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Using Image-based CFD to Investigate
the Intracardiac Turbulence

Christophe Chnafa, Simon Mendez, Ramiro Moreno and Franck Nicoud

Abstract A numerical framework designed to compute the blood flow in patient-
specific human hearts is presented. The geometry of the heart cavities and associated
wall motion are extracted from 4D medical images while the valves of the heart are
accounted for thanks to low order geometrical models. The resulting blood flow
equations are solved using a fourth-order low-dissipative finite-volume scheme and
a mixed Aribtrary Lagrangian-Eulerian / Immersed Boundary framework. On top
of retrieving the main fluid flow phenomena commonly observed in the left heart,
the methodology allows studying the heart flow dynamics, including the turbulence
characteristics and cycle-to-cycle variations.

4.1 Introduction

Heart pathologies are closely related to intracardiac hemodynamics. Recent techno-
logical innovations in imaging techniques have provided valuable opportunities for
direct non-invasive in vivo assessment of hemodynamics. Blood flow velocities can
be measured in vivo using phase-contrast magnetic resonance imaging (PC-MRI) or
by echocardiography techniques.

PC-MRI studies have contributed to the understanding of the main hemodynamic
features [10, 18, 25]. Although very comprehensive, the PC-MRI velocity mapping
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is not real-time. Hence, beat-to-beat variations in the flow cannot be recorded (the
k-space is filled over many cardiac cycles). Moreover, PC-MRI suffers from a rela-
tively low spatio-temporal resolution, precluding the observation of small scales and
fast time-varying flow features [15].

Echocardiography techniques [11, 19], with higher spatio-temporal resolution
make an alternative to PC-MRI. However, they only give access to velocity compo-
nents directed towards or away from the ultrasonic beam, while one would want to
measure the full 3D flow vectors. Nevertheless, investigations have been conducted
on normal and abnormal hearts and interesting potential indicators of cardiac health
hemodynamics arose [4, 13, 16].

With the development of these cardiac imaging techniques, patient-specific ge-
ometries have been progressively used in computational fluid dynamics (CFD) [5,
21,28,30,42,44]. Realistic heart wall movements on the basis of cine MRI or Com-
puted Tomography (CT) scan data can be used: heart movement is prescribed from
the patient-specific medical images, which can be acquired using standard clinical
imaging procedures, instead of being computed. This strategy allows computation
of the patient-specific hemodynamics and provides detailed insights into the cardiac
flow field, providing potentially valuable clinical information. If the feasibility of
this kind of approach has been shown, the results usually suffer from limited spatial
resolution, partial geometry (only the left ventricle (LV) is considered in most cases)
or numerical limitations (dissipative schemes). Besides, except in a few experimen-
tal works [7, 41], cycle-to-cycle variations in the heart flow is an issue that is rarely
dealt with.

In the present work, an image-based CFD method developed to compute flows
in aortas [29] is extended to compute intracardiac flows. Medical images are used
to generate a moving patient-specific domain, in which the blood flow equations are
solved. Heart geometry movements are generated from a 4D sequence (MRI or CT
scan images) treated by an appropriate image registration algorithm [35]. A specific
attention is paid to the generation of a high-quality mesh which deforms consistently
with the heart motion. This allows solving the flow equations with an essentially non-
dissipative scheme compatible with the description of unsteady turbulent flows by
Large Eddy Simulation. In order to demonstrate the ability of the method to compute
heart flows, application to a complete human left heart described by ECG-gated 3D
CT scan images is presented. The resulting flow is described, emphasizing the flow
characteristics usually reported in the literature. Characteristics of the cycle-to-cycle
variations are also reported.

The numerical method is detailed in Sect. 4.2. The characteristics of the applied
case is presented in Sect. 4.3 and the flow field obtained is described in Sect. 4.4.
Concluding remarks are given in Sect. 4.5.
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4.2 Methodology

The present computational method approaches couples an Arbitrary-Lagrangian Eu-
lerian framework with an immersed boundary method in order to represent the blood
flow within the moving endocardium while accounting for the heart valves motion.
This section describes the flow solver and the treatment of the medical images needed
to perform the computations.

4.2.1 Fluid Problem

Blood is an incompressible, non-Newtonian fluid [9]. However, in large vessels, non-
Newtonian effects are usually neglected in numerical simulations [30, 46] and con-
stant kinematic viscosity ν is assumed in this paper. Note however that the present
numerical method could be applied to non-Newtonian fluids.

