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We propose a procedure — partly analytical and partly numerical — to find the frequency

and the damping rate of the small-amplitude oscillations of a massless elastic capsule im-

mersed in a two-dimensional viscous incompressible fluid. The unsteady Stokes equations

for the stream function are decomposed onto normal modes for the angular and tempo-

ral variables, leading to a fourth-order linear ordinary differential equation in the radial

variable. The forcing terms are dictated by the properties of the membrane, and result

into jump conditions at the interface between the internal and external media. The

equation can be solved numerically, and an excellent agreement is found with a fully-

computational approach we developed in parallel. Comparisons are also shown with the

results available in the scientific literature for drops, and a model based on the concept

of entrained fluid is presented, which allows for a good representation of the results and

a consistent interpretation of the underlying physics.
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1. Introduction

During the last two decades, numerical simulations of deformable particles in flows

have received increasing attention. Several numerical methods have been developed to

predict the dynamics of particles composed by a drop of liquid enclosed in a membrane,

or more generally in a flexible structure. Different particles are described by this model,

such as biological cells (typically red blood cells), lipid vesicles or elastic capsules. Such

particles are small (their diameter is of the order of a few microns) and they often evolve in

creeping flows, well described by the Stokes equations. Taking advantage of the linearity

of the Stokes equations, boundary integral methods (BIM) (Pozrikidis, 1992, 2010) are

efficient techniques to solve the dynamics of fluidic particles in an external flow. These

methods have been successfully applied to red blood cells (Pozrikidis, 1995; Zhao et al.,

2010; Zhao & Shaqfeh, 2011; Peng et al., 2011), capsules (Lac et al., 2007; Walter et al.,

2011; Hu et al., 2012) and vesicles (Ghigliotti et al., 2010; Veerapaneni et al., 2011; Biben

et al., 2011; Sohn et al., 2010; Boedec et al., 2012). One of the appealing features of BIM

is that they do not need the discretisation of the fluid domain (Pozrikidis, 1992).

However, as recently stressed by Salac & Miksis (2012), vesicles (and other similar

cells) sometimes evolve in flows where inertia cannot be neglected. As far as red blood

cells are concerned, the particle Reynolds number — i.e., the one based on the red blood

cell size and the local velocity gradient — is generally small under normal physiological

conditions. However, non-physiological flows are prime examples where cells are submit-

ted to extreme stress conditions. In ventricular assist devices, the Reynolds number can

reach values of 104 or 105 (Fraser et al., 2011), potentially resulting in blood damage. In

such conditions, the flow cannot be described by the Stokes equations. The applicability
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of the BIM to the Navier–Stokes equations and to the unsteady Stokes equations has

been demonstrated (Greengard & Kropinski, 1998; Jiang et al., 2013). However, in the

context of flows of vesicles, capsules or cells, the BIM is mainly used for creeping flows.

Alternative numerical methods able to predict flow-induced deformations of fluid par-

ticles enclosed by a membrane in regimes where the Reynolds number is not zero have

been developed in recent years (Peskin, 2002; Lee & Leveque, 2003; Le et al., 2006; Cottet

& Maitre, 2006; Kim & Lai, 2010; Salac & Miksis, 2011; Yazdani & Bagchi, 2013). Such

methods are usually developed and tested in two dimensions before their adaptation to

three dimensions. Quality assessment of these methods is of course essential. However,

validation itself is an issue: while an experiment may mimic a two-dimensional flow,

flowing particles are inherently 3-D. Likewise, owing to the moderate computational cost

of BIM, reference numerical results generated by BIM are 3-D for the most part. The

comparison of 2-D results and 3-D measurements or simulation results can only be qual-

itative, and does not constitute a true validation. However, some 2-D simulations using

BIM are available in the literature (Breyiannis & Pozrikidis, 2000; Veerapaneni et al.,

2009; Ghigliotti et al., 2010; Woolfenden & Blyth, 2011) and can be used for validation,

in the Stokes regime. Validation in regimes where the flow cannot be described by the

steady Stokes equation is more problematic. In such cases, numerical publications are

generally limited to simulation feasibility and qualitative assessments, or comparisons

only with similar methods: most of the methods developed to compute capsules or vesi-

cles dynamics in flows with non-zero Reynolds number rely on diffuse interfaces, where

the effect of the membrane is smoothed over several grid cells. Extensive validation

of such methods is thus indispensable, and analytical results — necessary to properly

discuss the pros and cons of new numerical methods — are missing.

The present paper represents an analytical investigation of a problem already faced
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several times numerically in literature, and is a step towards more extensive validation of

2-D numerical methods for simulations of fluid particle dynamics under flow. A normal-

mode analysis is performed for the case of a two-dimensional capsule, enclosed by an

elastic stretched membrane. A perturbation of the membrane equilibrium shape results

in damped oscillations and relaxation to a circular state. Such a case has been used

to illustrate the performances of 2-D numerical methods (Tu & Peskin, 1992; Lee &

Leveque, 2003; Cottet & Maitre, 2006; Song et al., 2008; Tan et al., 2008), albeit without

validating against analytical results.

Similar studies have been led for other deformable objects. The problem of oscilla-

tions of drops or vesicles has received substantial attention over the years (Lamb, 1932;

Prosperetti, 1980b; Lu & Apfel, 1991; Rochal et al., 2005). However, most of the ap-

proaches treat three-dimensional configurations, relevant of course to practical applica-

tions. The present paper provides semi-analytical results for the oscillating relaxation of

two-dimensional capsules without external flow, and proposes a discussion on the similar-

ities with the behaviour of droplets. We will also introduce a simple phenomenological

model to explain the origin of the oscillations of a massless membrane immersed in a

creeping flow.

