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Abstract
A method to estimate the hemodynamics parameters of a network of vessels using

an Ensemble Kalman filter is presented. The elastic moduli (Young’s modulus) of

blood vessels and the terminal boundary parameters are estimated as the solution

of an inverse problem. Two synthetic test cases and a configuration where experi-

mental data are available are presented. The sensitivity analysis confirms that the

proposed method is quite robust even with a few numbers of observations. The

simulations with the estimated parameters recovers target pressure or flow rate wave-

forms at given specific locations, improving the state-of-the-art predictions available

in the literature. This shows the effectiveness and efficiency of both the parameter

estimation algorithm and the blood flow model.
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1 INTRODUCTION

An increase in arterial stiffness has been shown to be linked

with age including other health problems or risk factors such

as diabetes and hypertension.1 The stiffness of arteries can

be measured using different techniques such as by measuring

the pulse wave velocity (PWV) or with the analysis of local

variations in local pressure and volume.2 Pulse wave veloc-

ity is directly related to the arterial wall elasticity and to the

Young’s modulus of the arteries.2

“Assimilation is the process of finding the model represen-

tation which is most consistent with the observations”.3 The

use of inaccurate parameters in the model equations can give

rise to model errors.4 The parameter estimation problem tends

to improve initial estimates of the model parameters so that

the difference between the measurements and the model solu-

tion are minimized. In parameter estimation problem, it is

assumed that the uncertainties in the model parameters are the

sources of errors for the model errors.5 According to Annan

et al.,6 it is important to tune the parameters to gain a better

confidence in the predictions of the state values. Generally,

we have observable data for the state, but no direct observable

data for the parameters.

In recent years, parameter estimation has been carried

out using a similar framework as for the state estimation.

The state vectors can be augmented by the poorly known

parameters for estimating by having a Kalman filter for

the state-parameter augmented model.5,7–9 In state-parameter

augmentation, parameters are considered as part of the model,

which are updated in the analysis step of the data assim-

ilation algorithm together with the model variables.6 An

evolution model for model parameters is required for the

state-parameter augmented model.10 The common evolution

model includes the random walk model11,12 and the persis-

tence model.9,13 Combining the model variables and model

parameters during the analysis step can also introduce prob-

lems such as parameter collapse and filter divergence.14 In

studies elsewhere,14,15 parameter estimation using an ensem-

ble Kalman filter (EnKF) is presented using augmentation

method, but without updating the model states during the

assimilation step.

Some recent works on inverse problems in hemody-

namics include the work of Lombardi,16 Moireau et al.,17

Pant et al.,18 Bertoglio et al.,19 Chabiniok et al.,20 Martin

et al.,21 Spilker et al.,22 and Lassila et al.23 In Lombardi,16

a sequential approach based on the reduced-order unscented
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Kalman filter (ROUKF) is presented for the identification of

arterial stiffness parameters in 1D hemodynamics. In Moireau

et al.,17 ROUKF is used to identify the boundary condition

parameters in a fluid structure vascular model utilizing patient

image data. In Pant et al.,18 a sequential estimation technique

using the unscented Kalman filter (UKF) is presented to esti-

mate lumped model parameters from clinical measurements.

In Bertoglio et al.,19 parameter estimation using ROUKF for

fluid-structure interaction problems is presented. In Chabin-

iok et al.,20 the use of sequential joint state-parameter data

assimilation to a biomechanical heart model with actual car-

diac Cine-MRI data is presented. In Martin et al.,21 a varia-

tional method (adjoint state approach) is presented to identify

the parameters of 1D models for blood flow in arteries. In

Spilker et al.,22 a quasi-Newton method is used to adjust

the parameters of the outlet boundary conditions of blood

flow models to achieve target profiles of flow and pressure

waveforms. In Lassila et al.,23 the solution of inverse prob-

lems in hemodynamics is proposed using deterministic and

Bayesian approaches.

Recent works on inverse problems in hemodynamics are

either based on joint state augmented model (e.g., Chabiniok

et al.20) or ROUKF (eg, Lombardi,16 Moireau et al.,17 Pant

et al.,18 and Bertoglio et al.18). We use EnKF to identify the

Young’s modulus and the terminal boundary parameters as

the solution of inverse problems. Our aim is to show that this

can be achieved with only a few number of observations and

without using the joint state formulation, hence reducing a

modification of the state equations. We think this is important

in order to minimize the coupling between the assimilation

tool and the state equations solver. Also, one originality is to

ensure positivity for the solutions of the inversion introducing

an adequate reformulation of the problem through logarithmic

variable changes. Finally, one important result of the paper

is to show that joint use of data assimilation and flow solu-

tion by a CFD code greatly improves available results in the

literature for a realistic human arterial model with available

experimental references.24

In this paper, first we present a review of the data assim-

ilation method using an EnKF and propose a method for

hemodynamics parameter estimation as the solution to an

inverse problem. In the second section a blood flow model

of the cardiovascular network is presented. In Section 3, test

cases are presented where we show the applicability of an

EnKF to 1D blood flow model in parameter estimation. The

first two test cases use synthetic data and the final test case

involves the use of an experiments data.24 The test cases are

limited to the estimation of Young’s modulus and the bound-

ary condition parameter, i.e., reflection coefficient and the

viscoelastic coefficient.

2 ENSEMBLE KALMAN FILTER

First introduced by Geir Evenson,25 an EnKF solves the

Fokker-Plank equation using a Monte Carlo or ensemble

integrations.26 It is a suboptimal estimator for problems

involving high-order nonlinear models. The error statistics are

predicted using the ensemble of states. Different versions of

EnKF are available in the literature: Deterministic Ensemble

Kalman filter,27 Monte Carlo EnKF,25,28 EnKF,29,30 Hybrid

EnKF,31 Ensemble Transform Kalman filter,32 Ensemble

Adjustment Kalman filter,7 Ensemble Square Root filters,33

and Local Ensemble Kalman filter.34

2.1 Derivation of ensemble Kalman filter

In EnKF the forecast error covariance matrix is evaluated

using an ensemble of forecasts. In this section we follow and

describe the different steps employed in the formulation of

EnKF as presented elsewhere.30,35–38

We will assume that the discrete nonlinear system is

described by

xk+1 = f (xk) + wk, yk = h(xk) + vk. (1)

The model state at time tk is xk ∈ Rn, while the observed

state is yk ∈ Rp. n is the dimension of the model state

vector and p is the number of observations. wk ∈ Rn and

vk ∈ Rp are assumed uncorrelated Gaussian model errors

with wk ∼  (0,Qk) and vk ∼  (0,Rk), where Qk and Rk
are the covariance matrices. h is the function describing the

relationship between the measurement and the states.