The flow is thus governed by the incompressible Navier-Stokes equations (NSE),
over a moving domain Ω f (t)⊂ R3 of boundary ∂Ω f (t). The Arbitrary Lagrangian
Eulerian (ALE) framework [8] is used in order to account for the computational do-
main deformation over time. Introducing the pointwise computational domain ve-
locity ug, the NSE read:

du
dt

+((u−ug) ·∇)u =− 1
ρ
∇p+ν∇2u+ f

∇ ·u = 0,

⎫⎬
⎭ on Ω f (t) (4.1)

where u is the fluid velocity, p is the pressure, ρ the density and f a force per mass
unit. Note that the time derivative denotes an ALE time derivative [8]. At the bound-
ary of the computational domain, no-slip conditions are applied on walls (u = ug)
and Dirichlet conditions are applied over the inlet boundaries.

These equations are implemented in the flow solver YALES2BIO (www.math.
univ-montp2.fr/∼yales2bio) [27], developed from the massively parallel finite-
volume flow solver YALES2 [34]. At each time step, the grid velocity ug at each
node of the computational domain is calculated (see next section). A projection
method is used to solve the NSE: the momentum equation is first advanced using the
fourth-order Runge-Kutta time-advancement scheme. Fluxes are discretized with a
4th-order central scheme. Any forcing term coming from immersed boundaries is ac-
counted for in this prediction step. At the end of the prediction step, the grid reaches
the final position of the time step. Hence, the projection step to calculate pressure
is performed over a fixed grid. A Deflated Preconditioned Conjugate Gradient algo-
rithm is used to solve the Poisson equation [24] involved in the projection step. Note
that due to the transitional nature of the flow, Reynolds Averaged Navier-Stokes
(RANS) approaches for modelling turbulence (e.g. k-ε , k-ω models, etc) are not ap-
propriate since they rely on the assumption that turbulence is fully developed and
ergodic. Even if adaptations have been proposed in order to handle transition, they
essentially require the user to prescribe the transition location in advance. Instead, in
the present study, the Large Eddy Simulation approach is followed, taking advantage
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of the low-dissipative scheme of integration used in YALES2BIO. In this view, only
the smallest scales are modelled (scales smaller than the mesh size) while the evolu-
tion of the large scales is computed by solving a filtered version of NSE [33,39,43].
In the latter, a subgrid-scale model must be used in order to account for the effect of
the unresolved scales on the dynamics of the resolved ones. This is usually done by
an eddy-viscosity-based model [45]. In the present study, where the flow is strongly
confined and piloted by the wall motions, an advanced subgrid scale model able to
represent the proper turbulence damping near solid walls was used [36] as well as a
well established formulation based on the dynamic procedure of Germano [12].

4.2.2 Computational Domain

4.2.2.1 Extraction of the Heart Deformation

Determining the movement of the computational domain, where the NSE are solved
is all but an easy task. One solution is to compute the deformations of the bound-
ary thanks to a full electrical-fluid-structure interaction solver. Unfortunately, there
are many uncertainties regarding the constitutive laws (both mechanical and electri-
cal) of the heart muscle as well as the external constraints the heart is submitted to.
Moreover, accurate heart models are still under development today [47] as well as
robust numerical method to solve them. A way of by-passing this issue is to extract
the computational heart grid from 4D (3D + time) patient medical images. The fol-
lowing question must then be addressed: given several 3D images of a heart taken at
different times in the heart cycle, how to extract the heart deformations from these
images and how to deform a patient-specific grid accordingly? The first part of the
question is actually a classical “image registration” problem.

Nowadays, there is a growing interest in the development of cardiac image reg-
istration methods [23]. Given two cardiac images, a template and a reference one, a
transformation is determined to map the template image to the reference image. The
deformation field can notably provide clinical information on the myocardial con-
tractile function. Here, the same process is used to compute the heart deformations,
but instead of focusing on functional data of the heart muscle, the computed de-
formation is used to extract patient-specific boundary conditions for the blood flow
computation.

Among many registration algorithms [22,31], voxel similarity measure techniques
were preferred. This class of method operates directly on the image grey values, pro-
viding a flexible algorithm suitable for the complex heart movements.

In the present case, N 3D images Ii of a patient heart are taken at different times
ti, 0≤ t0, t1, . . . , tN−1 < T during the heart cycle of period T . One of the N images is
selected as a template image. Note that this choice is somewhat arbitrary and that,
without loss of generality, one can always tune the time origin so that the template
corresponds to the I0 image at time t0. From this image, N−1 transformations ψi are
computed such that the transformed template image becomes similar to images Ii (i
between 1 and N−1) successively considered as the reference image: transformation
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ψi is search so that I0(ψi(x)) = Ii(x) for each voxel. Here, Ii(x) stands for the voxel
grey-level value at position x in the i-th 3D discrete image.

Each ψi is calculated by minimizing the distance between I0(ψi(x)) and Ii(x), an
appropriate distance measure being based on the so-called sum of squared differ-
ences. The transformation ψi is computed through an optimisation problem reading:
given two images I0 and Ii, find a mapping ψi such that the squared intensity dif-
ferences between I0(ψi(x)) and Ii(x) is minimized for each voxel. The number of
parameters describing the transformation is too high so that the solution ψi of this
problem is not unique. Additional constraints are needed to compute the mappingψi.