The paper is organised as follows. In section 2 we sketch the problem under con-

sideration. Section 3 shows the guidelines of the equations into play. In section 4 the

main results are reported. Section 5 presents a discussion on similar systems and on

physical models. Conclusions and perspectives follow in section 6. The appendices A, B

and C are devoted to detailing the expression of the membrane elongation, the analyti-

cal procedure for our differential equations, and the numerical discretisation using finite

differences, respectively. Our nomenclature and notation are recalled in tables 3–4.
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Figure 1. Sketch of the problem and of the notations for membrane, fluid and wall. The

inflated membrane with radius R at rest oscillates within a circular fluid domain of radius

W . The dotted circle represents the zero-stress configuration of the membrane of radius R0

(non-inflated membrane).

2. Problem

Let us consider the motion of an elastic one-dimensional closed membrane, slightly

deformed from its circular rest shape, immersed in — and thus also enclosing a portion

of — a two-dimensional incompressible viscous fluid (figure 1). The membrane is pre-

inflated, which means that the reference circle of radius R is not an unstressed shape.

The unstressed shape is considered to be a circle of radius R0 < R. The membrane is

thus under tension even without deformation, and the incompressibility of the enclosed

fluid prevents the membrane from reaching its unstressed shape. We study the time

evolution of the membrane shape around the reference circle of radius R, focusing on the

case of small-amplitude deformations, We can describe the problem in polar coordinates

r = (r, θ) via the membrane location R(θ, t) = R+ ∆(θ, t), where R is the radius of the

aforementioned circle and ∆(θ, t)/R ≪ 1 ∀ θ, t. This description of course neglects the

membrane thickness and excludes those situations where the membrane folds, so that two

or more membrane locations would be present at the same angle. We also introduce a
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long-wave hypothesis, in order to neglect the cases in which the instantaneous oscillations

would be so spatially dense as to result in an interface almost oriented in the radial

direction at the nodal points. Consequently, the local instantaneous curvature is defined

as (Gray, 1997)

Γ(θ, t) =
R2 + 2R′2 −RR′′

(R2 + R′2)3/2
=

(R+ ∆)2 + 2∆′2 − (R+ ∆)∆′′

[(R + ∆)2 + ∆′2]3/2
, (2.1)

with the prime denoting a derivative with respect to θ.

In the spirit of a perturbative approach, the continuity and forced Navier–Stokes equa-

tions for the fluid velocity can be linearised around the reference state of fluid at rest,

and the resulting equations for the perturbation u(r, θ, t) = urêr + uθêθ read:

1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
= 0 , (2.2)

ρ
∂ur

∂t
= −

∂p

∂r
+ ν

(

∂2ur

∂r2
+

1

r

∂ur

∂r
+

1

r2
∂2ur

∂θ2
−
ur

r2
−

2

r2
∂uθ

∂θ

)

+ δ(r −R)fr , (2.3)

ρ
∂uθ

∂t
= −

1

r

∂p

∂θ
+ ν

(

∂2uθ

∂r2
+

1

r

∂uθ

∂r
+

1

r2
∂2uθ

∂θ2
−
uθ

r2
+

2

r2
∂ur

∂θ

)

+ δ(r −R)fθ , (2.4)

where ρ and ν are the (constant) mass density and kinematic viscosity, respectively, p is

the fluid pressure, and the non-linear inertial terms (quadratic coupling of u with itself)

have been consistently dropped.

The linear force per unit volume, f(θ, t) = frêr + fθêθ, exerted by the membrane on the

fluid, can easily be expressed in the reference frame defined by the unit vectors locally

counterclockwise-tangential and inward-normal to the interface, τ̂ and N̂ respectively

(see figure 1). In terms of the local instantaneous elongation χ(θ, t) of the membrane

(to be defined in (2.9) and discussed in appendix A), this force reads (Breyiannis &

Pozrikidis, 2000)

f = E

(

dχ

dτ
τ̂ + χΓN̂

)

, (2.5)
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where d/dτ is the curvilinear derivative following τ̂ ,

d

dτ
= [(R+ ∆)2 + ∆′2]−1/2 ∂

∂θ
, (2.6)

and E is an elastic modulus representing the membrane thickness times its Young mod-

ulus and is considered as constant in the limit of vanishing thickness. The pairs of polar

and curvilinear unit vectors are related to each other by

τ̂ = [(R+ ∆)2 + ∆′2]−1/2 [∆′êr + (R+ ∆)êθ] (2.7)

and

N̂ = [(R + ∆)2 + ∆′2]−1/2 [−(R+ ∆)êr + ∆′êθ] . (2.8)

The membrane elongation appearing in (2.5) is defined as

χ(θ, t) =
L(θ, t) − L0

L0
, (2.9)

L being the length of an infinitesimal membrane arc and L0 its deflated value in the

zero-stress configuration, which will actually disappear from the final expression. As

shown in appendix A, such a definition makes the membrane elongation characterised by

a transport equation. The membrane elongation thus depends not only on the membrane

location R(θ, t), but also on the dynamical state, through the appearance of the fluid

velocity. By decomposing the elongation into a mean constant part — averaged on the

angle and denoted by a bar — and a fluctuating one (small by definition, with zero

angular average and denoted by a tilde), we have:

χ(θ, t) = χ̄+ χ̃(θ, t) , χ̄ =
R−R0

R0
. (2.10)

Moreover, the Dirac deltas in (2.3–2.4) indicate that the force in (2.5) only acts at

the local and instantaneous membrane location, r = R(θ, t). However, in the limit of

small-amplitude deformations, this differs only slightly from the circle r = R, and at

the leading order in ∆/r all the relevant expressions (and consequently (2.5)) can be
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simplified by expanding them around the reference state:

Γ(θ, t) ≃
1

R

(

1 −
∆

R
−

∆′′

R

)

,

d

dτ
≃

1

R

(

1 −
∆

R

)

∂

∂θ
,

δ(r −R) ≃ δ(r − R) − ∆δ̇(r −R) , (2.11)

τ̂ ≃
∆′

R
êr + êθ ,

N̂ ≃ −êr +
∆′

R
êθ .

