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Abstract—A methodology for non-invasive estimation of the
pressure in internal carotid arteries is proposed. It uses data
assimilation and Ensemble Kalman filters in order to identify
unknown parameters in a mathematical description of the
cerebral network. The approach uses patient specific blood
flow rates extracted from Magnetic Resonance Angiography
and Magnetic Resonance Imaging. This construction is
necessary as the simulation of blood flows in complex
arterial networks, such as the circle of Willis, is not
straightforward because hemodynamic parameters are un-
known as well as the boundary conditions necessary to close
this complex system with many outlets. For instance, in
clinical cases, the values of Windkessel model parameters or
the Young’s modulus and the thickness of the arteries are not
available on per-patient cases. To make the approach
computational efficient, a reduced order zero-dimensional
compartment model is used for blood flow dynamics. Using
this simplified model, the proof-of-concept study demon-
strates how to use the EnKF as an optimization tool to find
parameters and how to make the inverse hemodynamic
problem tractable. The predicted blood flow rates in the
internal carotid arteries and the predicted systolic and
diastolic brachial blood pressures are found to be in good
agreement with the clinical measurements.

Keywords—MRA, MRI, EnKF, Reduced order compart-

ment blood model, Parameter estimation, Circle of Willis,

Hemodynamic inverse problems.

INTRODUCTION

One of the key factors identified to be associated
with the formation and the risk of rupture of a cerebral
aneurysm is the blood pressure fluctuations in cerebral
arteries.39,43,25 The circle of Willis (CoW) is a common
place for aneurysms.16 There have been many
researches done on hemodynamics and the blood flow
in the CoW28,1,37 focusing on the understanding of
factors increasing the risk of stroke and the blood flow
distribution in the brain. While methods and proce-
dures are available for assessing and measuring the
pressure in cerebral arteries, they are mostly based on
invasive methods such as using a pressure-sensing
catheter.15 used dual-sensor microwires (ComboWire;
Volcano Corporation) to measure systolic, diastolic,
and mean pressure inside a cerebral aneurysm. A linear
relationship between changes in radial and aneurysmal
pressures was found. ComboWire was also used by
Ref. 11 to get pressure measurements in the internal
carotid artery of patients with an unruptured
intracranial aneurysm. Because non-invasive pressure
measurements in cerebral arteries are not available, the
systolic-diastolic pressure variation in an aneurysm
cannot be included in the risk of rupture analysis, al-
though this quantity is obviously very relevant from a
biomechanical point of view. Relying on a physical/
numerical description of the cerebral hemodynamics to
assess blood pressure non-invasively is thus an
appealing alternative.

The analysis of the cardiovascular system can be
carried out using one-dimensional (1D)27,4,38 or multi-
dimensional modelling (2D or 3D)44 or in a simplified
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manner using a lumped model (0D compartment
model).45,24,34 It is possible to numerically solve the
pressure and the blood flow rate wave system, taking
place in a network of interconnected arteries repre-
senting all or part of the cardiovascular system.
Lumped parameter models have been extensively
developed and used over the years to study the blood
circulation dynamics and for the assessment of hemo-
dynamics10,32,36,46,24,3,45,34 or to investigate cerebral
hemodynamics.22,13,31,35

Using imaging data such as Magnetic Resonance
Angiography and Magnetic Resonance Imaging
(MRA&MRI), the geometric properties of each blood
vessels such as diameter and length can be acquired.
However, the structural properties of the vessels such
as the wall thickness and the Young’s modulus are
difficult to identify. Still in patient-specific simulations,
such unknown properties need to be estimated as well
as the distal boundary conditions. These unknown
parameters can be estimated using an algorithm based
on a data assimilation technique such as an Unscented
Kalman filter (UKF)6,33 or its variant - reduced order
unscented Kalman filter (ROUKF)23,26 or an Ensem-
ble Kalman filter (EnKF).21,8 The idea of using the
Kalman filter tool in data assimilation techniques is to
improve the simulated results of a model through the
estimation of the parameter values used in the
numerical model. A general data assimilation tech-
nique uses available clinical observations (possibly
corrupted by noise) on a given system such as brachial
blood pressure, carotid flow rate, temporal pressure,
aortic flow rate or cross-sectional area. A predictor-
corrector method is applied to the set of uncertain
parameters whose values are corrected taking into
account the difference between the clinical observa-
tions and the measurements that are simulated using
the blood flow model. The Kalman gain matrices are
defined in Kalman filter tool to minimize the distance
between clinical observations and measurements tak-
ing into account both the uncertainties in the model
and in the measurements. Once the assimilation pro-
cess is completed and the parameters are estimated, the
interconnected network of arteries becomes a good
approximation of patient specific cardiovascular sys-
tem on which the morphological data are collected and
hemodynamic observations are made. It is then pos-
sible to use the blood flow model to estimate the
hemodynamic variables whose measurement is only
possible invasively (e.g. to access aneurysm pressure).
The outcome of data assimilation methods is (based on
the patient-specific measurements) the development of
numerical models by estimating hemodynamic
parameters. In the process, model simulation is adap-
ted to the patient-specific data resulting in reliably
simulated measurements (predictions).

Recent works on inverse problems in hemodynam-
ics using a 1D or multi-dimensional blood flow model
include the work of Refs. 23,26,2,6,21,5,8,18 and 9. In
Refs. 23,26,2,6 and 5 a ROUKF is used as a tool for
data assimilation to estimate hemodynamic parameters
such as elastic properties of arteries, arterial compli-
ance and boundary condition parameters (Windkessel
boundary parameters and reflection coefficients). In
Ref. 21 the usefulness of the EnKF in estimating the
hemodynamic parameters including the arterial stiff-
ness and boundary condition parameter (reflection
coefficient) is demonstrated. Using in silico experi-
ments,21 have extensively assessed the EnKF-based
parameter estimation algorithm. In their approach,
they have validated predicted pressure levels on phys-
ical phantoms.8 have demonstrated the use of an
EnKF to calibrate the boundary condition parameters
of a network with 16 arteries in the CoW using a one-
dimensional numerical model for the prediction of
cerebral pressure and flow rate.18 show the use of
Quasi-Newton and Broydens methods for the estima-
tion of Windkessel boundary parameters.9 have pro-
posed a numerical approach to determine the
distribution of the arterial stiffness in a subject-specific
network of arteries. In the proposed approach, the
optimal parameters of the one-dimensional model have
been calibrated by solving an inverse problem.

