45 (top right plot

in Fig. 10) until the jet hits the wall, the more intense FKE takes place in the

proximity of the jet. These fluctuations are mainly due to small differences

in the location of the shear layer and the vortex ring, where the velocity

gradients are high. At the E wave peak at t/T=0.55, depicted in the bottom

left plot in Fig. 10, high FKE (about 5 u2a) is observed in the jet edge which

becomes increasingly unstable throughout the onset of the MV flow decel-

eration. Furthermore, high FKE of the same order is visible at the lateral

wall.

As shown by the FKE field at t/T=0.55, the impact of the vortex ring on

the lateral wall is a zone of high velocity fluctuations. At the same time, the

E wave starts to decrease. At t/T=0.65 (bottom center image in Fig. 10),

the flow through the mitral valve is approximately null. However, the flow

in the ventricle is far from quiescent. The mitral jet impact has made the

initial vortex ring shatter into small vortices, that occupy the main part

of the ventricle. In accordance with this transition to (weak) turbulence,

the FKE field shows high values over almost the whole ventricle. Largest

values of FKE (from 6 to 10 u2a) are observed at the core of the recirculating

cell. These high values of FKE are due to the differences in the position of

recirculating cell center between cycles, as reported in this kind of geometrical

configuration [74]. The FKE in the LA also indicates that the pulmonary

jets impact in the upper part of the LA is associated with intense velocity

fluctuations from one cycle to another. FKE is about three time lower in the
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bottom half of the LA. Such a ratio of FKE between the upper and bottom

halves of the LA remains approximately the same during the entire heart

cycle.

At the end of diastole at t/T=0.99 (bottom right plot in Fig. 10), the FKE

becomes more homogeneous in the heart, albeit with higher values at the

center of the ventricle recirculating cell (see also Fig. 7) and at the MV tips

due to the A wave vortex ring. As soon as systole begins, a relaminarization

process is engaged in the ventricle: blood acceleration reorganizes the blood

flow and destroys all the remaining vortices. Comparing the FKE fields at

t/T=0.99 and at t/T=0.25 shows that late diastole velocity fluctuations do

not persist in systole.

5. Conclusion and outlook

In this paper, a numerical framework and its application to a patient left

heart has been exposed. This numerical framework only requires gated 4D

images of a patient heart and global morphological parameters of the mitral

valve as input data for the computation. A numerical domain is extracted

from one 3D medical image and the heart wall movements are automatically

calculated to follow the heart wall displacements recorded in the 4D medical

images, thanks to a non-linear image registration algorithm. Then, temporal

interpolation of the geometry is used to generate a finite-volume mesh of the

left heart at any time over the cardiac cycle.

A computation of the blood flow in a full left heart including the left

ventricle, atrium and the aorta has been conducted in this domain. The

present numerical method is able to provide results consistent with the cur-
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rent knowledge in terms of left heart flow. The E wave and the A wave are

recovered, as well as the pulmonary veins flow reversal associated with the

late atrial contraction. In the left atrium, the flow reported shows a clear

swirling motion, that maintains blood in motion even without net blood flow

coming from the pulmonary veins. Furthermore, the well-known mitral jet,

preceded by an energetic vortex ring, is also observed. The classical large

recirculating cell, characteristic of the flow during diastasis, can also be seen

in the phased-averaged velocity fields. All these features have been reported

several times in the literature, both in numerical and experimental studies

and by medical imaging.

Furthermore, the use of fluid numerical method well adapted to turbu-

lent flows enables the observation of cycle-to-cycle variations in the flow field.

Such variations are expected in the present flow, due to the high Reynolds

numbers encountered and the unsteadiness of the flow incoming by the pul-

monary veins. The present results show that in spite of rigorously identical

contraction and boundary conditions, fluid inertia makes the flow differ from

one cycle to another. More precisely, cycle-to-cycle variations in the left

atrium can be observed in its upper part, where the collision of the jets

issuing from the pulmonary veins makes the flow particularly chaotic. Cycle-

to-cycle variations are high after each peak in the pulmonary vein flow rate,

during flow deceleration. In the left ventricle, velocity fluctuations are re-

ported mainly in late diastole. Between the impact of the E wave jet on

the lateral wall and the end of diastole, the left ventricle displays high lev-

els of cycle-to-cycle fluctuations. Indeed, both the vortex ring impact and

the E wave deceleration occur approximately at the same time, and both
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are features tending to promote turbulence. We show that the late diastole

large recirculation cell, which is classically reported (and found here in the

phase-averaged field) is most probably perturbed by small vortices.

The calculation reported here has several limitations. First, blood has

been modelled as a Newtonian fluid. Even if this approximation is commonly

accepted for the heart flow, a non-Newtonian model could be included in the

present method to assess the impact of the rheological model on the flow.

Then, the spatio-temporal resolution of the medical images is an important

limitation, which imposes temporal interpolation and geometrical simplifi-

cations of the heart model. It also makes it difficult to accurately account

for short phases as the isovolumic contraction and relaxation. Although ten

images per cardiac cycle enable a convincing flow prediction, specific tests

should be performed to precisely assess the impact of the temporal resolution

of the medical images on the flow field. Another limitation is the unknown

flow distribution between the pulmonary veins, which has to be prescribed

in the simulations.

In the present method, the main element to improve is certainly the valve

modelling. The model used for valves highly depends on the anatomical

information that can be extracted from the images. Consistently with their

insufficient spatio-temporal resolution, a rough model of the valves was used.

This is true from the anatomical and numerical points of view. Better valve

models should notably include valve opening and closing, change of aperture

area along time. Aortic valve leaflets were notably completely omitted during

systole, which most probably impacts the flow at the beginning of the aorta.

In addition, the immersed forcing used in this work could be improved [75],
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notably by accounting for the exact valve velocity.

Still, the presented method does include important aspects of the physio-

logical heart: the entire ventricle and atrium, the aorta root, the pulmonary

veins and the valves. Such a geometrical complexity has rarely been achieved.

As a consequence, rarely or never reported features such as secondary vor-

tex recirculation, vortical structure at the aorta, swirling motion at the MV,

vortex rings, swirling motion at the pulmonary veins and velocity fluctu-

ations have been discussed for the first time in details. Furthermore, the

presented results underline the fact that over-simplified geometries cannot

fully reproduced certain physical events as for example the mitral in-plane

swirling motion.

To conclude in a clinical point of view, the presented framework presents

significant potential to link patient-specific heart geometry to pathologies.

Interpretation of altered cardiac mechanics through blood flow in large cohort

is possible, in particularly in diseases such as hypertrophy and heart failure.
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