At time tk it is assumed that an ensemble of q forecast state

estimates (prior ensembles); Xf
k = (xf1

k , … , xfq

k ) ∈ Rn×q is

available. fi represents the ith forecast member of the ensem-

ble. The mean of the ensemble of forecast state is xf
k ∈ Rn

and is given by

x̄f
k =

1

q

q∑
i=1

xfi
k . (2)

The forecast covariance matrix, Pf
k ∈ Rn×n, is defined by

Pf
k =

1

q − 1

q∑
i=1

(
xfi

k − x̄f
k

)(
xfi

k − x̄f
k

)T

. (3)

After the computation of the Kalman gain Kk, all opera-

tions on the ensemble members are independent in the EnKF

analysis step and the ensemble members are updated using

xai
k = xfi

k + Kk

[
yi

k − h
(

xfi
k

)]
, i = 1, … , q, (4)

where ai represents the ith updated or analysed member of the

ensemble. Without adding perturbations to the original obser-

vation vector, an updated ensemble with a low variance can be

obtained.39 Hence, for the correct forecast error covariance to

be maintained, a suitable spread of the ensemble members is

required. This is achieved by using an ensemble of perturbed

observations.39 An ensemble of the same size q consisting

of observations is also generated by adding small perturba-

tions to the observation set yk. Perturbations are generated to

have the same distribution as the measurement error, and the

perturbed observations yi
k are defined by
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yi
k = yk + ei

k, i = 1, … , q, (5)

where ei
k ∈ Rp is a Gaussian random vector with zero

mean and a specified variance. The measurement error covari-

ance matrix, Rk, is diagonal following the assumption of

independent observations33 and is defined as

Rk = diag

[
1

q − 1
EET

]
, E =

[
e1

k , … , eq
k

]
. (6)

For a linear measurement function, h, and if the noise is

additive, that is,

yk = Hxk + vk, (7)

the Kalman gain is defined by36

Kk = Pf
kHT

(
HPf

kHT + Rk
)−1

. (8)

In Equation (8), the observation operator, H ∈ Rp×n, is linear

or linearized. To circumvent the linearization of a nonlin-

ear measurement function that might be difficult to linearize,

Houtekamer and Mitchell40 rewrote the two terms Pf
kHT and

HPf
kHT that appear in the Kalman gain Equation (8) as

Pf
kHT ≡

1

q − 1

q∑
i=1

[
xfi

k − x̄f
k

] [
h
(

xfi
k

)
− h

(
xf

k

)]T

, (9)

HPf
kHT ≡

1

q − 1

q∑
i=1

[
h
(

xfi
k

)
− h

(
xf

k

)] [
h
(

xfi
k

)
− h

(
xf

k

)]T

,

(10)

where h
(
xf

k

)
= 1

q

∑q
i=1

h
(

xfi
k

)
. It has been argued by Tang

and Ambadan41 that Equations (9) and (10) approximately

hold, if the following are true:

h
(
xf

k

)
= h

(
x̄f

k
)
, (11)

norm
(

xfi
k − xf

k

)
is small fori = 1, 2, … q. (12)

Equations (9) and (10) linearize the nonlinear function h to

H under the conditions of Equations (11) and (12).37 For the

nonlinear model with a nonlinear measurement function, a

general equation for the Kalman gain can be stated as37

Kk = Pf
xyk

(
Pf

yyk

)−1
, (13)

where the error covariance matrices Pf
xyk

and Pf
yyk

are defined

as follows:

Pf
xyk

= 1

q − 1

q∑
i=1

[
xfi

k − x̄f
k

] [
h
(

xfi
k

)
− h

(
xf

k

)]T

, (14)

Pf
yyk

= 1

q − 1

q∑
i=1

[
h
(

xfi
k

)
− h

(
xf

k

)] [
h
(

xfi
k

)
− h

(
xf

k

)]T

.

(15)

We define the true state (or parameter) as the target of an

ideal assimilation. The best forecast state estimate is given by

the ensemble mean x̄f
k. The error between x̄f

k and the true state

is given by the standard deviation of the ensemble members

around xf
k. The final step is the forecast step and involves an

ensemble of q forecast states for time t = k + 1 as

xfi
k+1

= f
(
xai

k

)
+ wi

k, i = 1, 2, … q. (16)

2.2 Summary of ensemble Kalman filter algorithm

We now summarize the forecast and analysis steps of EnKF

presented in Section 2.1. A schematic description of the EnKF

algorithm is shown in Figure 1. To start the EnKF, we need

to generate an ensemble of q forecast estimates of state asso-

ciated with their random errors. At t = k − 1, it is assumed

that xfi
k−1

for i = 1, … , q are available. We let p denote the

number of observations. At time t= k we generate a set of real-

izations of the state vector Xk = (x1
k , … , xq

k) and denote the

corresponding measurements as Yk = (y1
k , … , yq

k) ∈ Rq×p.

Q and R correspond to the model and the observation error

covariance matrices, respectively. We write the equations for

the EnKF as

FIGURE 1 A schematic description of the ensemble Kalman filter
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xfi
k = f

(
xai

k−1

)
+ wi

k−1
, i = 1, … , q,

wi
k ∼  (0,Qk),

Pf
xyk

= 1

q − 1

q∑
i=1

[
xfi

k − x̄f
k

] [
h
(

xfi
k

)
− h

(
xf

k

)]T

,

Pf
yyk

= 1

q − 1

q∑
i=1

[
h
(

xfi
k

)
− h

(
xf

k

)] [
h
(

xfi
k

)
− h

(
xf

k

)]T

+ Rk,

Kk = Pf
xyk

(
Pf

yyk

)-1
,

yi
k = yk + ei

k, i = 1, … , q,

xai
k = xfi

k + Kk

[
yi

k − h
(

xfi
k

)]
, i = 1, … , q.

In the above steps the superscripts ‘f’ and ‘a’ denote the

forecast and the analysis steps, respectively. EnKF algorithm

yields an ensemble of analyses at time t = k, which can be

cycled in time.

Unscented Kalman filter differs from EnKF by the choice

of the sampling. UKF uses a minimal set of deterministi-

cally chosen points (sigma points) and propagates this set

through the actual nonlinear function.18 In contrast, EnKF

uses a Monte Carlo-based choice of many points (members of

the ensemble) for forward propagation. UKF should be pre-

ferred, if the output of the system deviates from a Gaussian

distribution. Except with the computation of the Kalman gain,

all the operations on the ensemble members are independent.

This implies that their parallelization can be trivially carried

out. This is one of the reasons for the success and popularity

of the EnKF and UKF.

3 PARAMETER ESTIMATION USING
ENSEMBLE KALMAN FILTER

In the current work, the EnKF algorithm is used to estimate

only the model parameters. The parameters are thus con-

sidered as special state variables (the state vector contains

only the model parameters). The evolution of parameters is

characterized by a random walk model11,12 and is defined as

xi
k+1

= xi
k + 𝜏 i

k. 𝜏k ∼  (0,Tk) is a small random perturba-

tion with predefined variance T. Numerical simulators can be

regarded as nonlinear functions that take parameter vector xi

as an input and produce an output vector yi = (xi).42  is

the nonlinear measurement function defined by the numeri-

cal simulator. The information from observations is used by

the Kalman filter during the analysis step, and the Kalman

gain Equation (4) is applied to update the ensemble members.