In the limit of small-amplitude deformations, the transport equation for the membrane

elongation reads (see appendix A for details):

∂χ̃(θ, t)

∂t
=
χ̄+ 1

R

[

∂uθ

∂θ
+ ur

]

(R, θ, t) . (2.12)

Notice that, for the above simplifications to hold, there is no need for the angular deriva-

tives to be small, but simply “not to be large”, which is a much weaker request. In other

words, our long-wave hypothesis corresponds to the assumption that the ∂/∂θ operator

(along with its square) does not increase the order of magnitude of any quantity, so that

if something is small then the same is true for its first and second derivatives with respect

to θ.

Expression (2.5) incorporates both the normal force related to fluid pressure differences,

and the tangential stress due to variations in the membrane local elongation. It is thus

obvious that this will result in jump conditions, which in the same spirit should be

imposed on the fixed and known reference circular state. They must be supplemented by

the continuity of the velocity field,

u−r = u+
r and u−θ = u+

θ , (2.13)

where ·± = limr→R± · and all equalities hold for any angle and time. The forthcom-

ing partial differential equations will then hold separately in both the internal and the
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external fluid regions, and will have to be matched according with (2.13) and momentum-

related jump conditions — as detailed in section 3.

Finally, boundary conditions must be imposed: both at the origin due to the polar-

coordinate geometric constraint, and at the external wall (which may even be placed

at infinity, but which in what follows will be considered as a concentric circle of radius

W > R) because of the no-slip constraint:

ur|r=0 = 0 =
∂ur

∂r

∣

∣

∣

∣

r=0

, ur|r=W = 0 = uθ|r=W . (2.14)

This completes the basic picture of the physical system under investigation. It is

however instructive to recast the problem in nondimensional form. With this aim, let us

introduce (Prosperetti, 1980b) the membrane characteristic time

T =

√

ρ

E

R3R0

R −R0
, (2.15)

and the so-called reduced viscosity, corresponding to the ratio between T itself and the

viscous time scale R2/ν:

ν∗ =
νT

R2
=

√

νµR0

ER(R− R0)
(2.16)

(here µ = ρν is the dynamic viscosity). A standard application of the well-known Vaschy–

Buckingham π theorem tells us that the problem can be formulated in terms of two

nondimensional quantities, which can be chosen as ν∗ and the ratio R∗ = R0/R, as we

will show at the end of section 3.

The membrane characteristic time T pilots the oscillatory part of the problem. The nat-

ural appearance of this elastic time scale makes it necessary to take the time dependence

into account, even in the absence of any typical temporal scale induced by external forc-

ing or fluid motion. This is why we decided to use the time-dependent Stokes equations

— or equivalently the linearised Navier–Stokes equations — to describe a problem which

is intimately unsteady. Notice that, in the presence of a massless membrane, neglecting
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the time derivative of the fluid velocity would imply the absence of any fluid inertia (after

the cancellation of the quadratically-small advective term), therefore no oscillatory mo-

tion would be possible and the problem would reduce to a simple direct return towards

the circular shape.

3. Equations

Let us start our analysis from the linearised forced Navier–Stokes equations. As the

unperturbed flow is at rest, they are equivalent to the unsteady Stokes equations. Note

that an option to tackle this problem would be to rely on a BIM for unsteady Stokes

equations (Jiang et al., 2012), which could also be used for more complex shapes. Here,

we follow a different approach, taking advantage of the simplicity of the configuration.

By taking the curl of the equations (2.3–2.4), we get rid of pressure in the equation:

∂2ur

∂θ∂t
−

∂

∂r

(

r
∂uθ

∂t

)

= ν

{

∂

∂θ

[

∂2ur

∂r2
+

1

r

∂ur

∂r
+

1

r2
∂2ur

∂θ2
−
ur

r2
−

2

r2
∂uθ

∂θ

]

−
∂

∂r

[

r
∂2uθ

∂r2
+
∂uθ

∂r
+

1

r

∂2uθ

∂θ2
−
uθ

r
+

2

r

∂ur

∂θ

]}

+
E

ρR0

{[

∆′

(

1 −
R0

R

)

(

1 −
r

R

)

−
rR0

R
χ′

]

δ̇(r −R)

+

[

∆′′′

R

(

1 −
R0

R

)

− 2
R0

R
χ′

]

δ(r −R)

}

. (3.1)

The superscript dot here denotes a derivative with respect to the argument itself of the

delta. (Notice that (3.1) represents the equation for the vorticity field, multiplied by −r).

This equation accounts for the linearisation of the fluid equations and of the membrane

quantities, since the forcing terms in (2.3–2.4) were expressed through (2.5) and (2.11).

The continuity equation (2.2) is automatically satisfied by introducing the stream func-

tion ψ(r, θ, t) such that

ur =
1

r

∂ψ

∂θ
, uθ = −

∂ψ

∂r
. (3.2)

We now perform a normal-mode analysis, i.e. we project onto a basis made up of
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complex exponentials in the angle and in time, in the form

ψ(r, θ, t) =
+∞
∑

n=−∞

φn(r)ei(nθ−ωnt) , (3.3)

coupled with an analogous expansion for the two relevant quantities pertaining to the

membrane, viz. its deformation ∆ and (from (2.10), the mean-free part of) its elongation

χ̃:

∆(θ, t) =

+∞
∑

n=−∞

ξnei(nθ−ωnt) , (3.4)

χ̃(θ, t) =
∑

n6=0

γnei(nθ−ωnt) . (3.5)

Here, n is integer and ωn complex. The real and imaginary parts of ωn correspond to

the angular frequency of the membrane oscillations and to the (opposite of the) damp-

ing rate due to viscous dissipative effects, respectively, for the mode n. Finding this

complex parameter — common to both the membrane and the fluid — is our main ob-

jective, which also means that we renounce to impose any initial condition for the fluid

motion, in the spirit of an eigenmode decomposition. For both this complex frequency

and the amplitudes φn(r), ξn and γn, we drop the subscript n whenever unambiguous.