Performing data assimilation with a compartment
model (0D) has many advantages: the parameter esti-
mation procedure is fast as the 0D model only takes a
few seconds (depending on the arterial network) to
run, the inverse problem can be run from several initial
guesses of hemodynamic parameters without signifi-
cant increase in computing cost and time and the
sensitivity analysis is cheap. In Ref. 34 an estimation of
lumped model parameters (Windkessel) from uncertain
clinical data using the unscented Kalman filter is pro-
posed. The method is extended to a patient specific
parameter estimation of a lumped parameter model of
blood circulation for single-ventricle shunt physiology
in Ref. 33. In Ref. 10 a compartment model is used to
predict arterial and venous blood pressures including
the volume of the heart using 11 compartments rep-
resenting the systemic circulation. The model param-
eters are estimated using a non-linear optimization
technique. In Ref. 35 estimation and identification of
parameters in a lumped cerebrovascular model are
presented. The parameters are estimated using Gauss
Newton gradient-based nonlinear optimization tech-
nique.

This work proposes to estimate the pressure varia-
tions for an arterial network representative of the
cerebral circulation using an integrated observation/
simulation/assimilation procedure to exploit available
MRA&MRI observation data by EnKF parameter
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estimation techniques using reduced order blood flow
models. In the current work, an EnKF-based param-
eter estimation algorithm is coupled to a 0D com-
partment network in order to 1- estimate the model
parameters (arterial stiffness and distal boundary
conditions) of a patient (healthy volunteer) specific
complex network including the CoW and 2- assess the
blood pressure fluctuations in the whole network once
the parameters have been adapted. Technically
demanding and not free of risk, invasive pressure
measurements can hardly be included in proof-of-
concept studies for validation purposes. The accuracy
of the predictions is thus assessed by comparing the
model predicted and clinically measured systolic and
diastolic pressures (using a cuff-based oscillometry) at
the brachial artery. To the authors knowledge, this
configuration to estimate hemodynamic parameters
and predict blood pressure in cerebral arteries is rela-
tively new with respect to the application of data
assimilation to a complex arterial network including
the CoW, the number of arteries (33) in the network,
and the coupling of EnKF to the 0D model.

The outline of the paper is as follows: First, a review
of the 0D lumped compartment model which will be
used to represent the cardiovascular network is pre-
sented. Next, the ensemble Kalman data assimilation
technique is reviewed and the algorithm for parameter
estimation given. Then, the application of the proce-
dure to the test cases with synthetic and actual clinical
data is shown. The clinical data correspond to the
cerebral network, including the complete circle of
Willis (CoW), of a healthy subject.

MATERIALS AND METHODS

0D Model for Cardiovascular system

The human cardiovascular system can be modelled
using an electrical analogy to represent different
mechanical properties of arteries.45,24,34,36 In this
model (called compartment models, 0D models or
lumped parameter models), the arterial network is di-
vided into different compartments comprising a resis-
tor (resistance of blood due to blood viscosity, R), an
inductor (blood inertance L) and a capacitor (compli-
ance of the artery, C).

The four common compartmental configurations in
0D models are L network element, inverted L net-
work element, T element and p element networks. The
use of the four configurations depends on the pre-
scribed boundary conditions and the detailed analysis
of the configurations can be found in Refs.24 and 36 In
the current work, an inverted L network element
(Fig. 1) is used. In this element, the upstream pressure

Pin and the downstream flow rate qout are used as the
boundary conditions.

The spatial variation of parameters (R, L, and C) in
lumped parameter models is neglected in each spatial
compartment and thus the parameters are assumed to
be uniform. For a single compartment assuming an
incompressible Newtonian fluid, the governing equa-
tions for the 0D model (inverted L network element)
relating the variables R, L and C and representing
mass and momentum conservation read45,24,36:

C
dPout

dt
¼ qin � qout

L
dqin
dt

þ Rqin ¼ Pin � Pout

ð1Þ

where Pin, qin and Pout, qout are the blood pressure and
flow rate at the inlet and outlet of the compartment
(artery) respectively. The inertance L expresses the
inertia within the vessel and if its effect is ignored, the
flow rate is then given by qin ¼ ðPin � PoutÞ=R.

The parameters R, L and C for each of the com-
partment representing different arterial segments are
calculated using the following equations34: Hagen-

Poiseuille law for resistance, R ¼ 8ll=pr4, L ¼ ql=pr2

and C ¼ 3pr3l=2Eh, where E; h; q; l; l and r is the
Young’s modulus, arterial wall thickness, the blood
density, the blood viscosity, the length of the arterial
segment and, the radius of the artery respectively.

Each segment of the arterial network including the
CoW is represented with a reduced order 0D model
consisting of the three elements R, L, and C (see Fig. 2
where each of the arterial segment is represented by a
single compartment). In this way, a distributed lumped
parameter model is developed for the full network in
which multiple lumped compartments are connected in
series.

At the bifurcation, boundary conditions are pre-
scribed by enforcing conservation of mass and conti-
nuity of pressure. At the outlet of each terminal
compartment, the blood flow model is coupled to the
three-element Windkessel model (WK3-lumped
parameter model)4,37 to include the effect of the
downstream vasculature. In the WK3 model, the
instantaneous blood pressure and the flow rate are
related as follows:

dpðtÞ
dt

þ p

RDC
¼ RP

dqðtÞ
dt

þ qðRP þ RDÞ
RDC

; ð2Þ

where p is the instantaneous pressure at the inlet of the
WK3 model, q is the instantaneous flow rate, RP, and
RD are the proximal (characteristic) and distal resis-
tance respectively of the vascular beds, and C is the
compliance. RT ¼ RP þ RD represents the total resis-
tance of a peripheral bed.
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Of course, more sophisticated physical models can
be considered. But, this is not central to our discussion.
What we want to show in this paper is that this simple
model permits to give reasonable results after inver-
sion.