The use of Equation (4) assumes that the parameters follow a

Gaussian distribution.42 The parameter estimation procedure

using the EnKF is stated in Algorithm 1.42 The algorithm

can be stopped when some finite convergence criterion is

achieved. A flowchart for parameter estimation using EnKF

is shown in Figure 2. Positivity issues are physically impor-

tant but often difficult to enforce in assimilation processes.

In this study the parameters (e.g., the Young’s modulus) need

to remain positive. To avoid negative values of the Young’s

modulus during the assimilation procedure, we introduce a

change of variable. More precisely, in the sequel all the

parameters are redefined as x = xref 2
𝜃 . x is the real parame-

ter (e.g., the Young’s modulus), 𝜃 is the parameter used for

estimation in EnKF, and xref is a reference value (initial mean

value for the Young’s modulus). With this change of vari-

able, the values of estimated parameters remain positive.18

The EnKF implementation uses an ensemble of 𝜃 such that

𝜃 ∼  (0, 1).

4 THE BLOOD FLOW MODEL

We first recall the 1D governing equations for the blood

flows in variables u (cross-section averaged blood velocity),

A (cross-section area), and p (cross-section averaged static

pressure), which have been widely used in hemodynamics

applications.24,43–52 1D modeling of arterial networks being

computationally cheap is a common method adopted to per-

form numerical simulations of the hemodynamics in arterial

vessels.47,53 The model assumes that blood is a Newtonian

fluid in large vessels and can be considered incompressible

with constant density 𝜌 and constant dynamic viscosity 𝜇.50

4.1 Governing equations

For an incompressible and Newtonian fluid in an elastic tube,

the system of equations that represents continuity of mass and

momentum can be stated as43

𝜕A
𝜕t

+
𝜕q
𝜕x

= 0,

𝜕q
𝜕t

+ 𝜕

𝜕x

(
𝛼

q2

A

)
+ A

𝜌

𝜕p
𝜕x

= −kr
q
A
,

(17)

where x is the axial direction, A = A(x,t) is the cross-section

area at time t, q = q(x, t) is the flow rate across a section,

𝜌 is the constant density of the blood, p is the cross-section

average static internal pressure, and u(x, t) = q(x,t)
A(x,t)

denotes

the cross-section averaged blood velocity. The term 𝛼 is the

momentum-flux correction coefficient. For a flat velocity

profile, it is assumed that 𝛼 = 1.43 kr denotes the viscous resis-

tance of the flow per unit length of the tube. A, q, and p are

the unknowns in the system (17). The system is closed by

explicitly providing a differential constitutive pressure-area

relationship.43 A nonlinear model for pressure law is adopted

according to Kelvin-Voigt model24:

p = pext +
𝛽

A0

[ ( √
A −

√
A0

)
+ 𝜖p

( √
A −

√
A0

)2
]

+ 𝛾

A0

𝜕
√

A
𝜕t

,

(18)

where pext denotes the constant external pressure, A0 = A0(x)

denotes the vessel sectional area at equilibrium state, and 𝜖p is

the nonlinearity coefficient. The term 𝛾 is h𝜂
√
𝜋, where h is



LAL ET AL. e02824 (5 of 17)

FIGURE 2 Parameter estimation flowchart using the ensemble Kalman filter

the thickness of the tube and 𝜂 is the viscoelastic coefficient.

The coefficient 𝛽, which is related to the arterial stiffness, is

defined as

𝛽 =
√
𝜋hE(

1 − 𝜎2
) , (19)

where E = E(x) is the Young’s modulus and 𝜎 = 0.5 is the

Poisson ratio.43

With a specified inflow boundary condition, the 1D govern-

ing equations for the blood flow are solved using the terminal

models for the outflow boundary conditions.47

4.2 Characteristic variables

The 1D model (17) can be rewritten in a conservative form,

𝜕U
𝜕t

+ 𝜕F(U)
𝜕x

= S(U), (20)

where U = [A, q]T denotes the vector of conserved variables,

F(U) are the fluxes, and S(U) are the source terms defined by

F(U) =
⎡⎢⎢⎢⎣

q

𝛼
q2

A
+ 𝛽

3𝜌A0

A
3

2 + 𝛽𝜖p

𝜌A0

(
1

2
A2 − 2

3

√
A0A

3

2

) ⎤⎥⎥⎥⎦ ,
S(U) =

⎡⎢⎢⎣
0

−kr
q
A
+ 𝛾

√
A

2𝜌A0

(
𝜕2q
𝜕x2

− 1

2A
𝜕A
𝜕x

𝜕q
𝜕x

) ⎤⎥⎥⎦ .
(21)

The highly coupled system of nonlinear equations (20) is

decoupled to implement the numerical solution with the pre-

scribed boundary conditions.46 The characteristic system is

derived by expressing the system of equations (20) in a

quasi-linear form which can be expressed as46

𝜕U
𝜕t

+ J𝜕U
𝜕x

= S, (22)

where the Jacobian reads

J(U) = 𝜕F
𝜕U

=

[
0 1

−𝛼 q2

A2
+ 𝛽

2𝜌A0

A
1

2 + 𝛽𝜖p

𝜌A0

(
A −

√
A0

√
A
)

2𝛼
q
A

]
.

(23)

Through consideration of the nonlinear coefficient (𝜖p) and

visco elasticity (𝜂) as source terms, the characteristic analysis

shows that, for all allowable U (that is for A > 0), the system

is hyperbolic and the two real eigenvalues of J are48,49

𝜆1 =
𝛼q
A

+

√
𝛽

2𝜌A0

A
1

2 + 𝛼(𝛼 − 1)
q2

A2
> 0,

𝜆2 =
𝛼q
A

−

√
𝛽

2𝜌A0

A
1

2 + 𝛼(𝛼 − 1)
q2

A2
< 0.

(24)
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When 𝛼 = 1, the associated characteristic variables have the

following expressions:

W1 =
q
A
+ 4(c − c0),

W2 =
q
A
− 4(c − c0),

(25)

where c =
√

𝛽

2𝜌A0

A
1

4 and c0 =
√

𝛽

2𝜌A0

A
1

4

0
. The charac-

teristic system can be expressed as the decoupled system

of equations:

𝜕w1

𝜕t
+ 𝜆1

𝜕w1

𝜕x
= 0,

𝜕w2

𝜕t
+ 𝜆2

𝜕w2

𝜕x
= 0.

(26)

The wave velocity that arises from the blood wall cou-

pling may take values as low as 5m/s in large arteries (e.g.,

aorta), increasing to values around 20-35m/s in less distensi-

ble peripheral arteries.50 However, peak flow velocities u are

much smaller and usually remain less than around 1m/s.

4.3 Numerical approximation

Several methods have been used,43–45,52,54 for the numerical

approximation of the 1D system of conservation laws (17).