The stream function ψ being defined up to an arbitrary additive constant (namely, a

space-independent, but possibly time-dependent, term), the addend corresponding to

n = 0 shows an undetermined degree of freedom φ(r) 7→ φ(r) + constant. Due to the

area-preservation constraint, this is only related to membrane rotation and angular mo-

mentum, because it gives rise to an azimuthal angle-independent flow (ur = 0, uθ(r, t)).

Therefore we decide to neglect the mode n = 0, as well as the modes n = ±1 which

would imply a translation of the centre of mass. Even if a generic superposition of modes

could be dealt with, here we mainly focus on an isolated mode at each time. For a

single mode, the area preservation cannot hold exactly, but it does at working order, i.e.

neglecting all quadratic amplitudes. Also notice that the following conjugation relations
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must hold, so as to ensure that ψ, ∆ and χ̃ are real quantities (namely, waves travelling

in the azimuthal direction) upon summing the pairs of contributions with n and −n:

φ−n = φ⋆
n , ξ−n = ξ⋆

n , γ−n = γ⋆
n , ω−n = −ω⋆

n .

In fact, in this specific case, the symmetry is even stronger due to invariance by reflection

(parity of (3.1) in θ and consequently of the upcoming (3.11–3.13) in n), so that already

for each single n any solution ωn has a twin solution with same imaginary part and

opposite real one. As a consequence, the sum of the contributions from n and −n in the

series (3.3–3.5) actually consists of four addends, i.e. of two azimuthal waves travelling

in opposite directions with the same speed and damping rate, which therefore interfere

to produce a stationary wave.

Referring the details to appendix B, here we only mention that, after the appropriate

substitutions, equation (3.1) can be recast in closed form by expressing the link between

the membrane-related quantities ∆, χ and the fluid stream function ψ (or φ) itself. As

a result, in each of the two domains r < R and r > R, we have

φ(4) +
2

r
φ(3) +

(

−
2n2 + 1

r2
+

iω

ν

)

φ(2) +

(

2n2 + 1

r3
+

iω

νr

)

φ(1)

+

(

n4 − 4n2

r4
−

iωn2

νr2

)

φ = 0 , (3.6)

with (l) denoting the l-th derivative with respect to r.

This must be supplemented with an appropriate rewriting of the constraints (2.13–

2.14). The boundary conditions at the origin and at the (circular) wall imply the van-

ishing of both the function and of its first derivative at both ends, and read:

φ|r=0 = 0 = φ|r=W , φ(1)|r=0 = 0 = φ(1)|r=W . (3.7)

The continuity of the fluid velocity at the membrane implies the same for the function
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and its first derivative:

φ− = φ+ , φ(1)− = φ(1)+ . (3.8)

Pressure is no longer relevant in this formulation. However, the effect of the Dirac

delta’s from (2.3–2.4) is to provide additional jump conditions on the second and third

derivative of φ at the interface, which complete (3.7–3.8) and can be derived by means

of appropriate successive integrations (see appendix B for more details):

φ(2)− − φ(2)+ =
in2E

µR0R2ω

[

φ(R) −Rφ(1)(R)
]

, (3.9)

φ(3)− − φ(3)+ =
in2(n2 − 1)E

µR0R3ω

(

1 −
R0

R

)

φ(R) . (3.10)

Finally, let us first reformulate the problem in nondimensional fashion, as anticipated at

the end of section 2. In other words, by using the nondimensionalised radial coordinate

r 7→ r∗ = r/R and angular frequency ω 7→ ω∗ = ωT , and by exploiting (2.15–2.16),

equation (3.6) and constraints (3.9–3.10) can be recast as:

φ(4)(r∗) +
2

r∗
φ(3)(r∗) +

(

−
2n2 + 1

r2∗
+

iω∗

ν∗

)

φ(2)(r∗)

+

(

2n2 + 1

r3∗
+

iω∗

ν∗r∗

)

φ(1)(r∗) +

(

n4 − 4n2

r4∗
−

iω∗n
2

ν∗r2∗

)

φ(r∗) = 0 , (3.11)

φ(2)− − φ(2)+ =
in2

ω∗ν∗(1 −R∗)

[

φ(1) − φ(1)(1)
]

, (3.12)

φ(3)− − φ(3)+ =
in2(n2 − 1)

ω∗ν∗
φ(1) . (3.13)

Notice that, due to the homogeneity of (3.7–3.8) and (3.11–3.13) in φ, it is not necessary

to nondimensionalise this latter quantity, of dimension length squared over time. This

means that, in units of T−1, the oscillation frequency and the damping rate can be

expressed as

Re(ω∗) = h(n, ν∗, R∗) , Im(ω∗) = g(n, ν∗, R∗) (3.14)

by means of two unknown functions h and g, whose behaviour will be investigated nu-

merically in section 4.
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4. Results

In this section we show the analytical/numerical results for the real and imaginary

parts of the nondimensional ω∗. A numerical procedure is indeed necessary to obtain

the nondimensional functions h and g from (3.14). A standard finite-difference scheme

is implemented, consisting in discretising the r∗ ∈ [0,W/R] domain with M points, in

transforming (3.11) into a set of M coupled linear equations accordingly (with conditions

(3.7–3.8) and (3.12–3.13)), and in finding the complex ω∗ which annihilates the determi-

nant of the matrix derived in this way. This was accomplished by developing a specific

program in MATLAB. Details about the numerical procedure are provided in appendix

C.