Estimation of Hemodynamic Parameters Using an
Ensemble Kalman Filter

The literature on ensemble Kalman filter algorithms
is vast.17,41 The reader is referred to Ref. 21 for a de-
tailed mathematical analysis of the EnKF implemen-
tation. Below the algorithm used to estimate the
hemodynamic model parameters is summarised.

The EnKF is a suboptimal estimator for problems
that involves nonlinear models of higher order, where
an ensemble of states is used to predict the error
statistics21. The unknown hemodynamic parameters
x 2 Rn, are treated as special state variables whose
evolutions are defined using a random walk model,
xkþ1 ¼ xk þ sk, where xk denotes the state variable at
time step tk. sk � Nð0;TkÞ is a small Gaussian random
perturbation with a variance T. The initial forecast

ensemble of parameters xfik for i ¼ 1; _s; qens is assumed

to be available at time tk. fi denotes the initial ith

forecast member of an ensemble of size qens which is
used to determine the forecast error covariance matrix
in EnKF. The parameter estimation algorithm uses a
set of nobs observations such as blood pressure, blood
flow rates, flow velocity or arterial wall movements to
improve a set of given initial estimate of the hemody-
namic parameters, x. A set of output vector,

Yk ¼ ðyf1k ; _s; y
fqens
k Þ 2 Rqens�nobs, is generated at time tk.

Each member, yfik , is defined by y
fi
k ¼ HðxfiÞ, whereH is

the nonlinear measurement function defined by the
blood flow model describing the relation between
measurements and parameters. An ensemble of per-

turbed observations, yik (for i ¼ 1; _s; qens) is generated

by adding perturbations to the original observation

vector yk 2 Rnobs:

yik ¼ yk þ eik; i ¼ 1; _s; qens; ð3Þ

where eik 2 Rnobs is a random vector drawn from the
zero mean Gaussian distribution with a specified
variance. The discrepancies between perturbed obser-
vations and measurements are then used to update
parameters using:

x
ai
k ¼ x

fi
k þ Kk yik � y

fi
k

h i
; i ¼ 1; _s; qens; ð4Þ

where ai represents the updated (assimilated) parame-
ters and Kk is the Kalman gain matrix. The matrix Kk

is defined by three error covariance matrices:

Kk ¼ Pfxyk Pfyyk þ Rk

� �-1
: ð5Þ

Rk is the diagonal measurement error covariance ma-
trix defined by

Rk ¼ diag
1

qens � 1
EET

� �
; E ¼ e1k; _s; e

qens
k

� �
: ð6Þ

The other two error covariance matrices are given by
Ref. 21

Pfxyk
¼ 1

qens � 1

Xqens
i¼1

x
fi
k � xfk

h i
y
fi
k � yfk

h iT
;

Pfyyk ¼
1

qens � 1

Xqens
i¼1

y
fi
k � yfk

h i
y
fi
k � yfk

h iT ð7Þ

where xfk ¼ 1
qens

Pqens
i¼1 x

fi
k and yfk ¼ 1

qens

Pqens
i¼1 H x

fi
k

� �
. The

ensemble updated parameters (4) at time t ¼ k is then
cycled in time and the parameter estimation using the
EnKF can be stopped upon reaching some finite con-
vergence criterion. At convergence, the mean of the
ensemble is taken as the best estimate of the parame-
ters. The parameter estimation algorithm is sum-
marised in Algorithm 1.21 Henceforth, nobs will refer
to the number of locations on an arterial network
where a time series of observations such as pressure
values or blood flow rate is available.

Algorithm 1: Parameter estimation using EnKF30

Input: qens, T, nobs, maximum number of EnKF iteration (jmax), initial estimate of
n unknown parameters (mean xl and variance Pl for l = 1, . . . , n).

1 Initialization: Randomly initialize an ensemble of parameters, xi, for i = 1 . . . , qens
where xi = (x1, x2, . . . , xn) and xl ∼ N (xl, Pl) for l = 1, . . . , n.

2 Let xai = xi

3 for j = 1 to jmax do
4 -Evolution of ensemble: xfi = xai + τ i, τ i ∼ N (0,T) ∀i = 1, . . . , qens
5 -Ensemble propagation: yfi = H(xfi) ∀i = 1, . . . , qens
6 -Perturbation of observations: yi = y + ei, ∀i = 1, . . . , qens
7 -Determine R and K using Eqs. (6) and (5) respectively.
8 -Ensemble update: xai = xfi +K yi − yfi ∀i = 1, . . . , qens.
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Test Cases

The parameter estimation algorithm was tested
using a complex arterial network with 33 arteries
(Fig. 2) consisting of the aorta, brachial, carotid and
vertebral arteries as well as a complete CoW which was
adapted from Ref. 1. The objective was to identify
(estimate) a set of model parameters within the phys-
iological range, given measured values of arterial blood
flow rate. The model parameters were limited to
material properties and the terminal parameters
(Windkessel parameters). Before the parameter esti-
mation algorithm was tested with a patient-specific
clinical data, a test case using synthetic data was car-
ried out. This case where synthetic measurements were
used in the data assimilation (observation obtained
directly from the numerical model using the known
model parameters) is presented in order to explore the
capability of the EnKF algorithm. The test also aimed
at finding if blood flow rates in the internal carotid
arteries could be used as observations in the data
assimilation to allow accurate estimates of model
parameters. Another objective was to know for which
network locations the pressure fluctuations are satis-
factorily predicted.

A Test Case Using Synthetic Data

We first describe the procedure for generating the
synthetic data. The lengths, radii and the terminal
boundary parameters (WK3) of the 33 arteries in Fig. 2
were adapted from Ref. 1. Same WK3 boundary
conditions for left and right pairs of terminal com-
partments were assumed. For instance, the terminal
compartments #10 and #13 are assigned with the same
WK3 boundary conditions. The product of Young’s
modulus and thickness of arteries was assumed to be

given by an empirical formula Eh ¼ rðk1 ek2r þ k3Þ:29
The values of of the three constants were chosen as

k1 ¼ 5:0� 107 g cm�1 s�2, k2 ¼ �5:0 cm�1 and

k3 ¼ 1:0� 105 g cm�1 s�2. The three constants to-
gether with the WK3 parameters RPi

, RDi
and Ci where

i ¼ 8; 13; 15; 24; 30; 33 denotes the compartment num-
ber were referred as the target parameters. An inlet
flow rate, qin, with period of 1 s was imposed at the
proximal end of ascending aorta. For each cardiac
cycle qin in ml/s was defined as Ref. 1:

qinðtÞ ¼
485 sinðpt=sÞ if t<s;

0 otherwise

�
ð8Þ

where s = 0.3 s. Blood rheological parameters were

taken as: q = 1050 kg m�3 and l = 0.004 Pa s. Using
the target parameters a forward simulation was exe-
cuted using the 0D blood flow model. The blood flow
rate values in the right internal artery (R-ICA: com-
partment #12) and the left internal carotid artery (L-
ICA: compartment #11) were recorded.