In the present work, a constraint on ψi is applied thanks to prior knowledge of
the deformation sought [2]. The idea is to penalize unlikely deformations by impos-
ing the heart deformations to be smooth. Bayesian statistics are used to obtain an a
posteriori computation of the deformation field. The prior deformation probability
is incorporated through the Bayes’ theorem: p(Y|I)∝ p(I|Y)p(Y), where p(I|Y) is
the likelihood of observing the images data I (template I0 and reference Ii images)
given the deformation parameters Y. p(Y) is the prior knowledge of the deforma-
tion translated in the a priori probability of seeing the parameters Y and p(Y|I) is
the a posteriori probability of getting Y knowing the two images data I. Using this
Bayesian framework, the goal is to maximise the probability p(Y|I). Knowing that
a probability is related to its Gibbs form by p(Y)∝ e−H(Y), the problem can be seen
as a minimisation of the Gibbs potential:

H(Y|I) = H(I|Y)+H(Y)+ c, (4.2)

where c is a constant. The likelihood potential H(I|Y) of observing the images data
given the deformation parameters Y is directly linked to the squared intensity dif-
ference between I0(ψi(x)) and Ii(x) for each voxel:

H(I|Y) =
1
2

∫
Ω

(I0(ψi(x))− Ii(x))2 dΩ , (4.3)

where the integral is taken over the image volume Ω .
The second term H(Y) in the right hand side of Eq. (4.2) is the wanted constraint,

applied thanks to prior knowledge. The prior deformation knowledge put in this
potential is expressed as a geometrical constraint on the mapping through the two
studied images. A suitable prior probability is linked to the deformation of each
voxel of the template image and to the reverse deformation [1]. This potential acting
as a regularization term allows a penalization based on the Jacobian of the locals
deformations J. A detailed description of this term can be found in [1].

This regularization term is weighted by a parameter λ linked to the belief in the
amount of deformation of the heart. A high value of the λ parameter results in a
high penalty on the voxels deformation, hence only small and smooth deformations
are allowed. Given the high deformation of the left heart, high λ values result in
partial deformation and a high residual squared difference between the template im-
age and the reference one. In the case of small values of λ , a lower residual squared
difference will be reached, but the resulting deformation can be non physical due to
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excessive warping. Actually, the variability of heart movements is highly different
from one region to the other. The aorta needs high values of λ , whereas small values
are needed for the atrium or the ventricle.

One method of increasing the likelihood of achieving a good solution without
introducing a spatial variability on λ (and consequently avoiding more operator-
dependant work as well) is to apply successive filters to the images using a Gaus-
sian smoothing convolution kernel G σ of width σ . High-frequency information of
the image is removed thanks to this filter then gradually re-introduced as the kernel
width σ becomes smaller and smaller. This iterative process is defined as the outer
iterations: for each kernel width, distance between the images are minimized. This
"coarse-to-fine" strategy has the effect of making the registration algorithm estimate
the most global deformations during the first outer iteration, leaving out fine-scale
structures. The optimum transformation for this kernel width is used to initialize the
computation of the next optimum computation, which deals with finer details. This
method increases the likelihood of finding the globally optimal match while avoid-
ing the classical problem of the intensity-based method: their susceptibility to poor
starting estimates.

As the regularization term, the intensity difference (first term H(I|Y) in the right
hand side of the Eq. (4.2)) is weighted. The weight for the j-th inner iteration is
defined as the inverse of the residual sum of the squared differences computed at the
previous inner iteration of a given outer iteration of the algorithm and is denoted by

1
d j−1 . Because d has a high value for the first iterations, more weight is given to the
regularization term, in order to get smooth deformations. As the algorithm gets close
to the final solution, d theoretically tends to zero, giving less weight to the priors and
letting the algorithm computing more detailed deformations.

Finally, the sought transformation ψ j,k
i at the inner iteration j and the outer iter-

ation k minimizes the function f j,k defined as:

f j,k
1 (ψ j,k

i ) =
1

2d j−1

∫
Ω

([G σ k ∗ I0](ψ j,k
i (x))− [G σ k ∗ Ii](x))2 dΩ , (4.4)

f j,k
2 (ψ j,k

i ) = g(J(ψ j,k
i )), (4.5)

f j,k(ψ j,k
i ) = f j,k

1 (ψ j,k
i )+λ f j,k

2 (ψ j,k
i ), (4.6)

where the function g is computed from the Jacobian singular values and determi-
nant [2]. Finally the N−1 deformations are computed through this iterative optimi-
sation process. This approach was successfully applied before to large vessels as the
aorta cross [29].