4.1. Influence of domain size, wall conditions and mesh refinement

The presence of an external wall of circular shape has been introduced in this work

to allow comparisons with numerical simulations of the full fluid-structure interaction

problem in confined environments. However, we will mainly show results relevant to the

damped oscillations in an infinite medium. Our claim is that our results are generally

valid also in the absence of this wall, and to state this we have to show two properties:

first, that a saturation zone exists, in which the wall is far enough as not to substantially

modify the results if it is moved further away (P1); second, that at this W it is indifferent

to impose no-slip or free-slip wall conditions (P2). The latter constraint, instead of

uθ|r=W = 0, translates into the absence of any tangential stress:

0 = r
∂(uθ/r)

∂r

∣

∣

∣

∣

r=W

+
1

r

∂ur

∂θ

∣

∣

∣

∣

r=W

= φ(2)(W ) −
1

W
φ(1)(W ) . (4.1)

Figure 2 shows how the real and imaginary parts of ω∗ depend on W/R and the wall

boundary condition, for the following values of the parameters: n = 2, ν∗ = 0.001 and

R∗ = 0.5. This case will be referred to as our reference case. Figure 2 shows that
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W/R − 1

R
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ω
∗
)
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0

Figure 2. Behaviour of the real (left panel) and imaginary (right panel) parts of the complex

nondimensional angular frequency ω∗, as a function of the nondimensional external wall radius

W/R − 1, for both the no-slip (+) and the free-slip (×) cases. Our working point for the

subsequent calculations, W/R − 1 = 9, lies in a range where saturation has taken place and

the wall condition is irrelevant. The values of the other parameters are n = 2, ν∗ = 0.001 and

R∗ = 0.5.

properties P1 and P2 are actually verified already at W/R = 10 (our working point for

the subsequent calculations). Differences in the real and imaginary parts of ω∗ are less

than 0.01% when W is changed from W/R = 10 to W/R = 30.

Finally, denoting the grid spacing by △r = W/(M−1), the result of a grid convergence

study is displayed in figure 3. Grid convergence is shown for the real and imaginary

parts of ω∗ by constructing ERe and EIm, which are relative errors with respect to our

working point △r/R = 0.0001, for which the complex nondimensional angular frequency

is denoted ωWP
∗ :

ERe

(

△r

R

)

=
|Re(ω∗(△r/R)) − Re(ωWP

∗ )|

|ωWP
∗ |

. (4.2)

The definition of EIm is obtained by substituting imaginary parts to real parts in (4.2).

Results are almost independent of the grid size for sufficiently small grid spacing, but a

non-monotonic convergence is observed, as shown by figure 3 (left). This may be related

to the fact that the resolution of the numerical solutions and of the reference solution

are too close. Memory constraints, notably, preclude the use of much finer discretization.
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Figure 3. Grid convergence of the real (left panel) and imaginary (right panel) parts of ω∗

as a function of △r/R, the grid spacing. Our working point for the subsequent calculations,

△r/R = 0.0001, is used as a reference to compute the relative errors (4.2).

However, for all the parameters tested, the grid spacing △r/R = 0.0001 was shown to

be fine enough to ensure that the first four digits of ω∗ are independent of the grid. In

the following, all results are obtained for W/R = 10 and △r/R = 0.0001.

4.2. Mode frequencies

Figure 4 shows the dependence of ω∗ on the oscillation mode n. An increase in both

the angular frequency and the damping rate can be observed for growing n. This means

that, when the wave length becomes smaller with respect to the radius, the membrane

oscillates more frequently and dissipation acts faster. This behaviour will be discussed

in more detail in section 5.

Let us now focus on the mode n = 2, which is the closest to an ellipse and the most

used in numerical studies (Tu & Peskin, 1992; Lee & Leveque, 2003; Cottet & Maitre,

2006; Song et al., 2008; Tan et al., 2008), and let us investigate the dependence of ω∗ on

the reduced viscosity ν∗. As shown in figure 5, a decrease in ν∗ leads to an increase of

the real part of ω∗, and to a decrease of the absolute value of the imaginary part of ω∗.

Notice that this latter tends to zero in the limit of vanishing fluid viscosity, because in

the absence of any imposed membrane dissipation every damping effect disappears there.
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Figure 4. Same as in figure 2 but as a function of the oscillation mode n, for fixed values of

ν∗ = 0.001 and R∗ = 0.5. The modes n = 0 and n = ±1 must be neglected because they would

imply an angle-independent evolution and a translation of the centre of mass, respectively.
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Figure 5. Same as in figure 2 but as a function of the reduced viscosity ν∗ = νT/R2, for fixed

values of n = 2 and R∗ = 0.5.

For what concerns the dependence of ω∗ on the remaining parameter R∗, we found

that it is very weak, which is shown in table 1. This is due to the fact that the core of the

dependence of ω on R and R0 has already been taken into account through the definitions

of the membrane time scale T and of the reduced viscosity (2.15–2.16), where the block

E(R − R0)/R0 can be identified as a surface tension. Consequently, the dependence on

R∗ has disappeared in (3.11) and (3.13), and only lies in the jump of the second derivative

(3.12).

Notice that the aforementioned dependences on n, ν∗ and R∗ make it impossible to

find two (or more) distinct situations, namely with different oscillations modes, such as
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R∗ ω∗ ( ν∗ = 0.001 ) ω∗ ( ν∗ = 0.05 )

0.0001 1.693 − 0.038i 1.457 − 0.254i

0.01 1.693 − 0.038i 1.457 − 0.254i

0.5 1.693 − 0.038i 1.457 − 0.254i

0.99 1.693 − 0.038i 1.460 − 0.253i

0.9999 1.693 − 0.038i 1.460 − 0.253i

Table 1. Effect of the ratio R∗ = R0/R on the complex frequency ω∗, for ν∗ = 0.001 and

ν∗ = 0.05 and a fixed value of n = 2. Only the first four digits are shown, in accordance with

the results of the grid convergence study.

to have the same complex ω∗. This is due to the monotonically-growing character of

both h and |g| in n, which — taking into account the marginal role played by R∗ —

cannot be compensated by a variation in ν∗, as e.g. a reduction of the latter would imply

a decrease in Re(ω∗) but an increase in |Im(ω∗)|. However, this conclusion is no longer

true for the dimensional complex ω, which can be given the same value in different modes

by appropriately tuning the other parameters.