Next, we describe the inverse hemodynamic prob-
lem. The 21 (target) parameters consisting of 6 proxi-
mal resistances, 6 distal resistances, 6 compliances and
3 constants defining the product Eh were estimated
using the synthetic observations (blood flow rates in
the two ICA’s). The parameter estimation algorithm
was initialised and executed using the following
parameters:

1. Ensemble size: to test the sensitivity of the
algorithm, different sizes of the ensemble
(qens ¼ 10 to qens ¼ 35) were chosen.

2. Initialisation: the 21 target parameters were ran-
domly perturbed with increments of either �60%
of the target values. These perturbed values were
taken as the initial estimates. A larger perturba-
tion (random increments of �100% of the target
values) was also tried. It was noted that the results
were similar than with 60%. To restrict the
assimilated parameters to positive values, all
parameters were redefined as x ¼ xref2

h. xref is
the reference or initial guess of the parameter to be
estimated and h is the actual value used in the
EnKF during the assimilation step. To initiate
each assimilation cycle, an initial ensemble of
parameters xi for i ¼ 1; _s; qens was generated using
the first-guess (initial estimate) value of the
parameters xref and h. For each ith member of
the ensemble, xi ¼ x1; _s; x21ð Þ, where xl ¼ xrefl2

hl

and hl were random realizations from an Nð0; r2hÞ
distribution for l ¼ 1; _s; 21 and rh = 0.5. With
each xi the blood flow model was integrated for 10
cardiac cycles, and then the first assimilation was
performed.

3. Number of observation: time series of blood flow
rates were taken as observation at two locations
(nobs ¼ 2) i.e. R-ICA and L-ICA, at every 0.02 s
(50 per cardiac cycle).

4. Observation perturbation level: the observations
yk were perturbed by a random variable drawn
from the observation error pdf � Nð0; r2pÞ where
rp represents the standard deviation. For the
synthetic case, rp was taken as 10% of the flow
rate values of the R-ICA and L-ICA. For each ith

R L

C

qin

Pin Pout

qout

FIGURE 1. Single compartment circuit representation.
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member of an ensemble the perturbed observa-
tions were defined as yik ¼ yk þ eik, where eik is a
random number whose specific realization is
obtained from a Gaussian distribution with mean
zero and standard deviation rp.

5. Evolution of parameters: The evolution of each
member of the estimated parameter ensemble was
resembled by a random walk model. In the
assimilation step, hkþ1 was defined as
hkþ1 ¼ hk þ sk where sk � Nð0; r2sÞ is a small
Gaussian random perturbation. The updated
parameters were allowed to vary continuously by
choosing an arbitrary small value for sk. Letting
r2s<jr2h, it was noted that for 0<j<0:05,
improves the convergence rate of the estimation
algorithm. Following this, in the rest of the paper
we take sk � Nð0; 0:001Þ. This is an empirical
construction and the idea motivating it comes
from stochastic gradient methods with the aim of
improving the search capacity of the algorithm by
the introduction of small random perturbation to
the descent direction. The final results are insen-
sitive to the presence of this perturbation. The aim
was to obtain an estimate of xi by taking the limit
as si ! 0.

Figure 3 shows the time evolution of estimated
parameters resulting from the EnKF for the six dif-

ferent ensemble size (qens ¼ 10 to qens ¼ 35). For all
cases, the filter converged in about 30 cardiac cycles
and the estimated parameters converged to different
values (non-unique). Parameter estimation using the
EnKF method is found in this study to be very sensi-
tive to the random realization of the initial ensemble
and to the ensemble size. These results also indicate the
increased difficulties when several parameters are esti-
mated simultaneously.

Figure 4 shows the comparison between the target
(blood flow waveform in the R-ICA and L-ICA) and
blood flow model simulations (predictions) based on
21 estimated parameters using the six different
ensemble size. There is a good agreement between the
target and predicted flow rate waveform for the cases
with qens � 25. These results shows the interplay
among influential parameters so that combinations of
parameters with different errors can still result in a
good fit of the model solution to the observations,
rendering the solution to the parameter estimation
problem non-unique.

In order to better compare the precision of the six
cases, the percentage norm of the analysis error in the
converged model solution relative to the norm of the
target flow rate were calculated as:

k qa � qtar k
k qtar k

� 100% ð9Þ

3
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FIGURE 2. (a) The network1 of a one-dimensional blood flow model of the upper body arteries and of the circle of Willis. Thick
lines indicate relative thickness of the arteries. Artery numbers corresponds to those in Table 2. Arrows indicate the direction of
flow. (b) The equivalent 0D compartment model. Flow rates are assigned the compartment numbers corresponding to those in
Table 2. At the inlet (ascending aorta, compartment #1), specific value of flow rates, qin , are imposed.
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where qa denotes the converged solution (blood flow
rate) when the model is simulated with the parameters
estimated using different ensemble size, qtar is the

blood flow rate simulated using target parameters, and
k � k is the L2 norm. The analysis errors provide us
with information on the closeness of different cases
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FIGURE 3. Estimated parameters with synthetic flow measurements using different ensemble size (qens ¼ 10 to qens ¼ 35). The
solid coloured line shows the estimated value over time (divided by the corresponding target values), so that 1 (horizontal black
lines) corresponds to the target parameters.
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and also they give the difference between the predicted
and the observed data. The percentage norm of the
analysis error with the six cases are shown in the Fig. 5.
It is seen that the error decreases with the increase in
the ensemble size. From this figure, the error does not
decrease much after qens ¼ 30.