4.2.2.2 Patient-specific Computational Grid and Application of the
Patient-specific Deformation

Once the N − 1 mappings ψi are computed, a patient-specific computational grid
must be extracted from the template image and warped thanks to the computed de-
formations. The template image corresponding to volumetric data I0 is imported into
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an image processing software (ScanIP;Simpleware Ltd., Exeter, UK). Before seg-
mentation, the image I0 is prepared: the region of interest is isolated and the image
is smoothed to erase noise inherent to the medical images protocols. The segmenta-
tion itself is done by a classical thresholding method [38]. A suitable image intensity
range which encompasses the voxel intensities of the region occupied by blood in
the heart is selected. The quality of the segmentation relies on the operator’s skills
and knowledge of the human heart morphology and the quality of the chosen med-
ical image. Image resolution plays a role in the potential domain simplification at
this step. Trabeculae, left atrial appendage or papillary muscles can either be kept
or neglected depending on the image quality and spatial resolution available. The
3D geometric reconstruction covers all the space occupied by blood in the left heart
cavities. The surface of the geometric reconstruction of the heart is triangulated.

Once a template 3D patient-specific surface mesh is created, a procedure to de-
form this surface model thanks to the images must be provided. For each couple of
images (I0,Ii) a suitable spatial transformation ψi was found thanks to the method
described in the previous section. These deformations ψi are 3D deformation fields.
Trilinear interpolation from these deformation fields to the template surface mesh
is done. Thus, a set of N−1 successive surface meshes matching the physiological
cardiac images at different times ti is produced as schematized in Fig. 4.1.

Position and velocity of all surface points are needed at any discrete time of the
simulation, not only at the times t0, t1, . . . , tN−1. Since all the generated surface mesh-
es share the same topology (number and connection between nodes, number of cells),
interpolation is used to compute the position of each node and the velocity by taking
the time derivative of this quantity. As geometry variations are periodic, a trigono-
metric interpolation is used. The surface position and velocities read:

xs(t) =
m

∑
i=0

[ai cos(2iπ
t
T

)+bi sin(2iπ
t
T

)],

us(t) =
2iπ
T

m

∑
i=1

[−ai sin(2iπ
t
T

)+bi cos(2iπ
t
T

)],

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

on ∂Ω f (t) (4.7)

where T is the heart cycle period, m the number of Fourier modes (m = N−1
2 or N

2
depending on the parity of N) and ai, bi the Fourier coefficients. Surface velocity us
needed at the computation domain boundary ∂Ω f (t) is hence not computed as a FSI
problem, but entirely extracted from the medical images. In the present study, it is
used to handle the cardiac chambers and their connected vessels.

The template surface is imported in a commercial mesher (Gambit, ANSYS) to
generate a template unstructured tetrahedral mesh. The computed boundary Fourier
coefficients of Eq. (4.7) are interpolated in this template numerical domain. The
computational mesh boundary now follows the shape of the patient endocardium
and is updated in every step of the simulation. Motion of all internal points in the
computational mesh is based on the prescribed boundary motion. At each iteration,
nodal velocity ug is calculated through the computation of a Laplace equation [26]
using the prescribed boundary motion as boundary condition for this problem.
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t0                                                                                   ti

ψi

Fig. 4.1. Mesh deformation procedure applied to a left human heart. The template mesh seg-
mented from the image at time t0 is deformed thanks to ψi to obtain the mesh at time ti. This
procedure is done for each image in the cardiac cycle in order to obtain the corresponding
meshes

The grid quality is monitored during the simulations. When the boundary dis-
placement becomes too large compared to the local cell sizes, the cell quality can be
highly deteriorated. This can lead to convergence problems or negative cell volumes.
In this case, the numerical domain is re-meshed, Fourier coefficients are interpolated
on this new discretized surface domain, as is the fluid solution at the new internal
nodes.

4.2.3 Valves

Given their spatio-temporal resolution, MRI and CT scans fail to provide the nec-
essary information to characterize precisely the movements of the aortic (AV) and
of the mitral (MV) valves. Their geometry and movement have thus to be mod-
elled. Accounting for the moving valves with the ALE method would be extremely
complex due to grid quality issues. Here, an immersed boundary technique is used
instead. A body force is imposed to drive the flow velocity to zero where the valves
are located [3].

The opening and closing valve time is generally small (of the order of 5% of the
heart cycle [48]). As a first modelling effort, it has been considered that valves open
and close instantaneously, following the evolution of the ventricle volume. Systole
lasts as long as the ventricle volume decreases. During systole, the AV is open and
the MV closed. Diastole is defined as the heart period during which the ventricle
volume increases: then, the AV is closed and the MV open.

