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Abstract

Given the extensive and routine use of cardiovascular devices,
a major limiting factor to their success is the thrombotic rate
that occurs. This poses direct risk to the patient and requires
counterbalancing with anticoagulation and other treatment
strategies, contributing additional risks. Developing a better
understanding of the mechanisms of device-induced throm-
bosis to aid in device design and medical management of
patients is critical to advance the ubiquitous use and durability.
Thus, mathematical and computational modeling of device-
induced thrombosis has received significant attention recently,
but challenges remain. Additional areas that need to be
explored include microscopic/macroscopic approaches,
reconciling physical and numerical timescales, immune/in-
flammatory responses, experimental validation, and incorpo-
rating pathologies and blood conditions. Addressing these
areas will provide engineers and clinicians the tools to provide
safe and effective cardiovascular devices.
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glycoprotein Ib; IgG, immunoglobulin G; IVC, inferior vena cava; MCS,
mechanical circulatory support; NS, Navier-Stokes; PDE, partial dif-
ferential equation; REBOA, resuscitative endovascular balloon occlu-
sion of the aorta; TAH, total artificial heart; TAVR, transcatheter aortic
valve replacement; VAD, ventricular assist device; vWF, von Willebrand
Factor.
www.sciencedirect.com
Introduction
Blood-contacting medical devices are used to treat a
variety of cardiovascular (CV) and cardiopulmonary

diseases. These devices perturb hemostasis, resulting
in complications that manifest in the patient as
thrombosis and hemorrhage. Thrombosis is not only a
frequent source of device failure [1], but excessive
clotting and/or bleeding may also pose direct risks to
the patient [2].

Nevertheless, devices have emerged as the standard-of-
care for many CV disease conditions [3]. Current device
use, incidence of adverse events, and material surfaces,
and upcoming and novel/controversial devices, are
summarized in Table 1.

Although disease etiologies and patient populations
vary among blood-contacting devices and their appli-
cations, they all share the same overarching chal-
lenges: (1) device-induced thrombosis is not fully
understood and therefore is clinically unpredictable,
and (2) clinical trials can be extremely difficult and
risky in these patient populations, sometimes to the
point of being prohibitively so. Therefore, in silico
studies are a critical tool to complement in vitro,
ex vivo, and in vivo studies to contribute to overcoming
these challenges. Device thrombosis modeling can be
used to inform on device design in the preclinical
stage and to inform on treatment and clinical handling
of current patients, by developing guidelines and on-
demand treatments.

In this review, the initial focus is a discussion on the
pathophysiology of device thrombosis. We then assess
modeling efforts posterior to Fogelson and Neeves’ 2015
review [4], with a focus on model assumptions to facil-
itate discourse on the physiological relevance of
different mathematical and computational approaches.
Device perturbation of hemostasis:
Virchow’s triad
As is widely appreciated, Virchow theorized, rather
correctly, that hemostasis is a delicate balance between
the blood state, surface, and flow [5]. Although there
have been recent adaptations to his theory, the basic

concept remains applicable to devices, which we have
summarized in Figure 1.
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Table 1

Overview of blood-contacting medical devices.

Device Refs Clinical indication for use Rate of failure or adverse
events

Material surface(s) Notes

Stents [67,68] Arterial obstructions Thrombosis <1%;
restenosis 10%

Metal (e.g. nitinol,
stainless steel)

Grafts [69] Vascular repair or
bypass

20–40% not patent at 5
years

Saphenous vein,
polymer (e.g. nylon,
Polytetrafluoroethylene
(PTFE))

Catheters [70] Central venous catheters
14–18%; peripherally
inserted central catheters
5–15% in-hospital

Silicone rubber,
polyurethane

Heart valves Valvular heart
disease

Bioprosthetic valves [71] Thrombosis �2–3%/year Fixed biologic tissues
can be on stent/graft
scaffold

Mechanical valves [72] Thrombosis �2–3%/year,
up to 6%/year if insufficient
anticoagulation

Requires lifelong
anticoagulation

Transcatheter aortic valve
replacement (TAVR)

[73] Aortic stenosis Thrombosis 9.3% Fixed biologic tissues on
stent/graft scaffold

Increasing in use

Mechanical circulatory
support (MCS)

Heart failure

Ventricular assist devices
(VADs)

[74–76] Thromboembolic events as
high as 30% in HeartMate II
(adult) and Berlin Heart
EXCOR (pediatrics)