Finally, the predicted pressure fluctuations in the
arteries were compared with the reference systolic
blood pressure (SBP) and diastolic blood pressure
(DBP). Here, ‘reference’ is defined as the pressure
values (SBP and DBP) obtained by simulating the
model with the target parameters. The predictions
(with the six cases) and the reference pressure values
are shown in Fig. 6. The error in the predicted pressure
values are the lowest (<6%) for the cases with qens �
30 as shown in Table 1. Pulse pressure (PP)
(SBP2DBP) is likely to be the clinical measure of
importance. The error in PP (see Table 1) are also the
lowest (<6%) for the cases with qens � 30. The results
show that the use of two flow rate measurements (as
observations in data assimilation) at a relatively
proximal locations (ICA’s) in the network can lead to a
set of model parameters for reliable prediction (with an

error of less than 10%) of pressure fluctuations in the
cerebral arteries. Also, from the error analysis, as
shown in the Fig. 6 and the Table 1, an ensemble of
size qens= 30 seemed to be good enough to estimate 21
model parameters for the prediction of cerebral arterial
pressure with an error of less than 10%.

A Test Case with Patient Specific PC-MRA&MRI-
based Blood Flow Rates

The patient-specific data used in the current study
have been acquired at the Department of Neuroradi-
ology at the Centre Hospitalier Régional Universitaire
(CHRU), Montpellier, France.

Arterial systolic and diastolic blood pressures at rest
of the patient were measured before and after image
acquisition using a brachial automatic sphygmo-
manometer (Maglife, Schiller Medical). The systolic
and diastolic values were 125 and 72 mmHg in the
right brachial artery and 115 and 72 mmHg in the left
brachial artery. 2D phase-contrast imaging was per-
formed on a Siemens 3T Skyra MR Scanner. The
ascending aorta and the internal carotid arteries (right

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

3

4

5

Time (s)

q
(m

l/
s)

Target: L-ICA
qens = 10
qens = 15
qens = 20
qens = 25
qens = 30
qens = 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

3

4

5

6

Time (s)

q
(m

l/
s)

Target: R-ICA
qens = 10
qens = 15
qens = 20
qens = 25
qens = 30
qens = 35
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TABLE 1. The maximum percentage error in (i) the predicted pressure fluctuations (diastolic and systolic) and (ii) the pulse
pressure (PP) in the arteries.

Case

Error in the predicted pressure values

Error in the pulse pressure (%)Diastolic (%) Systolic (%)

qens ¼ 10 <26 <8 <18

qens ¼ 15 <13 <5 <18

qens ¼ 20 <13 <8 <25

qens ¼ 25 <11 <10 <10

qens ¼ 30 <6 <5 <6

qens ¼ 35 <6 <5 <6

The predictions were based on 21 estimated parameters using the six different ensemble size.

AA CC VA BRA BAS ICA ECA PCA1 PCA2 PCoA MCA ACA1 ACA2 ACoA
50

60

70

80

90

100

110

120

130

140

p
(m

m
H

g)

Reference, qens = 10, qens = 15, qens = 20,
qens = 25, qens = 30, qens = 35

FIGURE 6. The predicted pressure fluctuations in the arteries compared with the reference systolic blood pressure and diastolic
blood pressure. The predictions were based on 21 estimated parameters using the six different ensemble size. ‘Reference’
pressure values were obtained by simulating the model with the target parameters and are shown in solid black lines. The names of
the arteries are written using acronyms which correspond to those in Table 2.
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FIGURE 7. PC-MRI of the patient-specific internal carotid arteries (right and left) showing the blood flow through one of the
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and left ICA’s) were considered for the analysis of
blood flow rates. More precisely, 2D Fast cine PC-
MRI pulse sequence (one 5 mm slice perpendicular to
the arteries) with retrospective peripheral gating, and
32 frames covering the entire cardiac cycle were
acquired. The imaging parameters for ICA’s were a

velocity encoding sensitivity (Venc) of 80 cm s�1, a
repetition time (TR) of 28.86 ms, an echo time (TE) of
8.79 ms, a flip angle of 15�, and a voxel size of
0.53 mm �0.53 mm �5.0 mm.

Figure 7 shows one pair of the acquired images
(magnitude and phase contrast image) for ICA’s. For
the flow rate analysis, the Bio Flow Image software
(http://www.tidam.fr/) was employed. For each of the
arteries, a region of interest (ROI) was segmented with
its lumen size defined by thresholding.

For the ascending aorta, the imaging parameters

were: Venc = 200 cm s�1, TR = 28.72 ms, TE =
8.79 ms, flip angle 15� and a voxel size 0.57 mm 9

0.57 mm 9 5.0 mm. Figure 8 shows one pair of the
magnitude and phase contrast image acquired for the
ascending aorta. The corresponding blood flow rate is
also shown in the same figure.

A 3DTime of Flight magnetic resonance angiography
(3D-TOF-MRA) of the circle ofWillis was obtainedwith
the parameters: acquired voxel 0.31�0.31�0.55 mm, 28
slices, TR=21.0 ms, TE=3.49 ms and flip angle of 28�.

The 3D model (and morphology) of the circle of
Willis (see Fig. 9) was determined through segmenta-
tion of the TOF MRA using RadiAnt DICOM Viewer
software (http://www.radiantviewer.com/). The geo-
metric measurements of lengths and radii of CoW’s
blood vessel were measured from MRA and are shown
in Table 2. The carotid vascular tree could not be
obtained because this acquisition requires the injection
of contrast agent which is impossible to achieve on

healthy volunteers. The missing geometry of other
arteries of the full network (Fig. 2b) was obtained from
average data reported in the literature.1,37

The inverse hemodynamic problem was set up as
follows: using data assimilation, arterial stiffness and
WK3 model boundary parameters were sought for the
network as shown in Fig. 2b. The acquired flow rate
waveform for the right internal carotid (R-ICA) was
used as observations during EnKF assimilation steps
in the parameter estimation problem. The flow rate
waveforms for the left internal carotid (L-ICA) was
used in a posteriori validation process. For the forward
simulation during the data assimilation the 0D com-
partment model was employed. At the inlet (ascending
aorta, compartment #1 in Fig. 2b), specific values of
flow rates, qin, were imposed as measured by PC-MRI
(see Fig. 8). Blood rheological parameters were taken

as: q = 1050 kg m�3 and l = 0.004 Pa s. Although
not detailed in the paper for sake of conciseness, sev-
eral assimilation scenarii were tested to investigate the
robustness of the whole procedure.