Valve reconstruction starts with the definition of the valves annuli. Their geom-
etry is reconstructed by inspecting the medical images. A number of markers are
placed manually to define the valve annuli at a given time. The motion of these mark-
ers is then obtained thanks to the Fourier coefficient defining the boundary motion
(Eq. (4.7)).
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Fig. 4.2. Left plot: annulus markers and grid cells where a body force is added to model the
MV leaflets. Diameters a(t) and b(t) of the elliptic opening are indicated. Right plot: full MV
model included in the numerical domain (the AV is represented as well)

As the focus is on the flow in the atrium and in the ventricle, the aortic valve
is modelled very simply. Physiologically, the leaflets of the aortic valve are pushed
against the vessel, offering small resistance to the flow. Hence, when the aortic valve
is open, no immersed force is applied: aortic valve is only active when closed.

The mitral valve is represented by a more complex model, since its shape is ex-
pected to strongly impact the LV haemodynamics. The position of the mitral valve
annulus being known over time, the mitral valve opening is defined using an ad
hoc model. From visual inspection of the images, parameters as the average leaflets
length, the orientation of the valve opening and an ellipse defining the opening area
are imposed. Details of the procedure are described in Chnafa et al. [3].

Knowing the MV leaflets position during the heart cycle, their effect on the blood
flow is accounted for by using an immersed boundary method (IBM) [32]. For this
purpose, the leaflets representations are given a thickness so that a few mesh nodes
are located within the valves. Then, the force f in the NS Eqs. (4.1) is set to impose
the fluid velocity to zero within the leaflets. Figure 4.2 shows an example of the
valves models during diastole, when the MV is open.

4.2.4 Inlet Boundary Conditions

Inlet boundary conditions at the pulmonary veins must be provided. Under the present
assumptions, either the aortic valve or the mitral valve is closed. Pulmonary veins
thus always inject blood in a closed domain. As a consequence, blood being incom-
pressible, the total mass flow rate entering the domain is entirely determined by the
mass conservation constraint. With QPV (t) denoting the inlet flow rate (sum of the
volumetric flow rates at the four pulmonary veins) and VLA, VLV and VAO denoting
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respectively the LA, LV and the aortic root volumes, mass conservation yields:

QPV (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dVLA

dt
during systole

dVLA

dt
+

dVLV

dt
during diastole.

(4.8)

Uniform velocity profile are imposed at each inlet condition. With n j the outward
normal vector and A j the area of inlet condition j ( j=1,..,4), the inflow velocity reads:

u j(t) =−
(

Qi(t)
A j

ζ j

)
n j, (4.9)

where ζ j determines the distribution of the flow between the four pulmonary veins.
In the absence of additional measurement (typically flow rates from PC-MRI), it is
fair to assume a uniform distribution between the different pulmonary veins (ζ j =
0.25 for all j).

4.3 Application to a Patient Left Heart: Problem Formulation

4.3.1 Heart Model

Using the framework described above, an actual CT exam of a patient treated at the
University Hospital of Toulouse Rangueil (France) is used to generate a numerical
domain and its deformation. The CT exam consists of N = 10 medical images along
the cardiac cycle of period T = 1 s with a spatial resolution 2×2×2 mm.

Due to the limited resolution of the images, the intra-cardiac geometry is simpli-
fied. As shown in Fig. 4.3, the numerical domain includes the LA, LV, the aortic
root and four pulmonary veins. Left atrial appendum and geometrical details as the
cordae tendinae or papillary muscles are omitted. The LA has a height of 5.5 cm
from the MV to the upper pulmonary root and a maximum diameter of order 4 cm.
The LV has a height of 8.8 cm from the MV to the apex (the lowest extremity of
the LV in Fig. 4.3) and a maximum diameter of order 5 cm. The four pulmonary
veins can be identified at the top of the views shown in Fig. 4.3. Each of the four
pulmonary veins directly issues in the LA.

Valves are modeled as explained in Sect. 4.2.3. A close examination of the med-
ical images from the CT scan allowed to set the leaflets length to l = 12 mm for the
MV. The open area presented to the blood flow is represented by an ellipse of axis
a = 15 mm and b = 8 mm. As a first approximation, this area is supposed constant
over the time when the MV is open.

4.3.2 Grid Mesh and Simulation Details

A nearly isotropic grid is created from the heart model described in the previous
section using the commercial software Ansys Gambit, which was selected for its
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AO

LV

LA

Inlets
Outlet

16 cm

5 cm

Fig. 4.3. Template computational domain extracted from a 3D medical image. The same do-
main is represented for four different points of view and the left ventricle (LV), left atrium
(LA) and Aorta (AO) are indicated. Black line passing through the left heart indicates the
position of slices used to describe the flow in Sect. 4.4

ability to generate good-quality tetrahedral mesh, appropriate for non-dissipative
finite-volume formulations. The spatial resolution is of order 0.8 mm, which yields
grids of approximately three-million tetrahedral elements. In this study, in order to
maintain the quality of the grid along the cycle, re-meshing (see Sect. 4.2.2.2) was
used at each acquisition instants ti, i = 1, . . . ,N−1.