In this section we follow Peiró and Veneziani (2009)45 and

Formaggia et al. (2003),54 where equations of the 1D model

are discretized in their conservative form (20) by employ-

ing a second-order Taylor Galerkin scheme. We denote

△t= tn + 1 − tn the time step and express the Taylor expansion

truncated to the second order at time tn, giving

Un+1 = Un +△t𝜕U
𝜕t

||||n +△t2

2

𝜕2U
𝜕t2

||||
n

. (27)

We define the matrix

K = 𝜕S
𝜕U

=

[
0 0

kr
q

A2
+ 𝛾

4𝜌A0

1√
A

(
𝜕2q
𝜕x2

+ 1

2A
𝜕A
𝜕x

𝜕q
𝜕x

)
− kr

A

]
(28)

and rewrite (20) as

𝜕U
𝜕t

= S − 𝜕F
𝜕x

. (29)

Using the matrices (23) and (28), we obtain

𝜕2U
𝜕t2

= 𝜕S
𝜕U

𝜕U
𝜕t

− 𝜕

𝜕x

(
𝜕F
𝜕U

𝜕U
𝜕t

)
= K𝜕U

𝜕t
− 𝜕

𝜕x

(
J𝜕U
𝜕t

)
= K

(
S − 𝜕F

𝜕x

)
− 𝜕(JS)

𝜕x
+ 𝜕

𝜕x

(
J𝜕F
𝜕x

)
.

(30)

At time tn = n△t, the vector of unknowns Un satisfies the

following time marching scheme:

Un+1 = Un +△t
(

Sn − 𝜕Fn

𝜕x

)
+ △t2

2

×
(

Kn
(

Sn − 𝜕Fn

𝜕x

)
− 𝜕(JnSn)

𝜕x
+ 𝜕

𝜕x

(
Jn 𝜕Fn

𝜕x

))
.

(31)

The spatial discretization uses linear finite elements. The

domain Ω is subdivided into Nel finite elements Ωe of size he.

We let Vh be the set of continuous vector functions inΩ, linear

on each element and V0
h the subspace of Vh whose functions

are 0 at the endpoints.45 The solution of (31) requires, for n ≥
0, to determine Un + 1 in Vh such that ∀𝜙h ∈ V0

h ,

(
Un+1, 𝜙h

)
= (Un, 𝜙h) +△t (Sn, 𝜙h) +△t

(
Fn,

𝜕𝜙h

𝜕x

)
+ △t2

2

(
Kn

(
Sn − 𝜕Fn

𝜕x

)
, 𝜙h

)
+ △t2

2

(
Jn

(
Sn − 𝜕Fn

𝜕x

)
,
𝜕𝜙h

𝜕x

)
,

(32)

where (U, 𝜙) = ∫ L
0

U.𝜙dx.

For the stability of the numerical method, we follow

Formaggia et al. (2003)54 and impose the following limitation

for the time step

△t ≤ CFL × min
0≤i≤Nel

[
hi

max(𝜆1,i𝜆1,i+1)

]
, (33)

where 𝜆1,i is the value of 𝜆1 at mesh node xi and the maximum

CFL number is

√
3

3
.54

4.4 Initial and boundary conditions

The initial conditions for (31) are given by

A(x, 0) = A0(x), q(x, 0) = 0, p(x, 0) = p0(x), (34)

where A0(x) and p0(x) are the prescribed functions. The hyper-

bolic nature of the system permits to impose the flow rate

q or area A at the inlet.43 At the inlet usually, the flow rate

is specified,55

q(0, t) = qin(t). (35)

Information from the outside and inside of the domain is car-

ried by the incoming characteristic (W1) and the outgoing

characteristics (W2), respectively.44

At each end of the tube, a single boundary condition is

implemented. This is due to the characteristic analysis and

using the fact that the flow is subcritical (the eigenvalues

[𝜆1and 𝜆2] in (24) have opposite signs) under physiologi-

cal conditions.43,51 At the inlet at x = 0, Un is assumed to

be known and 𝜆2 in (26) is linearized by taking its value at

time tn. It can be shown that, at the time tn + 1, the solution

corresponding to this linearized problem yields43,46

Wn+1
2

(0) = Wn
2
(−𝜆n

2
(0)△ t). (36)
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FIGURE 3 A constant resistance model representing an outflow boundary

condition

Equation (36) is a first-order extrapolation of W2 from the

previous time step. Similar treatment at the outlet x = L
leads to

Wn+1
1

(L) = Wn
1
(L − 𝜆n

1
(L)△ t). (37)

4.5 Terminal vessels

For reduction of the complexity of the blood flow simula-

tion, smaller arteries, which are downstream of the truncation

points, are not explicitly accounted for but their effect is

represented by proper outflow boundary conditions.56 The

two most common models used are the constant resis-
tance model24,44,46,56,57 and the Windkessel model,52,56,57

which can be obtained using an analogy based on electric

circuit components.

The constant resistance model (see Figure 3) is represented

by a resistor Rt,
56 where it is assumed that the blood pres-

sure, p(t) − p0, is proportional to the blood flow rate q(t). The

relation between the blood pressure and the flow is given by

p(t) − p0 = Rtq(t), where Rt represents the terminal reflection

coefficient. The terminal reflection coefficient for a wavefront

traveling in the + x direction can be defined in terms of the

incoming and outgoing characteristics as44,46

Rt = −△W2

△W1

= −
Wn+1

2
− W0

2

Wn+1
1

− W0
1

. (38)

The values for Wn+1
1

are determined using Equation (37),

whereas W0
1

and W0
2

are the initial values.46 The unknown

Wn+1
2

is determined by rearranging Equation (38), giving

Wn+1
2

= W0
2
− Rt

(
Wn+1

1
− W0

1

)
. (39)

A reflection coefficient of Rt = 0 represents a nonreflecting

boundary condition.

4.6 Treatment of bifurcations

At bifurcation of a blood vessel, we assume that pressure

losses are negligible. We follow44 and enforce the following

conditions:

3∑
i=1

qi = 0,
1

2
𝜌

(
q1

A1

)2

+ p1 −
1

2
𝜌

(
qi

Ai

)2

− pi = 0, i = 2, 3,

(40)

representing the conservation of flow rate and total pressure

continuity equations, respectively.

5 APPLICATION OF ENKF TO 1D BLOOD
FLOW MODEL

In this section we present the use of the EnKF algorithm

to solve the parameter estimation problem in a series of test

cases. The first two tests are purely in silico. That is, we use

only synthetic data (observations) that are obtained from a for-

ward simulation, where the model parameters are set to some

known or target values. From these observations the parame-

ter estimation problem then starts with an initial estimate for

the parameters that differs significantly from the target values.

With synthetic data an inverse problem is always admissi-

ble, when the objective is to recover the target parameters. By

admissible we mean that because the target is generated with

the model, the solution of the inversion targeting this results

obviously exists, but still there is no guarantee of uniqueness.

Indeed, regardless of existence of solution that is guaran-

teed in this case, several distributions of the parameters could

achieve the target. The final test case uses data from the exper-

iment performed by Saito et al.24 In this latter case, unlike

with the synthetic data, there is no guarantee that the solution

to the inverse problem actually exists.