The results shown in the remaining of the paper
were obtained under the following assumptions on the
unknown model parameters:

The patient-specific characterisation of the 0D
blood flow model represented by Eq. (2.1) is achieved
through the model parameters R, L, C and the WK3
boundary condition parameters. The parameters R, L
and C require the measurements of the length and the
radius of each arterial segment in the network, and
these are measured from MRA. In addition, the
parameter C depends on the arterial stiffness that is
determined by the Young’s modulus (E) and the wall
thickness (h). E cannot be determined directly using
imaging techniques and need further computations (or
estimation). C is linear in Eh and this is the unknown
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the magnitude image and in the centre is the phase contrast image with Venc setting of 200 cm s�1. The instantaneous blood flow
rate values, q(t) were acquired at each time frame and is plotted against time for one cardiac cycle as shown on the right.
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quantity to recover by data assimilation. The product
of Young’s modulus and thickness of arteries was
assumed to be given by an empirical formula

Eh ¼ rðk1 ek2r þ k3Þ29 where the known radius (r) came
from MRA. An estimation of the product Eh was
found by seeking an estimation of the unknown con-

stants with their initial guesses as k1 ¼ 2:0� 107 g

cm�1 s�2, k2 ¼ �22:0 cm�1 and k3 ¼ 8:0� 105 g cm�1

s�2. The same assumption on WK3 boundary condi-
tions for left and right pairs of terminal compartments
as in section A Test Case Using Synthetic Data was
taken here, and the parameters RPi

, RDi
and Ci where

i ¼ 8; 13; 15; 24; 30; 33 denotes the compartment num-
ber were also considered as unknown model parame-
ters. Thus, the same 21 parameters as in the section A

Test Case Using Synthetic Data are estimated. Fur-
thermore, for arteries with r<0:2 cm, the inertial effect
was ignored30 in the 0D compartment model during
the forward simulation.

As in the section A Test Case Using Synthetic Data,
the parameter estimation algorithm was initialised and
executed using the following parameters:

1. Ensemble size: from the findings of the synthetic
case, qens= 30 appears to be a suitable choice for
the ensemble size.

2. Initialisation: The initial estimates for proximal
resistances and compliances were taken fromRef. 1
The initial guesses for RD are chosen such that the
ratio RP=ðRP þ RDÞ ¼ 0:2, i.e RD ¼ 4RP:

19 The

FIGURE 9. A TOF MRI scan (left) and the resulting segmented 3D model of the complete circle of Willis (right) for patient-specific
case. The numbers on segmented model correspond to the ID’s of the arterial segments in Table 2.

TABLE 2. Geometric parameters corresponding to arterial segments (and compartments) in Figs. 2 and 9 measured from MRI.

id Name l(cm) r(cm) id Name l(cm) r(cm)

1 Ascending aorta (AA) 4.00� 1.200� 18 L.internal carotid II 0.50 0.200

2 Brachiocephalic 2.00� 1.120� 19 L.post. comm. artery (PCoA) 1.20 0.075

3 Aortic arch II 3.40� 0.620� 20 R.post. comm. artery (PCoA) 1.20 0.075

4 Aortic arch II 3.90� 1.070� 21 R.internal carotid II 0.50 0.200

5 L.common carotid (L.CC) 20.8� 0.250� 22 Basilar (BAS) 2.70 0.150

6 R.common carotid (R.CC) 17.7� 0.250� 23 L.middle cerebral artery (MCA) 11.9 0.143

7 R.subclavian 3.40� 0.423� 24 R.middle cerebral artery (MCA) 11.9 0.143

8 Thoracic aorta 15.6� 0.999� 25 L.anterior cerebral artery A1 (ACA, A1) 1.20 0.117

9 L.subclavian 3.40� 0.423� 26 R.anterior cerebral artery A1 (ACA, A1) 1.20 0.117

10 L.external carotid (L.ECA) 17.7� 0.150� 27 L.post. cerebral artery P1 (PCA, P1) 0.56 0.110

11 L.internal carotid I (L.ICA) 17.7� 0.200 28 R.post. cerebral artery P1 (PCA, P1) 0.56 0.110

12 R.internal carotid I (R.ICA) 17.7� 0.200 29 L.anterior cerebral artery A2 (ACA, A2) 10.3 0.120

13 R.external carotid (R.ECA) 17.7� 0.150� 30 R.anterior cerebral artery A2 (ACA, A2) 10.3 0.120

14 R.vertebral (R.VA) 14.8� 0.136� 31 Anterior comm. artery (ACoA) 0.30 0.074

15 R.brachial (R.BRA) 42.2� 0.403� 32 L.post. cerebral artery P2 (PCA, P2) 8.50 0.100

16 L.brachial (L.BRA) 42.2� 0.403� 33 R.post. cerebral artery P2 (PCA, P2) 8.50 0.100

17 L.vertebral (L.VA) 14.8� 0.136�

The missing geometry (marked with an asterisk) of larger arteries was adopted from the average data in the literature.1,37

R indicates right; L left.
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rest of the procedure for reparametrization intro-
ducing h and generation of the initial ensemble was
as described in the section A Test Case Using
Synthetic Data.

3. Number of observation: time series of blood flow
rates from R-ICA (nobs= 1) were taken as
observations at every 0.04175 s (20 EnKF itera-
tions per cardiac cycle).

4. Observation perturbation level: it has been
reported that the blood flow rates measured by
3T phase contrast MRI is accurate within 10 -
15% of the true flow rates.19,20,14 Also, using
in vitro phantom studies,42 demonstrated that the
error in volume flow rate measurements obtained
with phase-contrast methods would be <10% if
the ratio between the voxel length and vessel
radius was less than 0.5. For the current case, rp
was taken as 10% of the flow rate values of the R-
ICA. The perturbed observations for the ith

member of the ensemble were defined as
yik ¼ yk þ eik, where e

i
k is a random number whose

specific realization is obtained from a Gaussian
distribution with mean zero and standard devia-
tion rp.