Metals, ceramics,
plastics

Decreases over time

Intra-aortic pumps [77] 1% thrombosis, 27%
bleeding

Polyethylene,
polyurethane

Cardiopulmonary bypass [78] Cardiac surgery 2–10% myocardial
infarction, 3% stroke

Plastics Many other complex
complications, both
surgical and related to
critical illness

Total artificial hearts
(TAHs)

[79,80] 20% bleeding, 1.6%
embolus, 2% stroke

Polyurethane

Extracorporeal
membrane oxygenation
(ECMO)

[19,81] Heart and/or
lung failure

�90% some clot formation
in circuitry; balance of
bleeding risk with the
anticoagulation level

Mainly plastics, metals Notable pediatric patient
population;
encompasses many
devices assembled into
circuitry

Inferior vena cava (IVC)
filters

[82] Pulmonary embolism
risk

�30% thrombosis, Deep
vein thrombosis (DVT) as
high as 43%

Metals (e.g. nitinol,
stainless steel)

Intended to cause
obstruction; reports of
incidence vary widely

Endovascular coils [83] Cerebral aneurysm 9.1% total complication rate,
including rebleeding,
ischemia, and rupture

Metals (e.g. platinum
alloy)

Intended to cause
thrombosis

Resuscitative endovascular
balloon occlusion of the
aorta (REBOA)

[84] Hemorrhage Unclear; may increase
mortality

Plastics used by the
catheter/guidewire

Use still controversial

Dialysis [85] Kidney disease <1%/year Plastics
Microparticles and

nanoparticles
[86,87] Thrombosis n/a Charged polymers Novel

2 Biomechanics and Mechanobiology: Mathematic Modeling and Biophysical Characterization of Thrombosis
Blood state
Blood is a suspension containing erythrocytes, leuko-
cytes, platelets, factors, ions, and glycoproteins, which
all have critical roles to maintain hemostasis and perform
other physiological functions [6]. Coagulation, a critical
physiological function, occurs by initiation via either
vascular injury or foreign body contact and comprises
dozens of cellular species and nearly 100 reactions to
Current Opinion in Biomedical Engineering 2021, 20:100349
form a stable thrombus [7]. With the introduction of a
device in the CV system, the surface-mediated pathway
(foreign body) is stimulated along with the activation of
the tissue-mediated pathway (vascular injury) as the
endothelium is disrupted by the device during implan-
tation. Whether these events are separate or simulta-
neous remains unknown, and although the question may
be moot because both lead to thrombosis, elucidation of
www.sciencedirect.com
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Figure 1

Virchow’s triad for device thrombosis. The driving mechanisms of device thrombosis can be viewed through the lens of Virchow’s triad. The blood state,
device surface, and device flow patterns have concomitant effects that ultimately result in thrombosis.
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the interactions and timeline could inform therapeutic
inhibition of either or both pathways.

In addition to coagulation, platelets are significant con-
tributors to clotting and interface with other cellular
components such as von Willebrand factor (vWF) and
fibrin (ogen). Their impact on devices can be substan-

tial, including total device failure. Given the mechanical
and chemical sensitivities of platelets, their response is
critical to gauge device thrombogenicity. Platelets can be
stimulated by high shear, the surface-mediated pathway,
and activated by biochemical means [8]. For example,
when activated platelets attach to vWF adsorbed to the
device surface, this creates a foundational support for the
clot (along with contributions from other clotting fac-
tors). vWF can also be pathologically compromised, as
has been shown in patients with extracorporeal mem-
brane oxygenation and the ventricular assist device

(VAD) who develop bleeding events [9].

These cellular components are currently thought to
have the most significant impact on devices, but as this
www.sciencedirect.com
area continues to be studied, more may be revealed.
Thus the blood state, which includes its constituents, is
quite integral to determining device success. However,
the device surface itself can dramatically influence
clotting.

Surface
When blood contacts a biomaterial surface, a series of
complex systems initiate potentiate thrombosis via the

pathways described in the previous section. Proteins are
adsorbed immediately to the surface [1,10,11], a process
which is controlled initially by diffusion but dominated
by proteinesurface affinity over time (Vroman Effect,
[12]). Device materials are typically hydrophobic and
have affinity with many proteins [13]. The most
commonly adsorbed plasma proteins are albumin,
fibrinogen, immunoglobulin G, fibronectin, and vWF. As
mentioned previously, vWF and fibrinogen appear to be
the most critical factors for platelet activity [14]. In the
adsorption process, proteins undergo conformational

changes to expose hydrophobic domains, which results
in expression of receptor sites, causing subsequent
Current Opinion in Biomedical Engineering 2021, 20:100349
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4 Biomechanics and Mechanobiology: Mathematic Modeling and Biophysical Characterization of Thrombosis
immune crosstalk, and further potentiating thrombosis
[15e17]. The phenotype of the end surface is depen-
dent on the biomaterial; thus, a multitude of unique
surfaces exists.