The simulation time step is fixed by a CFL condition (CFL=0.9) consistent with
the explicit time integration used in the CFD solver, which corresponds to a time
step of order 10−4 s.

Figure 4.4 displays the flow rates at the aortic valve (top plot), mitral valve (mid-
dle plot) and the heart inflow (bottom plot) gathering the four PV. Two verticals
dotted lines separate the systolic phase and the diastolic one. For this heart, systole
lasts t/T = 0.36 (from t/T 0.015 to 0.375) and diastole t/T = 0.64.

The pulmonary flow rate derived from time evolution of the heart cavities is con-
sistent with classical medical dataThe aortic valve flow rate behaves as expected:
it increases during systole with a maximum flow rate of QMV = 320 mL.s−1, then
decreases until its shutting at t/T = 0.375. The aortic flow rate stays null during di-
astole. The mitral flow rate is usually composed by two peaks. The E wave, or rapid
filling, and a second one, the A wave corresponding to late diastole. They are sepa-
rated by a phase with almost no heart motion called diastasis. The flow rate shows
only one main peak in the present case: the E wave (t/T = 0.51, QMV = 410 mL.s−1).
The fact that the A wave is weak is symptomatic of pathologies.

The blood properties are: ρ = 1040 kg.m−3 and ν = 4 × 10−6 m2s−1. Relevant
flow conditions at different locations of the heart are reported in Table 4.1. Inlet
Reynolds number for each pulmonary vein varies from 0 to approximately 2000,
based on the vein diameter. The Reynolds number at the mitral tips varies from
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Fig. 4.4. Flow rates at the aortic valve (top plot), mitral valve (middle plot) and the total
heart inflow (bottom plot) imposed at the pulmonary veins during the heart cycle. Vertical
dotted lines mark the limit between the systolic phase (t/T between 0.015 and 0.375) and the
diastolic phase

0 to approximately 5000 (based on the effective mitral mean diameter D = 2Ra =
2
√

ab, the area of the open MV, the kinematic viscosity and the maximum flow rate).
The maximum transmitral velocity Umax falls into the usual measurements (around
1.0 m.s−1) [14]. The Reynolds number of the aortic valve is about 5300. Table 4.1
reports the maximum velocity magnitude and the maximum Reynolds number for
different elements of the heart model: pulmonary veins, mitral valve and aortic valve.
These ranges of Reynolds numbers and the pulsating nature of the inlet flow clearly
indicate that this complex cyclic flow may be transitional if not fully turbulent. This
justifies the use of Large-Eddy Simulation (LES) which is more suitable than other
simulation approaches for unsteady and/or transitional flows. In order to achieve
a quality assessment of the presented simulation, the Pope criterion [40] is used.
According to this criterion, a reliable LES should be able to resolve at least 80% of
the turbulent kinetic energy. Looking at the phase where the turbulent activity is the
highest (t/T=0.65), it was found that this criterion is met in 85% of the numerical
domain. The last 15% are mainly located in the atrial cavity.
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Table 4.1. Main flow parameters describing the simulation. The section-averaged maximum
velocity is indicated as Umax. Reynolds numbers are based on the diameter D of the region of
interest. The instants when they reach their maximum value Remax are reported as tm/T . For
valves, A is the area of the lumen when open

Element Umax D = 2
√

A
π Remax tm/T

AV 0.96 m.s−1 2.20 cm 5300 0.16
MV 1.08 m.s−1 1.87 cm 5000 0.52

Pulm. vein 0.79 m.s−1 1.00 cm 2000 0.52

4.4 Discussion

4.4.1 Global Description of the Cardiac Cycle

Fifteen cardiac cycles were simulated and phase-averaged in order to provide a clear
view of the flow organization over the cardiac cycle. A detailed flow description can
be found in [3]; only the main flow characteristics are recalled here for the sake of
completeness. Six salient instants are illustrated in Fig. 4.5: the ventricular mid and
end-systole (t/T = 0.25–0.35), the beginning, peak and end of the E wave (t/T =
0.45–0.55–0.65) and the end of the A wave, just before the beginning of the next
ventricular systole (t/T = 0.99). The velocity field is scaled by ua = q̇ls/Vs = 0.1
ms−1 where q̇ = 7.50× 10−5 m3s−1 is the cardiac output, Vs = 5.55× 10−5 m3 is
the end systolic volume and ls = 7.40×10−2 m is the ventricle length at the end of
systole. Note that due to the strong velocity variations along the cycle, the vector
scale was adapted for each instant.