5. Evolution of parameters: the procedure was the
same as described in the section A Test Case Using
Synthetic Data.

The parameter estimation algorithm was executed
for 60 s (approximately 72 cardiac cycles). The above
scenario for the parameter estimation was referred as
scenario A. The results from this scenario were
obtained by assimilating 21 parameters and running a
physical model based on Ordinary Differential Equa-
tions like Eqs. (1) and (2).

A parameter estimation sensitivity analysis was
performed using two more scenarii. The objective of
this section was to analyse the relative sensitivity of the
estimated parameters with respect to the observation
location and their numbers nobs. It is recalled that the
previous scenario (scenario A), uses nobs ¼ 1 and
estimates 21 parameters using the flow rate waveform
for the R-ICA as observations. To see the impact of a
change in the target observations, the acquired flow
rate waveform for the left internal carotid (L-ICA) was
considered as the target during EnKF assimilation
steps while the a posteriori validation process considers
the flow rate waveforms in the right internal carotid
(R-ICA). This was called scenario B. Also, to see the

impact of a change in the number of observations,
both available observations were considered as target
which means nobs ¼ 2. This was called scenario C. All
other parameters and settings were same as for the
scenario A. Table 3 provides a summary of the three
scenarii.

RESULTS

Figure 10 shows the time evolution of estimated
parameters with the three scenarii: scenario A (in blue),
scenario B (in red), and scenario C (in black). With all
scenarii, the filter converged in about 72 cardiac cycles
and the estimated parameters converged to different
values for the three scenarii. The final estimates of the
21 parameters with their associated uncertainties using
the three scenarii are summarised in Table 4. What is
important to note, however, is that the three scenarii
lead to very similar results in terms of flowrate. This is
illustrated in Fig. 11 which shows the comparison
between the observed (clinically measured blood flow
rates using MRI) and blood flow model simulations
(predictions) based on 21 estimated parameters using
the three scenarii. Note that the red curve in Fig. 11a
and the blue curve in Fig. 11b correspond to the a
posteriori validation blood flow waveforms with the
scenario A and scenario B respectively. From the re-
sults, the comparison between the assimilated 0D
model and in vivo data (MRI) is fair. It is observed
that secondary peaks in the flow rate waveforms are
reproduced with the model. Also, the 0D compartment
blood flow model and the EnKF parameter estimation
algorithm are seen to be compatible with nobs of more
than 1. With all the three scenarii, the model simulated
waveforms have an error of less than 5% in the dias-
tolic and systolic flow rate.

Table 5 summarizes the cardiac cycle-averaged
(mean) and maximum (peak) volumetric flow rates
measured in the ICA’s using MRI and simulated val-
ues using the model with estimated parameters. All
mean, peak (systolic), and diastolic flow rates mea-
surements and model outputs (for the three scenarii)
differ by less than 6%. Additionally, the mean and
peak values are compared with and found to be within
the reported range in Ref. 12. Furthermore, it is
observed that errors (see Table 5) in peak and mean
values of the blood flow rate in the ICA’s are least with
the scenario C when compared with the MRI data.

The systolic blood pressure (SBP) and diastolic
blood pressure (DBP) in major arteries constituting the
circle of Willis, vertebral arteries, and some larger
arteries are predicted using the scenarii A, B and C.
The predicted pressure values (SBP and DBP) are
shown in Fig. 12. With all the scenarii the predicted

FIGURE 10. The patient-specific fitting. Time evolution of
estimated parameters with the three scenarii: scenario A (in
blue), scenario B (in red), and scenario C (in black). The
shaded areas represent the standard deviation around the
ensemble mean values (solid lines).

b
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TABLE 3. Main characteristics of the three scenarii considered.

Scenario Location of observation(s) Quantity used for a poseriori assessment

A R-ICA flow rate waveform for the L-ICA Brachial artery pressure:

B L-ICA flow rate waveform for the R-ICA 	 right: systolic 125 mmHg

diastolic 72 mmHg

C R-ICA and L-ICA - 	 left: systolic 115 mmHg

diastolic 72 mmHg

TABLE 4. Estimated parameters (with associated errors) for the patient specific fitting with the three scenarii: the scenarii A, B
and C.

Parameter Initial guess

Final EnKF estimate ± error

Scenario A Scenario B Scenario C

k1 2.00 4.99 ± 0.36 5.70 ± 0.96 3.53 ± 0.19

k2 �22:0 �8:47� 0:32 �9:62� 0:60 �5:00� 0:27

k3 8.5 6.60 ± 0.20 10.52 ± 0.41 4.44 ± 0.25

RP8 0:02 0:031� 0:002 0:03� 0:002 0:028� 0:001

RP13 1.67 0.62 ± 0.05 0.62 ± 0.08 1.43 ± 0.13

RP15 0:13 0:15� 0:01 0:29� 0:02 0:24� 0:02

RP24 2.61 3.71 ± 0.26 2.15 ± 0.16 1.64 ± 0.13

RP30 3:70 1:23� 0:07 1:51� 0:12 6:81� 0:44

RP33 4.8 2.04 ± 0.22 2.98 ± 0.49 1.84 ± 0.15

RD8 0:08 0:46� 0:04 0:28� 0:001 0:31� 0:001

RD13 6.68 10.44 ± 1.40 9.23 ± 0.20 16.19 ± 0.22

RD15 0:52 0:71� 0:09 1:48� 0:016 1:00� 0:01

RD24 10.44 20.42 ± 2.13 9.48 ± 0.08 1.69 ± 0.02

RD30 14:80 2:33� 0:33 2:40� 0:03 11:03� 0:08

RD33 19.32 1.70 ± 0.15 2.13 ± 0.04 4.53 ± 0.04

C8 38:78 31:90� 2:47 58:78� 6:86 46:44� 2:54

C13 1.27 1.73 ± 0.36 3.00 ± 0.65 3.86 ± 0.47

C15 2.58 2:00� 0:18 0:82� 0:10 1:88� 0:18

C24 1.16 0.04 ± 0.004 0.06 ± 0.006 0.17 ± 0.03

C30 0:82 0:49� 0:03 0:48� 0:04 2:12� 0:17

C33 0.62 0.37 ± 0.04 0.65 ± 0.07 0.66 ± 0.05

The values of constants k1; k2, and k3 are in �107 g cm�1 s�2, cm�1, and �105 g cm�1 s�2 respectively. The proximal (RP ) and distal (RD )