In Saito (2011),24 a simple human arterial network was

designed using polymer tubes to validate the applicability of

the 1D blood flow model. The network was made with 4

bifurcations and consisted of the main artery, a left carotid

artery, femoral arteries (left and right), and subclavian-radial

arteries (left and right). The schematic of this simple human

arterial model is shown in Figure 4 and the geometry of the

arteries (length, diameter, and the thickness) in Table 1.24

FIGURE 4 Schematic of a simple human arterial model with 9 vessels and

4 bifurcations. Artery numbers correspond to those in Table 1. Figure

adapted from Saito et al.24



(8 of 17) e02824 LAL ET AL.

TABLE 1 Geometrical data (L = length, D = diameter, and h = thickness)
of a simple human arterial model (Figure 4)24

L D h
Name (mm) (mm) (mm)

i Aorta arch A 35 12 2

ii R. subclavian radial artery 800 6 1.5

iii Aorta arch B 20 11 2

iv L. carotid artery 675 6 1.5

v Aorta arch C 40 10 2

vi L. Subclavian radial artery 710 6 1.5

vii Aorta 470 8 1.5

viii R. femoral artery 365 6 1.5

ix L. femoral artery 365 6 1.5

An appropriate length of blood vessels was defined accord-

ing to the vessel data of an average adult man. The diameter

and thickness were defined to achieve a negligible reflec-

tion coefficient at bifurcation point.24 For all test cases we

use the simple arterial model as in Figure 4. We limit our

parameters of interest to Young’s modulus and terminal

model parameters (reflection coefficient), which are within a

physiological range.

5.1 Two test cases with synthetic data

One of the important parameters for EnKF is q, the ensem-

ble size. It is expected that the EnKF parameter estimation

procedure would improve as the ensemble size increases. The

increase in an ensemble size will also increase the compu-

tational cost associated with it. In our test cases we assume

that the blood flow model errors and uncertainties arise from

the errors in the parameters, and thus, an ensemble is gener-

ated with perturbed parameters. As detailed in what follows,

we therefore performed a parametric study to select a proper

ensemble size.

We first simulate the blood flow model using an arbitrary

set of parameters {E, Rt}. The resulting simulated model

states are stored as psim ∈ Rn. An ensemble of size q is gen-

erated where the ensemble members are
{

E′
,R′

t
}

i for i =
1 … , q. For each i, E′ is a random normal variable with mean

E and standard deviation of 0.1E. Similarly, R′

t is a random

normal variable with mean Rt and standard deviation of 0.1Rt.

The blood flow model is then simulated with each member of

the ensemble, and the observed pressure values at the end of

the simulation are stored as pobsi ∈ Rn. To select an ensemble

size for the EnKF analysis, we calculated the root mean square

error defined for each member of the ensemble as RMSEi =√
1

n

∑n
j=1

(
psim

j − pobsi
j

)2

. Finally, we find the mean RMSE

for the ensemble of size q as RMSE = 1

q

∑q
i=1

RMSEi. The

procedure was repeated with different ensemble sizes between

q = 2 and q = 60. From Figure 5, which shows the output of

the procedure with different random seeds, the mean RMSE

decreases sharply initially with q increasing. From this figure

FIGURE 5 Mean RMSE as a function of ensemble size. Five sets of

RMSE are calculated with different random seeds

the error does not decrease after q ≈ 20 and this latter value

was thus retained in the present study.

5.1.1 Test case 1:
The first test case deals with the estimation of the Young’s

modulus for a single artery. We first describe the procedure

for generating the synthetic data. All arteries except aorta

(number vii in Figure 4) is assigned a Young’s modulus of

0.2 MPa, and to aorta (number vii), we assigned 0.25MPa

assuming some pathology there locally increasing its stiff-

ness. A contant resistance model is applied to the terminal

vessels. A reflection coefficient of Rt = 0.6 is assigned to

the terminal vessels ii, iv, and vi and for terminal vessels

vii and ix, Rt = 0.65. Figure 6 shows the periodic inlet flow

rate boundary condition qin(t) (with a period of 0.8s and an

average inlet flow of 5.625 mL/s) imposed at the aorta arch

A of the simple arterial model. The density of the fluid is

taken as 1.0 kg/m3, the viscosity of 1 × 10 − 3 Pa.s, and the

Poisson’s coefficient is taken as 0.5. The viscoelastic coeffi-

cient 𝜂 and the nonlinearity coefficient 𝜖p of the vessel are

set to 0 for the forward simulation. The time step for the for-

ward simulation is 0.1 ms, corresponding to CFL = 0.05.

Synthetic pressure observations are taken at every 0.01s. The

first objective is to determine the minimum number of obser-

vations (nobs), needed for a proper parameter estimation.

nobs refers to the number of locations where a time series of

pressure is available. Other time series can be considered and

we will present also simulations with flow rate time series in

Section 5.1.2. Algorithm 1 is executed initially with nobs= 6;

nobs is then decreased in steps of one to a minimum of 1.

These observations are assumed to be available from the left

and right subclavian radial arteries (artery # ii and vi) and

the left carotid artery (artery # iv). The locations of these

observations are shown in Table 2.

For the estimation problem, the Young’s modulus is sought

for the stiffest aorta, denoted by vii in Figure 4. An ensem-

ble of q = 20 members is considered in all the cases. For

each member of the ensemble, the observations are perturbed
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FIGURE 6 Periodic inlet flow rate qin(t) imposed at the aorta arch A

by a random vector drawn from the zero mean Gaussian dis-

tribution with a standard deviation at 5% of the observation

value. We compute the measurement error covariance matrix

R using Equation (6). The initial guess for the Young’s mod-

ulus assumes an error of 100%, ie, initial mean value for

E = 0.5MPa.

The parameter estimation using Algorithm 1 is then per-

formed with different numbers of observations, nobs. The

EnKF assimilation is executed for 10s and the evolution of

the estimated Young’s modulus is shown in Figure 7A. It

appears that convergence only takes place after some time.

This kind of trend is often observed in optimization, espe-

cially with methods involving a learning feature. Indeed, there

is no guarantee that the first search iterations are performed in

a direction (in parameter space) pointing toward a minimum

of the error. This behavior also comes from the fact that the

method is by nature explicit, as in a gradient-based methods.

Table 3 shows the value of estimated Young’s modulus with

errors (percentage deviation from target value) using differ-

ent number of observations. The percentage deviations from

target E were all less than 5%. For this test case, a minimum

of 1 observation was enough to recover the Young’s modu-

lus requested in the given interval of time. In Figure 7B, the

pressure solutions obtained by using the estimated Young’s

modulus at the first observation point on left carotid are com-

pared with the target and the initial guessed pressure profiles.

The comparison is shown for Young’s modulus estimated

using nobs = 2. Even though the solution in the vessel whose

Young’s modulus is sought for is not directly observed, the

simulated pressure waveforms are similar in shape to the tar-

get pressure waveform with an error of less than 0.2% in the

maximum pressure.