4.3. Spatial structure of modes

After numerically finding φ(r∗), it is possible to reconstruct the whole stream function

ψ(r, θ, t) from (3.3) and thus the fluid velocity field. From the normal-mode decomposi-

tion (3.4) of ∆(θ, t) and the following discussion, the membrane deformation is actually

composed by a superposition of modes giving rise to a stationary wave (see appendix

B). The mode n = 2 reproduces e.g. the fact that the absolute value of the membrane

displacement is maximum on the axes (antinodes at θ = 0,π/2, . . .) and zero on the

bisectors (nodes at θ = π/4, 3π/4, . . .). Instantaneous sketches of the fluid velocity in

an area around the membrane are presented in figures 6–7 for three situations: our ref-
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erence case, a case with different n, and a case with increased ν∗ (see the values of the

parameters in table 2).

Figure 6 corresponds to the passage of the membrane through the circular state,

∆(θ, t) = 0. It consists in an instantaneous capture of the fluid flow at time t =

(3π/2 − σξ)/Re(ωn), where the phase shift σξ = arctan[−Im(ξn)/Re(ξn)] is related to

the lack of the initial-value problem and its numerical value is reported in table 2. The

azimuthal structure of the modes generates vortex-like motions, parts of the membrane

moving outward and others inward. Note that, for n = 3, the flow field is more quiescent

at the centre of the capsule than for n = 2. Changes in the flow field when increas-

ing ν∗ are less obvious, though smaller radial gradients of the azimuthal velocity for

θ = π/4, 3π/4, . . . can be seen comparing case #2 to case #0.

Figure 7 represents a time instant in the oscillation period where the membrane de-

formation with respect to the reference circle is maximal. More precisely, it corresponds

to the first instant when the deformation is maximum and the membrane velocity van-

ishes, ∂∆(θ, t)/∂t = 0, after the time instant shown in figure 6. Indeed, here t =

(2π−σφ(R))/Re(ωn), where the phase shift σφ(R) = arctan[−Im(φn(r))/Re(φn(r))]|r=R

is due to the absence of any initial-value imposition, and its numerical value is reported

in table 2. About this state of maximum deformation, it is interesting to notice that in

our formalism all the membrane points are at rest, but the fluid inertia — due to the time

derivative in (2.3–2.4) — acts so as to maintain some fluid motion almost everywhere

at any time, as noticeable in figure 7. In particular, high azimuthal velocity is observed

just outside the membrane for θ = π/2n, 3π/2n, . . .. Note that the thickness of the layer

where velocity is not null grows with ν∗.

As a comparison, we also provide results from numerical simulations, obtained via

the in-house YALES2BIO solver developed at Institut de Mathématiques et de Modé-
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Case #0: n = 2 ; ν∗ = 0.001 ; R∗ = 0.5

 

 

−2 −1 0 1 2
−2

−1

0

1

2

−1 −0.5 0 0.5 1

 

 

−2 −1 0 1 2
−2

−1

0

1

2

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Case #1: n = 3 ; ν∗ = 0.001 ; R∗ = 0.5
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Case #2: n = 2 ; ν∗ = 0.01 ; R∗ = 0.5
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Figure 6. Normalised fluid velocity in an area around the membrane, captured at a passage

time of the membrane through the reference circle (represented by the black line). From table

2, plotted are the “standard” case #0 (top), case #1 with different n (middle), and case #2

with increased ν∗ (bottom). Left panels represent the radial component, centre panels the

azimuthal component and right panels display velocity vectors over a smaller domain. Notice

that uθ is continuous according to (2.13), but it varies very rapidly across the membrane at the

angle θ = π/2n and odd multiples. The arrows denote the direction of the local instantaneous

membrane motion and are conventionally placed at the angle θ = π/n and multiples, where
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Case #0: n = 2 ; ν∗ = 0.001 ; R∗ = 0.5
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Case #1: n = 3 ; ν∗ = 0.001 ; R∗ = 0.5
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Case #2: n = 2 ; ν∗ = 0.01 ; R∗ = 0.5
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Figure 7. Same as in figure 6, but captured at a time of maximum deformation when the whole

membrane is at rest. The time instant is chosen to be the one following the capture time of

figure 6, i.e. slightly less than one fourth of a period later. As the normalization of both velocity

components with the same above-defined U — the maximum speed value reached during the

passage through the circle in figure 6 — is maintained, notice the orders of magnitude: small

for the azimuthal component and even smaller for the radial one. Also note that the black line

represents the reference circle, and not the actual present position of the membrane.
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case n ν∗ R∗ ω∗ (analytical) ω∗ (numerical) σξ σφ(R)

#0 2 0.001 0.5 1.693 − 0.038i 1.670 − 0.040i −0.0184 0.00495

#1 3 0.001 0.5 3.395 − 0.071i 3.335 − 0.067i −0.0209 0.00249

#2 2 0.01 0.5 1.615 − 0.122i 1.577 − 0.143i −0.0578 0.0179

Table 2. The set of parameters, n, ν∗ and R∗, used for the three situations represented in

each row of figures 6–8, and indicated by different grey filling tones in figure 11. Case #0 is

the reference benchmark. Also reported are the values of the nondimensional complex angular

frequency ω∗, from the present linear analysis and from YALES2BIO simulations (see text); and

the values of the phase shifts, σξ and σφ(R), which dictate the time instants at which figures

6&8 and figure 7 are captured, respectively (see (B 4) and (B 7)).