resistances are in �109 Pa s m�3 and the compliance (C) are in �10�10 m3Pa�1.
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FIGURE 11. (11a) Comparison of the model simulated blood flow rate waveform with the three scenarii: scenario A (in blue),
scenario B (in red - as a posteriori validation), and scenario C (in black) to the target (MRI data in green) in the R-ICA. The dotted
black line is the model simulation based on the initial estimate of parameters. The shaded areas represent the standard deviation
around the ensemble mean values. (11b) shows the corresponding comparison of the blood flow in the L-ICA using scenario A (in
blue as a posteriori validation), scenario B (in red), and scenario C (in black).
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pressures in the arteries constituting the CoW are
within the physiological values of a healthy patient7.
With the scenario B, slightly higher SBP is predicted in
all the arteries. Despite these little differences, one can,
however, conclude that the three scenarii give nearly
the same pressure level predictions in the different
arteries.

DISCUSSION

The objective of the test case is to identify a set of
model parameters from measured values (observa-
tions) of flow rate. Towards this end, a 0D compart-
ment model is found to be much faster than a classical
1D PDE-based blood flow model yet providing very
similar results in terms of blood pressure and flow rate
signals (not shown). In determining the Kalman gain,
the EnKF uses estimates that are based on the
ensemble size and the ensemble members. After a
synthetic case analysis, we have noticed that an
ensemble size of 30 is suitable for our problem
involving 21 uncertain variables. The in vivo inversion
shows good agreement between the measured flow rate
from MRI and the outcome of the assimilated com-
partment model. The predicted SBP and DBP in the
arteries are all within the physiological values of a
healthy patient.

The lack of clinically measured pressure in the brain
prevents from validating the predicted cerebral pres-
sure results. The clinical procedure to acquire pressure
data in the cerebral arteries is mostly invasive in nature
and requires inserting a pressure-sensing catheter from
the femoral or radial arteries, e.g., Refs. 15 and 11. In
clinical practice, the blood pressure in the brachial
artery is usually measured at the upper arm. In this
study, the accuracy of the model is assessed by com-
paring the predicted pressure results to the clinically
measured SBP and DBP in the brachial artery. The
following predicted values were obtained in the right
brachial artery with the three scenarii (mmHg):
(125.3±1.7, 70.9±1.7) with scenario A, (126.1±1.7,
70.6±1.7) with scenario B and (124.7±1.6, 71.3±1.6)
with scenario C. In the left brachial artery, the final
predicted values were (126.6±1.7, 70.9±1.7),
(127.8±1.9, 70.4±1.9) and (125.7±1.6, 71.0±1.6) with
the scenarii A, B and C respectively. It is recalled that
the clinically measured pressure values in the right and
the left brachial arteries are (125, 72) and (115, 72)
respectively. The agreement between the predicted and
measured pressure values is thus rather good. Note
that the computed values obtained from the initial
values of the 21 assimilated parameters are (139, 87)
and (138, 87) in the right and left brachial arteriesT
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respectively. This shows the very positive impact of the
data assimilation process in the derivation of a patient
specific model. From this, and in absence of direct
pressure measurements in the cerebral arteries, it is
reasonable to believe that the predicted pressure in the
upper region of the network is also in fair agreement
with its actual value. This is also supported by the fact
that flow rate and pressure are physically linked
through the model and that the computed flow rate
matches well the observations.

One of the limitations could be the choice of the
formula relating Young’s modulus, thickness, and
radius for the cerebral arteries. This work assumes the
same relation for both large and cerebral arteries. The
other factor might be the adaptation of missing data
from the literature, such as the geometrical parameters
of the arteries. The parameter estimation algorithm is
only tested with a compartment model (reduced oder
ODE) and not with a 1D blood flow model. This is
because the observed computational cost of the PDE-
based model for this configuration made it non feasible
on standard computers.

Concerning the limitations and possible improve-
ments, one could mention that the approach assumes
zero pressure loss at bifurcations. Improvement in
the results can also be brought with the use of dif-
ferent configurations of the 0D compartment
numerical model.46 demonstrated that the error made
by lumping can be reduced (mostly for higher fre-
quencies) by using the symmetrical network config-
uration (p element network) instead of using the
inverse L-type network. Future work includes

studying the sensitivity of the predicted pressure to
change in the model assumptions. One should how-
ever keep in mind that switching from L to p-type
would increase the size of optimization problem by 3/
2 as there are 3 unknown parameters in each segment
with p instead of 2 for L36. Also, this study should
be seen as a proof of concept as solely one clinical
case has been considered. More extensive tests are
definitely necessary before definite and final conclu-
sions can be drawn.

CONCLUSION

A total of 21 parameters is estimated in a model of
the circulation system of the circle of Willis, using
clinical data (flow transients) from three points in the
network (one as input of the model, another to define
the cost function to be optimised, and the last to assess
the quality of the fitting), and an advanced Kalman
filtering approach (EnKF) to optimise the parameters.

To ease up the computational complexity and cost,
a reduced order compartment model is coupled with
the data assimilation algorithm, leading to an afford-
able CPU time of less than 3 hours for the most
complex case on a standard computer. A relatively
good-patient specific fitting is achieved even in the
presence of partial geometrical parameters with values
filled from the literature. The study demonstrates how
to use the EnKF as an optimization tool to find
parameters, and how to simplify the model and the
number of variables to make the inverse hemodynamic

AA CC VA BRA BAS ICA ECA PCA,P1 PCA,P2 PCoA MCA ACA,A1ACA,A2 ACoA
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140

p
(m

m
H

g)

Predicted pressure range (diastolic to systolic)

scenario A scenario B scenario C

FIGURE 12. The systolic and diastolic blood pressures in the major arteries constituting the circle of Willis, vertebral arteries, and
larger arteries as predicted using the three scenarii. The names of the arteries are written using acronyms which correspond to
those in Table 2. The data represent means 6 standard deviation.
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problem tractable. The methodology seems to have a
large potential in assessing patient-specific pressure
waveforms at non-accessible (or difficult) locations in
the cerebral arterial tree.
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