5.1.2 Sensitivity analysis:
In this section we look at the sensitivity of the parame-

ter estimation algorithm for test case 1 with respect to the

following items: (i) initial estimate of the parameter, (ii)

level of observation perturbation, (iii) the effect of intro-

ducing bias in the known parameter values, and (iv) the

observation type.
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TABLE 2 Location of observations on right subclavian radial artery (ii), left carotid artery (iv), and left
subclavian artery (vi) for synthetic test cases

Artery # nobs = 1 nobs = 2 nobs = 3 nobs = 4 nobs = 5 nobs = 6

ii 0.25L 0.25L 0.25L 0.25L, 0.75L 0.25L, 0.75L

iv 0.2L 0.2L 0.2L 0.2L, 0.8L 0.2L 0.2L, 0.8L

vi 0.33L 0.33L 0.33L, 0.67L 0.33L, 0.67L

where L is the length of the artery.

FIGURE 7 (A) The evolution of the estimated Young’s modulus using ensemble Kalman filter for test case 1 using a different number of observations. The

initial value is 0.5MPa and the target is 0.25MPa. (B) The comparison between target pressure solution, the initial pressure profile, and the one obtained by

using the estimated Young’s modulus with nobs = 2 at 0.2L of the left carotid artery.

TABLE 3 Test case 1: Estimated Young’s modulus and corresponding errors (percentage deviation from target value)
using different number of observations

nobs = 1 nobs = 2 nobs = 3 nobs = 4 nobs = 5 nobs = 6

Estimated E(MPa) 0.239 0.245 0.243 0.245 0.241 0.246

% deviation from target E − 4.49 − 1.95 − 2.64 − 1.82 − 3.52 − 1.79

• Initial guess: We study the performance of EnKF by con-

sidering different initial values of the Young’s modulus

for the parameter estimation problem. Two more ini-

tial values of E = 0.15 ( − 40% error) and 0.35MPa

(+40% error) were taken as the mean values of the ini-

tial ensembles. All other parameters and settings were

the same as in Section 5.1.1. Using nobs = 2, the EnKF

assimilation is executed for 10s and the evolution of esti-

mated Young’s modulus with their uncertainty (standard

deviations) is shown in Figure 8(a) for 3 different ini-

tial values, including for E = 0.5 MPa (+100% error).

The algorithm allows retrieving the target value indepen-

dently on the initial guess. Table 4 compares the initial

and final estimates of the Young’s modulus with their

associated uncertainties.

• The level of observation perturbation: As in Section 2.1,

the observations are perturbed by Gaussian noises. The

noises represent possible errors in the measurement.

For unbiased observations, perturbed observations are cre-

ated by adding noise (∼ ( (0, 𝜎2)), to the observation

values; 𝜎 represents the standard deviation. In test case

1, 𝜎 equals 5% of observation values, and for the anal-

ysis, we chose 2 more levels of observation perturba-

tions with 𝜎 being 1% and 10% of observations values,

respectively. Using nobs = 2, we perform the estima-

tion procedure for 10s. The estimated Young’s modulus

with their uncertainty (standard deviations) are shown in

Figure 8B for the 3 different levels of observation per-

turbations. With different values of 𝜎, the estimated E’s

converge to the target value, but with a slightly differ-

ent rate. With a lower 𝜎 (at 1% of observation values)

the convergence rate is a little slower compared with

the other two 𝜎’s, which was not anticipated. Table 5

compares the initial and final estimates of the Young’s

modulus with their uncertainties for the different level of

perturbations used.
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FIGURE 8 Sensitivity analysis for test case 1. In all the figures, the dashed line represents the target Young’s modulus of 0.25MPa and the shaded areas

represents the standard deviation around the mean values (solid lines). (A) The evolutions of the estimated Young’s modulus from 3 different initial values.

(B) The evolution of estimated Young’s modulus for 3 different levels of observation perturbations. (C) The evolution of the estimated Young’s modulus for

different bias in the known parameters: Rt perturbed with Gaussian noises having mean 0 and a standard deviation at 5% of the values of Rt (in red), E
randomly perturbed with Gaussian noises having mean 0 and a standard deviation at 10% of the values of E (in blue), both E and Rt randomly perturbed with

Gaussian noises having mean 0 and a standard deviation at 5% of the values of Rt and 10% of the values of E (in magenta). The evolution of estimated E with

unbiased known parameters is shown in black. (D) The evolution of the estimated Young’s modulus with pressure and flow rates as observation types.

TABLE 4 Sensitivity with different initial values: final estimates of
Young’s modulus with their associated uncertainties

Final estimate Uncertainty
Initial guess of E of E ( ± standard deviation)

0.15 0.2367 0.0228

0.35 0.2370 0.0250

0.50 0.2450 0.0245

All values are in megapascal.

TABLE 5 Sensitivity with different level of observation perturbation: the
initial guess of E = 0.5MPa and the final estimates of Young’s modulus
with their associated uncertainties are shown below

Final estimate Uncertainty
𝜎 of E ( ± standard deviation)

1% of observation values 0.2556 0.0122

5% of observation values 0.2450 0.0245

10% of observation values 0.2441 0.0398

Perturbed observations are created by adding noise (∼ ( (0, 𝜎2)), to the observa-

tion values. All values of E and standard deviation are in megapascal.

• Bias in the known parameter values: In test case 1, we

estimated the Young’s modulus for artery # vii assuming

that we know the values of E for all other arteries. We

also assumed that all reflection coefficients were known.

The performance of the estimation algorithm was tested by

introducing biases in the known values of E and Rt. Three

different test were carried out as follows: (i) We randomly

perturbed the values of reflection coefficients, Rt, with

Gaussian noises having mean 0 and a standard deviation at

5% of the values of Rt. (ii) The known values of Young’s

modulus, E, are randomly perturbed with Gaussian

noises having mean 0 and a standard deviation at 10% of

the values of E. (iii) Known values of both reflection coef-

ficients and Young’s modulus are randomly perturbed with

Gaussian noises having mean 0 and a standard deviation at

5% of the values of Rt and 10% of the values of E. Pressure

values in space were used as observations with the level

of observation perturbation set at 5% of observation val-

ues and the estimation procedure is executed for 10s. For

all tests the initial value of E assumes an error of 100%.

The evolution of the estimated Young’s modulus with their

uncertainties for 3 different tests is shown in Figure 8C

together with the evolution of estimated E when known

Young’s modulus and reflection coefficients are unbiased.

For all the cases the estimated values converge but they

slightly deviate from the target value as reported in Table 6,

which also gives indications of the level of uncertainties in

these inversions.
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TABLE 6 Sensitivity test: bias in the known parameter values

Random perturbation of
known values of parameters Final estimate Uncertainty
by adding noise (∼ ( (0, 𝜎2)). of E ( ± standard deviation)

unperturbed known parameters values 0.2450 0.0245

𝜎 is 5% of Rt values 0.2580 0.0132

𝜎 is 10% of E values 0.2752 0.0129

𝜎 is 5% of Rt values and 10% of E values 0.2480 0.0161

The initial guess of E = 0.5MPa and the final estimates of Young’s modulus with their associated

uncertainties are shown. All values of E and standard deviation are in megapascal.