During systole (t/T = 0.25–0.35), the mitral valve is closed (in light gray in
Fig. 4.5), preventing backflow towards the atrium, while the aortic valve is open
(in dark gray in Fig. 4.5). The decrease of the ventricle volume causes ejection of
blood into the aorta. Note that the velocity amplitude is the highest in the ascending
aortic root. The computed flow at mid-systole is also highly swirled in the atrium,
as reported in vivo [18, 25]. This movement is hardly discernible in Fig. 4.5, be-
cause the vortical movement is mainly perpendicular to the cutting plane [3]. Two
recirculation zones are however visible in Fig. 4.5 (top center): just under the MV
and within the aorta, just above the AV, in agreement with [17]. At the end of the
ventricle contraction, the aortic valve closes and the mitral valve opens: ventricle
filling starts. At t/T =0.375 (not shown), the ventricle diastole starts: the LV vol-
ume increases and blood passes from the LA to the LV, forming a strong jet through
the MV. The shear layer between the jet generated during the E wave and the sur-
rounding quiescent fluid rolls-up and shapes the jet head as a vortex ring [20]. The E
wave vortex ring signature and its evolution are visible in Fig. 4.5 (t/T = 0.45–0.55)
which illustrates a mechanism already reported by several authors [6]. The vortex
ring does not remain symmetric, as the lateral wall prevents its full development.
A large recirculating cell is clearly visible in the LV at t/T = 0.65 (Fig. 4.5, bot-
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Fig. 4.5. Phase-averaged velocity field over a cutting-plane through the left heart. Velocity
vector scale is not constant though the heart cycle and is indicated for each plot. Mitral valve
is depicted in light grey the aortic one in dark grey

tom center), as often described in the literature [16,21,25]. It is characteristic of the
flow in the ventricle after the E wave. Two less intense blood recirculation zones
can be detected: one at the apex, which is visible during the whole diastole and an
intermittent one between the aortic valve and one of the MV leaflet. These blood
recirculations are also described in silico [5, 30, 44]. Between the E wave and the
A wave, the recirculating cell core in the LV moves from the ventricle center to the
septum wall. During the A wave occurring at t/T=0.99 (Fig. 4.5, bottom right), the
blood flux passing though the MV strengthens the recirculating cell in the LV, as
classically reported [37]. Atrial contraction expels blood from the LA, both through
the MV, as seen in the lower half part of the LA and through the pulmonary veins,
as shown by the upward velocity vectors visible in the upper half part of the LA.
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4.4.2 Cycle-to-cycle Variations

The studied flow configuration is a breeding ground for weak turbulence. The tran-
sitional nature of this cyclic flow due to the highly complex evolving geometry and
the unsteady inflows results in cycle-to-cycle variations. As an illustration, Fig. 4.6
shows the time evolution of the vertical velocity at four different points within the left
heart. Velocity signals corresponding to six different heart cycles are superimposed
to visualize the cycle-to-cycle variations. Moderate (2ua) to high (5ua) variations
are present at all the locations, although not uniformly distributed over the cardiac
cycles. The second plot (corresponding to a probe located under the aortic valve)
shows the lowest variations: almost no cycle-to-cycle variations are visible during
the diastolic phase, which is expected, given the quiescent flow beneath the aor-
tic valve during diastole. Cycle-to-cycle variations are however visible (variations
around 2ua) during the systolic phase, as expected given the typical Reynolds num-
ber. Cycle-to-cycle variations decrease during the systolic phase in the LV (see third
plot), beginning from variations up to 4ua to almost null variations. This absence of
fluctuations carries on even after the passage of E-wave vortex ring, visible on the
signal. Variations are visible from t/T = 0.55 and amplify during the late diastole. A
similar behaviour is visible in the lower part of the LV (see fourth plot): during sys-
tole, variations decrease, then rise after t/T = 0.55, reaching an amplitude of order

Fig. 4.6. Temporal evolutions of the scaled vertical velocity w/ua (the w direction is indicated
in the figure and ua = q̇ls/Vs) at four different points within the left heart. Six cycles are
reported to illustrate the cycle-to-cycle variations
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5ua. The largest relative fluctuations are obtained in the left atrium (top plot) with
small cycle-to-cycle variations during systole (t/T between 0.015 and 0.375) but
fluctuations as large as 2ua at t/T = 0.35 and 5ua at t/T = 0.6. Theses variations are
related to the interaction between the four inlet flows from the four pulmonary veins.

A more quantitative assessment of the cycle-to-cycle variations is obtained by
computing the kinetic energy of the velocity fluctuations. The velocity flow is de-
composed in a mean (phase-averaged) velocity field u and a fluctuating part u′. The
turbulent kinetic energy k and the mean flow kinetic energy Ek are defined as:

k(t) =
1

2V (t)

∫
V (t)

(urms(x, t)2 + vrms(x, t)2 +wrms(x, t)2)dV, (4.10)

Ek(t) =
1

2V (t)

∫
V (t)

(u(x, t)2 + v(x, t)2 +w(x, t)2)dV, (4.11)

where urms, vrms and wrms are the root-mean-square values of the velocity fluctuations
in the three directions. The volume V (t) is either the volume of the ventricle or the
volume of the atrium at time t.