lisation de Montpellier (http://www.math.univ-montp2.fr/∼yales2bio/). YALES2BIO

builds heavily upon the YALES2 solver (http://www.coria-cfd.fr/index.php/YALES2)

designed at the CORIA (CNRS UMR 6614), which solves the incompressible Navier–

Stokes equations using a finite-volume approach (Moureau et al., 2011a,b). The classical

immersed-boundary method, or IBM (Peskin, 1977), is implemented to solve the present

fluid–structure interaction problem. The numerical method and its extensive validation

are presented by Mendez, Gibaud & Nicoud (2014). The capsule is represented as a

set of discrete massless markers convected by the flow field, and pairwise connected

by straight-line springs, as in the original IBM by Peskin (1977). Given the strain in

each spring, the state of membrane stress is obtained, and the information is passed to

the fluid-flow solver, which solves the Navier–Stokes equations forced by the membrane

action. Thanks to the ability of the solver to use hybrid fluid grids, the fluid mesh is

composed by two zones: one with regular square cells in the membrane neighbourhood

and one with triangular cells, far from the membrane. This enables us to limit the number
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of grid points by coarsening the grid far from the region of interest. In the Cartesian

region fluid-structure coupling is realized using the classical regularization/interpolation

operator for regular grids, based on a cosine function (Peskin, 1977). A grid convergence

study has been led to present grid-independent results. In the reported calculations,

the membrane is discretised with 2500 markers, while in the near-membrane region the

fluid grid resolution is of the order of 2πR/2500. As already stated in the introduction,

IBM and similar methods have often been used to simulate the damped oscillations of

an initially-elliptic capsule (Tu & Peskin, 1992; Lee & Leveque, 2003; Song et al., 2008;

Tan et al., 2008). Circular capsules are initially deformed with a small perturbation (to

allow for the comparison with the analytical approach) of given azimuthal wave number,

and plugged in a fluid at rest. The capsule is let evolve and oscillates before reaching the

circular equilibrium shape. The frequency and damping rate of oscillations are extracted

from the temporal evolution of the markers’ position. First periods are not considered,

in order not to spoil the results with effects of the initial conditions. It is important to

stress that, in these computations, the full Navier–Stokes equations are solved and the

membrane actually oscillates around the equilibrium shape. The full non-linear problem

(fluid and membrane) is addressed in the YALES2BIO simulations.

Values of the angular frequency ω∗ are displayed in table 2. Figure 8 displays the

dependence of the velocity field on the radial variable, for both the radial and the az-

imuthal component, in the three situations already mentioned and at a passage time

through the circle (corresponding to figure 6). First, the comparison between the full

numerical approach and the small-perturbation analysis developed in this paper shows

the quality of the results. Excellent agreement is obtained between the two completely

different approaches. Note that YALES2BIO solves the full Navier-Stokes equations,

including the non-linear term. The agreement of the results with the present analysis,
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which starts from the unsteady Stokes equations, confirms that the non-linear term is

unimportant in the cases considered. Figure 8 enables to quantify effects already visible

in figure 6. In particular, it shows how the velocity decreases more rapidly away from

the membrane when n increases. A comparison between the first and last row show

that, by increasing viscosity, velocity gradients decrease and azimuthal velocity extrema

are reached further away from the membrane. The right panels also display the radial

derivative of uθ, whose jump makes ∂uθ/∂r∗ reach higher values outside the capsule than

inside over a layer whose size increases with ν∗.

5. Discussion

In this section we compare our results to similar cases already studied in the literature,

and we propose a physical model to interpret them.

5.1. Droplets

A first comparison can be carried out with the case of droplet oscillations. Kelvin (1890)

and Rayleigh (1896) analysed this problem in the presence of a three-dimensional in-

viscid/potential/irrotational flow, for which no damping occurs, in the specific cases of

cavities or gas bubbles in a liquid or of liquid drops in vacuum. Lamb (1932); Chan-

drasekhar (1961); Miller & Scriven (1968) and Padrino et al. (2008) later removed these

limitations successively. Prosperetti (1980b) noticed the presence of a full continuous

spectrum of complex frequencies — namely, purely-imaginary ones, corresponding to a

pure damping — besides the classical “isolated” solution in the complex plane. Even if

the latter is the only relevant to us, because endowed with non-zero real and imaginary

parts, through our numerical procedure to solve (3.11–3.13) we also find a hint of the

existence of a set of several imaginary solutions, which is probably not continuous due

to the presence of the external wall but which confirms the agreement with the litera-
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Case #0: n = 2 ; ν∗ = 0.001 ; R∗ = 0.5
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Case #1: n = 3 ; ν∗ = 0.001 ; R∗ = 0.5
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Case #2: n = 2 ; ν∗ = 0.01 ; R∗ = 0.5
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Figure 8. Radial dependence of one component of the fluid velocity, captured at one passage

time of the membrane through the reference circle, from the analytical approach ( ) and from

numerical simulations ( ). The location of the membrane is shown with a vertical dotted line.

Left panels show the radial velocity at θ = 0 (where uθ is analytically zero), right panels show

the azimuthal velocity at θ = π/2n (where ur is analytically zero). The radial derivative of uθ

obtained with the analytical approach is superimposed on the right panels ( ). Plotted are

the three cases of table 2.
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ture even for a different situation. Prosperetti (1980a) also analysed the oscillations of

bubbles and drops in terms of the initial-value problem, which as already stated is not

our aim here. Theoretical and experimental results on the role of surfactants were found

by Lu & Apfel (1991) and Abi Chebel et al. (2012). Surfactant-coated bubbles were also

investigated in Kropinski & Lushi (2011).

From the aforementioned references, a general expression for the oscillation angular fre-

quency in 3-D inviscid flows is

Re(ω) =

{

(n− 1)n(n+ 1)(n+ 2)ζ

R3[nρext + (n+ 1)ρint]

}1/2

, (5.1)

while for 2-D one gets

Re(ω) =

[

(n− 1)n(n+ 1)ζ

R3(ρext + ρint)

]1/2

, (5.2)

There, ζ is the surface tension (equivalent to our E(R−R0)/R0), and the fluids external

and internal to the membrane may have any mass densities (ρext and ρint, respectively).

Therefore, in our notation, (5.2) becomes:

Re(ω∗) =

√

(n− 1)n(n+ 1)

2
. (5.3)

Cumbersome formulae also exist in literature (Lamb, 1932; Miller & Scriven, 1968) for

the damping rate Im(ω) of droplets or bubbles, or for fluids of very high or low viscosities.