However, the device surface is absorbed in its entirety,
yet thrombosis tends to be localized [18,19]. Flow is
thus the final key mechanistic driver.

Flow
Flow has been demonstrated to be quite potent in
determining the effectiveness and long-term viability of
a device. Fundamentally, flow regimes (i.e. laminar,
transitional, and turbulent) can affect cellular responses
by creating pathologically low- and high-stress regions,
whereby shear stress can induce platelet activation
[3,20], the combination of shear stress and its exposure
time can induce hemolysis and thus potentiate coagu-
lation [21], and recirculating flows and wakes can facil-
itate clotting [22,23]. Experimental studies have

demonstrated the impact of shear stress on platelet
activation/aggregation [24e26] and thrombosis [27].
Pathologic flows created by the presence of devices and
actions associated with them can influence hemostasis
with examples of recirculating flows/wakes in extracor-
poreal membrane oxygenation circuitry and inferior vena
cava filters, and extremely high shear stress associated
with prosthetic heart valves and VADs (examples found
in Table 1). Residence time of platelets and factors is
another crucial factor that may enhance clotting [24].

Flow, the blood state, the biomaterial surface, and their
concomitant effects are thus the essential elements to
understanding the unique qualities of device throm-
bosis (Figure 1) and therefore determine their ultimate
success.
Modeling approaches available
Despite much effort and tremendous progress, throm-

bosis modeling remains extremely challenging because
of the variety and complexity of the phenomenon.
Recently, modeling studies (Table 2) are in fact more
relevant to natural thrombosis in the setting of the
vasculature [28]. As detailed in the previous section,
device thrombosis has additional mechanisms which
must be considered in the modeling effort, making the
challenge even greater.
Biomarkers deduced from pure computational fluid
dynamics results
The device’s presence in the CV system leads to
thrombus formation after an unknown delay, which may
be hours, days, or even months. Thus, to maximize
clinical and/or design utility, a computational tool for
device thrombosis should forecast clotting and predict
if, when, and where thrombosis occurs. Because some
Current Opinion in Biomedical Engineering 2021, 20:100349
processes operate at very short time scales (1 ms, say,
flow convection or fast biochemical reactions), practical
approaches often neglect all the ‘details’ and try to guess
the thrombotic response from the analysis of the sta-
tionary flow field obtained from classical computational
fluid dynamics (CFD). The typical fluid mechanics
markers used to predict thrombosis in devices
include low-velocity region [29], residence time [30e
35], flow recirculation [36], low wall shear stress
[31,37,38], washout [33,34], kinetic energy density
[34], (platelets) stress accumulation [32,35,39],
(platelets) shear/convection/aggregation [40], and acti-
vation indices [41]. These approaches can provide
relevant information at low cost about the flow structure
and how geometric changes can reduce thrombogenicity
[42]. Of course, they do not inform about the size,
evolution, and thrombus quality.

An extension of the pure CFD approach was proposed

[43,44] to predict the time of occlusion in high-velocity
stenotic channels. In this situation, vWF adsorption on
the artificial surface, platelet adhesion via glycoprotein
IbevWF, and subsequent activation and aggregation of
flowing platelets lead to thrombus formation. Assuming
that these processes can be abstracted by a correlation
between the local hemodynamic shear rate and the
thrombus growth rate, this approach relies on a set of
pure CFD simulations to predict the occlusion time
[43,44]. Of course, the approach can only be justified if
the shear rateegrowth rate correlation indeed exists and

if it can be calibrated in advance.

Physical-based models
Simulations aiming at describing thrombosis should
include models for the coagulation cascade [45e47] and
platelet dynamics [20,48,49]. Given the numerous in-
teractions between fibrin formation and platelets during
thrombosis, proper in silico models should consider these
two ingredients. The most advanced formulation to date
is likely that of Yazdani et al. [50], where a set of 24
partial differential equations are resolved for fluid
flow and 20 biochemical species interacting in the clot-

ting cascade are implemented (following the pattern set
forth by Anand et al. [51]) with a set of Lagrangian par-
ticles (platelets) that can be chemically activated and
produce agonists. The key element that makes this
EulerianeLagrangian approach capable of representing
thrombosis in low and high shear flows is a shear-
dependent platelet adhesive model set to correctly
reproduce data in vivo and in vitro. Surprisingly, FXII,
whose activation on the artificial surface may trigger the
intrinsic pathway, was not considered by Yazdani et al.
[50]; instead, thrombus formation was triggered by

imposing nonzero concentration of the TF-VIIa complex
at a site of injury. The initiation of thrombin formation
(and therefore fibrin) without explicitly defining an
injury site, but rather by relying solely on the activation of
www.sciencedirect.com
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Table 2

Summary of recent approaches and assumptions.