• Observation type: In inverse hemodynamics problems,

observations such as blood pressure, cross-section blood

flow rates, artery wall movements, or cross-section flow

velocity can be made available. In test case 1, the obser-

vations are pressure values histories at some specific loca-

tions in space. The behavior of the estimation algorithm

with different kinds of observations. To this end, we con-

sider the flow rate in space as observations instead of the

pressure. We perform the estimation procedure for 10s

using nobs = 2 with the level of observation perturbation

set at 5% of the observed values. We compare these results

to those obtained with the pressure as observation. The

evolution of estimated Young’s modulus with the associ-

ated uncertainties is shown in Figure 8D. With both types

of observations, the estimated Young’s modulus converges

to the target value with relatively small errors ( −1.95%
and +2.24% with pressure and flow rate as observations,

respectively). However, when the observations are based

on the flow rates, the convergence is slightly faster, at

least in this particular case. The final estimates of E is

0.2450 ± 0.0245MPa when the pressure is considered as

the observed quantity. On the other hand, with the flow rate

as observation, the final estimate of E is 0.2556 ± 0.0059

MPa.

5.1.3 Test case 2:
The second test case deals with the estimation of the Young’s

modulus of all the arteries (i-ix) and the reflection coefficient

at all the outlet boundaries (ii, iv, vi, vii, and ix). All arter-

ies are assumed to have the identical stiffness, and thus, a

Young’s modulus of E = 0.2MPa is assigned to all. A reflec-

tion coefficient of Rt = 0.6 is assigned at all terminal vessels.

The viscoelastic coefficient 𝜂 and the nonlinearity coefficient

𝜖p of the vessels are set to 0.115kPa.s and 0, respectively, for

the forward simulation. The rest of the parameters are as in

Section 5.1.1. For the estimation problem, the Young’s mod-

ulus of the arteries and the reflection coefficient at terminal

arteries are sought using various numbers of observations.

The ensemble size q and the error covariance matrix R are

as in Section 5.1.1. The mean values for the initial guess

of the Young’s modulus and the reflection coefficient are

set to E = 0.4 MPa and Rt = 0.8. The EnKF assimilation

is executed for 12s and the evolution of estimated E and

Rt is shown in Figure 9A,B, respectively, for the different

numbers of observations. The estimation procedure was able

to identify the parameters with different nobs, although the

convergence rate was much slower with nobs = 1. From

these evolutions we see that even if nobs = 1 is enough

to recover the values of E and Rt, one should attempt to at

least have 2 observations for faster convergence. The Young’s

modulus also appears to be simpler to identify than the reflec-

tion coefficient. This is possibly because the time required

to propagate the information contained in any boundary con-

dition throughout the whole domain is of order L/c, where

L is the size of the network and c the wave speed. Instead,

the Young’s modulus directly impacts the wave speed so that

it requires only Ls/c to feel any change in E, where Ls < L
is the distance between 2 consecutive observation locations.

Table 7 shows the value of estimated Young’s modulus and

the reflection coefficients with errors (percentage deviation

from target value) using different number of observations. In

Figure 9C, the pressure solution obtained with the estimated

parameters using nobs = 2, at the first observation point on

left carotid, is compared with the target and initial pressure

profiles. The simulated and the target pressure waveforms

have very similar shape with an error of less than 0.2% in the

maximum pressure.

The next configuration involves a more realistic situation

with available experimental data.

5.2 A test case with experimental data

The efficiency of parameter estimation using the EnKF is pre-

sented, where experimental data are used as the observations.

We refer to the experiment in Saito et al.,24 where a simple

human arterial network (see Figure 4) with 4 bifurcations was

designed using polymer tubes (E = 0.185 MPa) to validate

the applicability of the blood flow model. The tubes are filled

with water, and for realization of the reflection coefficients of

approximately 0.5, silicone tubes are connected at the end of

the tubes to act as virtual peripheral sites. A pulse flow with

the profile of half a cycle of a sinusoidal wave is used as input

from the pump. The period of the pulse is 0.3s with the total

flow volume of 4.5 mL. The pressure waves propagating in

the viscoelastic tubes were experimentally measured using a

pressure sensor at 150mm from the second bifurcation, which

in an actual human body roughly corresponds to the carotid

artery of the neck.24
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FIGURE 9 (A) The evolution of the Young’s modulus using a different number of observations for case 2. The initial value is 0.4MPa and the target is

0.2MPa. (B) The evolution of the reflection coefficient using a different number of observations. The initial value is 0.8 and the target is 0.6. (C) The

comparison between the pressure signal obtained with initially guessed parameters, the target pressure solution, and the one obtained by using the estimated

parameters with nobs = 2, at 0.2L of the left carotid artery

TABLE 7 Test case 2: estimated Young’s modulus and reflection coefficients with errors
(percentage deviation from target values) using different numbers of observations

Estimated % deviation % deviation
E(MPa) Estimated Rt from target E from target Rt

nobs = 1 0.2064 0.5995 3.20 − 0.08

nobs = 2 0.1993 0.6013 − 0.35 0.22

nobs = 3 0.1988 0.6030 − 0.60 0.50

nobs = 4 0.2006 0.5973 0.30 − 0.45

nobs = 5 0.1992 0.5994 − 0.40 − 0.10

nobs = 6 0.2003 0.5994 0.15 − 0.10

For this test case we do not know if the solution of the

inverse problem exists, as the target has not been generated

with the blood flow code. The aim is then to determine the

best estimate of the Young’s modulus (E), reflection coef-

ficient (Rt), and viscoelastic coefficient (𝜂) from the values

of the experimentally measured pressure, which are taken

as observations for the inverse problem. It is assumed that

E and 𝜂 are identical for all tubes and Rt is same at each

terminal tube. The ensemble size q = 20 and the error covari-

ance matrix R are defined as in Section 5.1.1. The pressure

measurements are only available at 1 point on the carotid

artery. The frequency of data assimilation is 0.01s.

To test the sensitivity to initial parameter values, we inves-

tigate the performance of the EnKF parameter estimation

algorithm using 3 different sets of initial guess for the 3

parameters (E, Rt, and 𝜂). The mean values for the ini-

tial guess of the parameters were (E (MPa), Rt, 𝜂 (KPa·s))

∈ {(0.2, 0.6, 0.3), (0.6, 0.3, 0.4)}, (0.4, 0.8, 0.5). The esti-

mated parameter values do not change significantly after 16s

of EnKF assimilation as shown in Figure 10. From Figure 10,

we see that the different guesses for initial mean values of the

parameters seem not to have a significant impact on the con-

verged assimilated result. The initial guess of the parameters

and their best estimates obtained with their associated uncer-

tainty (standard deviation) with three different initial guesses

using the EnKF are shown in Table 8.