Fig. 4.7. Volumetric mean flow kinetic energy Ek (full line) and five times the turbulent
kinetic energy k (dashed line) in the left ventricle (top plot), and in the left atrium (bottom
plot). The energies are nondimensionalised by u2

a. Vertical dotted lines mark the limit between
the systolic phase (t/T between 0.015 and 0.375) and the diastolic phase
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Figure 4.7 shows how these energies evolve over the heart cycle, both in the ven-

tricle (top plot) and the atrium (bottom plot). Note that 5 times k is plotted, so that the
same scale is used to represent both energies. The mean flow kinetic energy evolves
similarly in both cavities. During the systolic phase (t/T between 0.015 and 0.375)
it increases and reaches a plateau at t/T =0.15. After a decrease just before the be-
ginning of diastole, the mean flow kinetic energy increases again and reaches a peak
at t/T =0.54, viz. 0.04T after the the peak of the E wave. The maximum value of
Ek corresponds to the presence of high velocities when blood flows from the atrium
to the ventricle (see the mitral jet in Fig. 4.5, bottom left). The ventricular turbulent
kinetic energy k remains low during the systolic phase thanks to the stabilizing effect
of the flow acceleration, with values of less than 5% of Ek. It then increases substan-
tially, reflecting the amplification of the disturbance after the jet impingement on the
lateral ventricle wall. The turbulent energetic peak is reached T /10 after the peak of
mean flow kinetic energy, corresponding to the convection time of the vortex ring
and the decelerating phase of the flow. The turbulence intensity k/Ek in the ventricle
is as high as 50% during the k peak.

The atrial turbulent kinetic energy behaves somewhat differently. First, it increa-
ses during the whole systolic phase, because of the interaction/collision of the four
inflowing jets issued from the pulmonary veins. A first peak is thus reached near the
beginning of the diastolic phase and turbulence intensity is then attenuated during
the flow acceleration through the atrium, as expected. The atrial turbulent kinetic
energy rises again after t/T=0.5 and reaches its peak before t/T = 0.6 during the
flow deceleration. On top of occurring earlier in the heart cycle, this peak is around
twice less energetic than the one occurring in the ventricle. Still, it corresponds to a
large turbulence intensity of approximatively 20%. As in the ventricle, the turbulent
kinetic energy then decreases until the end of the heart cycle.

4.5 Conclusions

The approach presented here allows patient-specific blood flow simulations in the
heart from a series of gated 3D images. Starting from 4D medical images, the nu-
merical domain is first extracted and the heart wall movements are then calculated
thanks to a proper image registration algorithm. In order to demonstrate the ability
of the method to reproduce the cardiac flow, a computation of the blood flow in a
whole left heart has been conducted. Results consistent with the current knowledge
in terms of left heart flow is presented. All presented features have been reported
several times in the literature, both in numerical and experimental studies and by
medical imaging.

Furthermore, the use of fluid numerical method well adapted to fluctuating tur-
bulent flows enables the observation of cycle-to-cycle variations in the flow field.
Such variations are expected in the present flow, due to the high Reynolds numbers
encountered and the unsteadiness of the flow incoming from the pulmonary veins.
The present results show that in spite of rigorously identical contraction and bound-
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ary conditions, fluid inertia makes the flow differ from one cycle to another. More
precisely, cycle-to-cycle variations in the left atrium can be observed in its upper
part, where the collision of the jets issuing from the pulmonary veins makes the
flow particularly chaotic. Spatially averaged kinetic turbulent energy level reaches
a turbulent intensity of 20% at its peak then slowly decreases. In the left ventricle,
velocity fluctuations are reported mainly during late diastole. Between the impact of
the E wave jet on the lateral wall and the end of diastole, the left ventricle displays
high levels of cycle-to-cycle fluctuations. Indeed, both the vortex ring impact and
the E wave deceleration occur approximately at the same time, and both are features
tending to generate turbulence. This translates into turbulent intensity levels as high
as 50%. This turbulent activity dissipates little by little, until the flow acceleration
at early systole.

The presented method does not include or simplifies some aspects of the physio-
logical heart. Blood is considered as a Newtonian fluid, which is an approximation
commonly accepted for the heart flow. A non-Newtonian model could be included
in our simulations. The spatio-temporal resolution of medical imaging imposes tem-
poral interpolation and geometrical simplifications of the heart model. Consistently
with the poor time resolution of the input medical data, a rough model of the mi-
tral valve was used, which constitutes the main drawback of our method. Valves
are instantaneously switch from their closed position to their open position and vice
versa. This simple approach is justified by the fact that the opening and closing of
the valves last only 5% of the whole cycle. Change of aperture area along time is
not considered either. Note however that the model can be refined depending on the
available data. Nevertheless, the presented approach allows to retrieve features re-
ported in the literature and, in addition, it can provide detailed information about the
complex intermittent flow in the left heart.
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