Flow regime Refs Flow domain Coagulation Platelets Clot Contact system Injury site Gap to the device

High shear [48] 3D Navier-Stokes (NS)
10−3 m

None Particles No No Yes Domain size/biochemistry/
contact/clot

[20] 3D Dissipative Particle Dynamics (DPD)
10−5 m

None Coarse Grained Molecular Dynamics (CGMD) No No Yes Domain size/biochemistry/
contact/clot

[49] 3D DPD
10−4 m

None Particles Yes No Yes Domain size/biochemistry/
contact

[58] 3D NS
10−2–10−1 m

None Pseudo particles Yes No Yes Biochemistry/contact

Low shear [45,46] 2D DPD
10−4 m

8 species None Yes No Yes 3D/domain size/contact
system/platelets

[47] 2D NS
10−2 m

20 species None No Yes No 3D/platelets/clot

All flow
regimes

[53] 2D NS
10−2 m

1 species 2 scalar quantities Yes No No 3D/biochemistry/clot
retraction on flow

[88] 2D DPD
10−4 m

3 species Particles Yes No Yes 3D/domain size/contact/
platelet–protein coupling

[18,54,55] 3D NS
10−1 m

5 species 5 scalar quantities Yes No No Contact

[52] 3D NS
10−2–10−1 m

1 species 3 scalar quantities No No No Biochemistry/clot retraction

[50] 3D NS
10−4 m

20 species Particles Yes Yes w/o XII Yes Domain size/FXII

[89] 2D NS
10−4 m

8 species Particles Yes No Yes 3D/domain size/contact

[56] 3D NS
10−2–10−1 m

5 species 3 scalar quantities Yes No No Specific to flow diverters in
aneurysms/contact

[57] 3D NS
10−2 m

5 species 2 scalar quantities Yes No No Specific to stenosis
geometries/contact
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6 Biomechanics and Mechanobiology: Mathematic Modeling and Biophysical Characterization of Thrombosis
factor XII, was made byMéndez Rojano et al. [47], where
the backward facing step experiment was computed. A
significant concentration of thrombin was present only in
the region where thrombus formation had been observed
experimentally by Taylor et al. [23], suggesting the flowe
contact system interaction is a key element in thrombus
location within devices, at least in the low shear regime.

The EulerianeLagrangian method developed by
Yazdani et al. [50] is too computationally demanding to
be applied to actual devices; the fundamental reason is
the tremendous number of particles (1.5 mm each) that
must be accumulated to form a thrombus of a typical
size of 1 cm. A way to significantly reduce the overall
computational load is to represent platelets by Eulerian
fields [18,52e57], instead of particles. Wu et al. [18]
applied 14 coupled partial differential equations: 4 for
fluid flow, 5 for biochemical species to represent coag-
ulation, and 5 for different platelet types. This approach

has shown good potential for complex devices such as
the HeartMate II VAD.

Recently, the concept of pseudo-platelets was intro-
duced [58] to reduce the computational effort while
keeping the Lagrangian description of platelets, by far,
more realistic than the Eulerian framework. In this view,
the spherical particles transported by the flow change
their size (from 1.5 to 90 mm) once activated and
adhered, thus reducing the required number of particles
that form the thrombus. This numerical treatment,

although not physically based, produces reasonable
thrombus formation according to Zheng et al. [58] and
allows increasing size of the affordable computational
domains from sub-millimetric, as implemented in the
study by Yazdani et al. [50], to centimetric [58]. In the
latter study, a mapping from the particle aggregation
step to a phase-field representation of the thrombus
material properties and permeability was also first pro-
posed. This methodology opens new perspectives in
terms of thromboembolic event prediction, although
necessary adaptations to accommodate device throm-
bosis remain.
Future directions
As efforts continue to develop device-induced models, it
should be noted that the U.S. Food and Drug Admin-
istration and other regulatory bodies are keenly inter-
ested, and increasingly likely, to accept properly
validated models as part of the device approval process.
With this context, the future directions to facilitate
impactful device modeling are paramount.