The blood flow model is then used with the estimated

parameters to obtain the pressure profile at the observation
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FIGURE 10 Sensitivity of ensemble Kalman filter parameter estimation to different sets of initial parameter values. (A)-(C), The evolution of Young’s

modulus, reflection coefficient, and viscoelastic coefficient respectively for the test case using the experimental data with different sets of initial values. The

set of initial guess of the parameters, {E(MPa), Rt, 𝜂(kPa.s)} are as follows: in red {0.2, 0.6, 0.3}, in blue {0.6, 0.3, 0.4}, and in black {0.4, 0.8, 0.5}. The

shaded areas represent standard deviation around the mean values (solid lines)

TABLE 8 Sensitivity to initial parameter values for the test with experimental data.
The initial guess of the parameters and their best EnKF estimates with their
associated uncertainty (standard deviation)

Error
Parameter Initial guess EnKF estimate ( ± standard deviation)

E(MPa) 0.2 0.1111 0.0024

0.6 0.1226 0.0025

0.4 0.1150 0.0028

Rt 0.6 0.5199 0.0033

0.3 0.5146 0.0075

0.8 0.5290 0.0048

𝜂(KPa·s) 0.3 0.3710 0.0124

0.4 0.3760 0.0104

0.5 0.3810 0.0157

Abbreviation: EnKF, ensemble Kalman filter.

point. Figure 11 shows the comparison between the pressure

profile obtained with the 3 sets of estimated parameters, the

numerical pressure profiles from the 1D blood flow model

as reported in,24 the measured pressure waves obtained from

the experiment, and the pressure profile obtained from the 3

different sets of initial parameters. The simulated waveforms

are similar to the target pressure waveform. We compare the

systolic (maximum) pressure between the target (experimen-

tal pressure waveform) and the simulated pressures obtained

from different sets of estimated parameters. The difference
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FIGURE 11 Comparison between the pressure profile obtained with the 3 sets of estimated parameters, the numerical pressure profiles from the 1D blood

flow model as reported in Saito et al.,24 the measured pressure waves obtained from the experiment, and the pressure profile obtained from the 3 different sets

of initial parameters. The dashed lines are the initial pressure waveforms and the solid lines are the ones obtained from the estimated parameters. The set of

initial guess of the parameters, {E(MPa), Rt, 𝜂(kPa.s)}, are as follows: set 1 {0.2, 0.6, 0.3}, set 2 {0.6, 0.3, 0.4}, and set 3 {0.4, 0.8, 0.5}

TABLE 9 Test case 3: comparison of the systolic (maximum) pressure
between the target (experimental pressure waveform) and the simulated
pressures obtained from different sets of estimated parameters

Estimated parameter set
{E(MPa), Rt, 𝜂(kPa.s)} Maximum pressure (MPa) % error

set 1 (0.1111, 0.5199, 0.371) 4.01 − 0.24

set 2 (0.1226, 0.5146, 0.376) 4.08 1.50

set 3 (0.1150, 0.529, 0.381) 4.04 0.51

The target systolic pressure is 4.02 MPa.

is shown in Table 9. In all the cases the error is less than

2%. The results demonstrate that, even with nobs = 1, the

Young’s modulus, reflection coefficient, and the viscoelas-

tic coefficient can be estimated with good accuracy using the

proposed method.

6 DISCUSSIONS

In this paper we have demonstrated the applicability of EnKF

to estimate the Young’s modulus, reflection coefficient, and

viscoelastic coefficient. A similar approach can also be used

to estimate other hemodynamics parameters such as resis-

tance and compliance in a Windkessel model. The EnKF and

thus the estimation algorithm provide the estimates of poorly

known parameter values with their uncertainties. Sensitivity

analysis with respect to the initial guess of parameters, the

level of observation perturbation, the effect of bias in known

parameter values, and the type of observations is carried out.

Further analysis can be done on the efficiency of the esti-

mation algorithm with respect to the locations of available

observations. We need to make sure the size of the ensemble is

correctly chosen. One also sees that very few spatial observa-

tion are necessary as the approach performs even with solely 1

spatial observation point. We also discussed the robustness of

the inversion for different types of target observations (pres-

sure or flow rate). We have shown a method of choosing an

ensemble size using RMSE, but the efficiency of the EnKF

parameter estimation algorithm may depend on other factors

such as level of observation perturbation, the location of the

observations, their types, and also the type of parameters to

be estimated. The approach needs to be seen as a help to

diagnosis tool and not a definite opinion. We mentioned that

one issue is that uniqueness is not guaranteed. This might,

therefore, impact clinical applications. Indeed, an incorrect

Young’s modulus might be obtained still providing a nice

model fit, and obviously, this might mislead the clinician. The
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approach, therefore, needs to be adopted in a Bayesian pro-

cedure with a priori information on the admissibility of the

outcome by the clinicians and the outcome should definitely

not been considered as a final opinion.

We aim at having an approach with moderate complex-

ity to describe the physics of the problem and which is

usable in practice. This is why any forward model based on

a multi-dimensional flow model is out of the table. Other

works, for instance, present data assimilation together with

3D flow models based on fully 3D Navier-Stokes,18 which

require heavy computational effort in addition to an increase

in the complexity of the inverse problem. These approaches

also require good know-how by the user and substantial learn-

ing efforts. We use a reduction in dimension to bring the cost

of one state evaluation to the order of a minute on standard

computers available in clinics. Then natural parallelism in

EnKF makes a time to solution of the order of the number of

EnKF iterations in minutes, which in the present case leads to

approximately 2h. Still, this can be considered too costly and

our current effort is to reduce complexity even further.

7 STUDY LIMITATIONS

The first limitation of our current study is concerned with the

size of the arterial network being adopted. We used a network

consisting of 9 vessels, and the efficiency of the proposed

estimation algorithm has to be tested for a larger arterial net-

work, including complex network such as the circle of Willis

in the cerebral vasculature. Second, an ensemble size of 20

is taken as an optimal size for the parameter estimation in

the current study. An effect of taking a larger sample size on

the estimation procedure can also be studied. The efficiency

and convergence rate also depend on the level of observation

perturbation, and another limitation is to identify the optimal

level. It is also important to investigate the maximum num-

ber of parameters that can be estimated for a given arterial

network with a given number of measurements available. In

the current study we adopted 1D blood flow model with a

constant resistance boundary condition. As discussed before,

there is no real limitation regarding the boundary description,

and thus, the estimation algorithm can be applied to a blood

flow model coupled to a Windkessel model.

8 CONCLUSION

A parameter estimation technique to compute the uncertain

elastic and the terminal properties of networks of 1D blood

vessels using the EnKF has been studied. The tests have been

limited to the estimation of elastic moduli (Young’s modu-

lus) of the network, the reflection coefficient at the terminal

vessels and the viscoelastic coefficient. The results confirm

that the method is quite robust and permits to recover the

arteries stiffness in a reasonable amount of time consistent

with patient observation time at the hospital. Except with the

computation of the Kalman gain, all the operations on the

ensemble members are independent. This implies that their

parallelization can be trivially carried out, thus decreasing

the computational time needed to solve the inverse hemody-

namics problem. The time to solution for this simulation is

about 30min on a parallel computer with 20 cores, which is

basically 1 node of the current standard distributions. The

model simulations performed with the estimated parameter

values produced accurate pressure profiles, which followed

closely with the target profiles showing the effectiveness and

the efficiency of both the estimation algorithm and the blood

flow model. Also, it has been shown that the approach is

effective with only a few observations, well suited to real

clinical applications.
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