Microscopic versus macroscopic approaches
Currently, there are two modeling approaches to device-
induced thrombosis: either considering the individual
cells and factors (microscopic) or considering the
domain as a continuum and the cells as bulk
Current Opinion in Biomedical Engineering 2021, 20:100349
concentrations (macroscopic). Both approaches have
advantages and disadvantages with the associated limi-
tations. However, developing a synergistic strategy and
collaboration between the macroscopic approaches that
could implement the microscopic, or even nanoscopic,
results could yield significant progress to capture the
truly salient features for thrombosis [59]. Within this
context, careful consideration of the intent (and

setting) of the proposed device is significant, consid-
ering endovascular coils aim to clot aneurysms, whereas
mechanical circulatory support devices must avoid
thrombosis.
Reconciling physical and numerical timescales
Thrombosis may be visible days, weeks, or months after
device implantation, whereas multiphysics simulations
representing flowecoagulationeplateletesurface in-
teractions can only represent fractions of seconds or

minutes depending on the model’s spatial scales. On top
of purposely increasing reaction rates and/or diffusivity
coefficients [18], current efforts to reduce the
complexity of kinetics schemes [60,61] or model the
near wall transport phenomena [62] may improve the
situation, but will most probably be insufficient to fill
the gap. A proper way to drastically increase the physical
time that a simulation can demonstrate would be to
have access to the thrombus growth rate. Then, the
entire process could be represented by a set of simula-
tions performed at different stages over the thrombus
evolution, using the last computed growth rate to

extrapolate from one instant to the following one. This
strategy was successfully followed by Mehrabadi et al.
[43] in the very simple case where the growth rate can
be inferred from the local shear rate issued by pure
CFD. This approach could be made more general by
leveraging a multiphysics simulation at each step. Thus,
future efforts should focus on modeling the thrombus
growth rate rather than simply their size.

Immune/inflammatory
The persistent inflammatory stimulus resulting from
blood contact with the device surface induces a perpetual
immune response [15]. Adsorbed proteins, in addition to

regulating activation of coagulation and platelets, also
regulate the activation of complement and immune cells.
Fibrinogen on the biomaterial surface can activate
circulating monocytes, initiating the inflammatory
response [15]. The presence of factors on the mem-
branes of these and other cells can also contribute to
activation and propagation of coagulation on the device
surfaces. Complement is also activated via binding to the
adsorbed surface [17], generating C3a and C5a at the
device site [15], and both contribute to further inflam-
matory activation and stimulate coagulation. Devices can

increase circulating plateleteleukocyte aggregates
([63]), which are associated with thromboinflammatory
diseases [63,64] and linked to CV events [65]. Including
www.sciencedirect.com
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some description of the complement and inflammatory
systems, and their crosstalk with thrombosis, should be
considered in future modeling efforts.

Validation
Results from in vitro and in vivo experiments, as well as
from clinical data, are necessary both to validate in silico
efforts and to provide biological and mechanistic infor-
mation as inputs into such models. The gold standard

preclinical experiment is a large animal model with
appropriately long timescales; however, this can be both
practically challenging and expensive. Benchtop in vitro
studies thus have less logistical and financial burden for
implementation, thereby increasing throughput, but can
encounter the same challenges discussed in the sections
Microscopic versus macroscopic approaches and
Reconciling physical and numerical timescales: time-
scale and selection of parameters and endpoints. Both
types of experiments can provide useful information to
identify thrombogenic hotspots. Clinical data on the

location and incidence of thrombosis in devices are ideal
for validation but can be challenging to obtain. New
methodologies for obtaining validation data, both in
preclinical experiments and from device patients, are
needed.

Incorporation of pathologies and blood state
Modeling is most frequently implemented with ideal-
ized parameters. Biological variability and patient
pathophysiology may play key roles in the lack of
translation of modeling results to the patient. Patients
will likely be treated with pharmacological agents that
modify hemostatic and thrombotic function, e.g. virtually
all patients with mechanical circulatory support will be

anticoagulated. In addition, devices can alter the blood
state, induce pathologies, and perturb the endothelial
environment during implantation. This endothelial
disruption can cause deleterious effects like restenosis
of coronary stents and potentiate platelet activation and
thrombus formation [66]. Incorporation of these clini-
cally relevant blood states may increase the trans-
latability of modeling efforts.

Conclusion
Because of the inherent complexity of the CV system,
thrombosis modeling of high integrity is challenging.
However, while the current tangible application is

device design, computationally guided patient care is
the ‘science fiction’ of today but will be the needed
‘reality’ in the future.
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