In our formalism, a droplet (in another liquid of the same density) can be thought of

as a membrane with uniform surface tension, which amounts to neglecting the angle-

dependent term in (2.9) (and thus to pose χ = χ̄ in (2.10)). As a consequence, equation

(3.11) and constraint (3.13) keep the same form, but the interfacial jump of the second

derivative is now given no longer by (3.12) but rather by:

φ(2)− − φ(2)+ = 0 . (5.4)
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Figure 9. Same as in the left panel of figure 2 but with the imposition of constraint (5.4) for

droplets (+). For comparison, also the case of membranes with the usual constraint (3.12) is

plotted (▽). (The difference is almost undistinguishable on this scale, but for the modes n = 2, 3

a small discrepancy can be noticed from the forthcoming figure 11.) The dashed line represents

the inviscid prediction from (5.3) which turns out to be accurate, as confirmed by the fact that

the ratio plotted in the insert approximately equals 1. The reduced viscosity is ν∗ = 0.001.

In figure 9 we show the (real part of) the angular frequency as a function of n if constraint

(5.4) is imposed, together with the inviscid prediction from (5.3). The reduced viscosity

is ν∗ = 0.001. The ratio Re(ω∗)/[(n− 1)n(n+ 1)/2]1/2, depicted in the insert of figure 9,

is shown to be almost constant (≃ 1), which proves that prediction (5.3) is excellent.

5.2. Radial transport

It is also interesting to investigate what happens when the membrane can slip with

respect to the fluid, and the latter transports the former only in the radial direction. In

this case, the appropriate expression for the elongation is no more the dynamical one

(2.9) but rather a purely-geometric one

χ(θ, t) =
R(θ, t) −R0

R0
=
R−R0

R0
+

∆(θ, t)

R0
, (5.5)
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which does not make the fluid velocity appear explicitly — differently from (2.12). The

consequence of this modification in the forcing terms (2.5) is once again encoded in a

change of the second-derivative jump, from (3.12) to

φ(2)− − φ(2)+ =
in2

ω∗ν∗(1 −R∗)
φ(1) , (5.6)

while (3.11) and (3.13) maintain the same form. (The consequent results will be described

in figure 10.) We can assert that, with respect to a purely-radial slippery transport, the

mechanism of tangential friction and transport increases the degree of homogenization of

the membrane elongation or tension, towards the limiting case of perfect homogenization

represented by droplets.

We can now propose a physical model to interpret our results, based on the concepts

of entrained fluid and vibrating string. Keeping somehow in mind the phenomenology

of fluid–structure interaction problems, we can think that the membrane entrains some

fluid during its movement, because mass conservation (or, equivalently, the impossibil-

ity of creating vacuum pockets) forces some fluid to follow the membrane in its radial

movement. This explains why oscillations can be observed. Indeed, a deformed massless

membrane in vacuum would asymptotically (i.e., with a vanishing final velocity) reach its

equilibrium shape without overpassing it, and the same would hold in a fluid described

by the pure Stokes equation. However, even in the absence of the non-linear advective

contribution from the full Navier–Stokes equation, the presence of the time derivative

represents a fluid inertial term which justifies the observed multiple overpassing. The ef-

fective inertia of the membrane can thus be quantified by investigating how much fluid is

carried per unit membrane surface (here, length), i.e. by finding its equivalent thickness.

It is well known that a rectilinear open string under vibration has oscillation angular fre-

quency Ω and tension (per unit length in the third invariant direction z, perpendicular
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to the oscillation plane) T given by

Ω =
n

R

√

T

M
, T = Eχ̄ , (5.7)

where M is the mass per unit string arclength and per unit length in z. Now, this would

usually be given by the mass of a solid material string in vacuum; but here the key point

is that, due to the massless membrane, this mass is exclusively represented by the fluid,

so we can express it in terms of an equivalent fluid thickness d as:

M = ρd . (5.8)

Inverting (5.8), exploiting (5.7) and keeping into account that χ̄ = E(R − R0)/R0 for a

quasi-circular membrane, we obtain:

d =
M

ρ
=
E

ρ

R−R0

R0

( n

RΩ

)2

. (5.9)

Equation (5.9) allows us to empirically find an effective thickness for each case we simulate

numerically, by substituting the outcome Re(ω) in place of Ω. For the cases of purely-

radial transport (5.6), our guess is an approximately linear relation between d and the

wavelength λ = 2πR/n. Indeed, if one defines this proportionality factor as α = d/λ,

replacing this empirical relation into (5.9) and nondimensionalising, one gets

Re(ω∗) =

√

n3

2πα
= βn3/2 , (5.10)

where β = (2πα)−1/2. The insert of figure 10 shows that our scheme predicts that the

limiting value of Re(ω∗)/n
3/2 is β ≃ 0.7, and such a value is used in figure 10 to reproduce

the fit (5.10). As a consequence, d/λ = α = 1/2πβ2 ≃ 0.3.

Here, two comments are in order. First, such an approximation looks weaker at very

small n. Our explanation lies in the observation that (5.7) is valid for a rectilinear open

string, for which there is an exact symmetry between “up” and “down”. For our circular

closed membrane, this is approximately true for a sufficiently large n, where the wave
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Figure 10. Same as in the left panel of figure 2 but with the imposition of constraint (5.6)

for radial transport (+). For comparison, also the case of complete transport with the usual

constraint (3.12) is plotted (▽). (The difference is very small on this scale, but for the modes

n = 2, 3 a definite discrepancy can be noticed from the forthcoming figure 11.) The dashed line

represents the prediction from our model (5.10), where the coefficient β = 0.7 has been fitted

from the ratio plotted in the insert. The reduced viscosity is ν∗ = 0.001.

length is smaller than the radius, but clearly not for small n because there curvature

effects become relevant and a net asymmetry arises between “inside” and “outside”.

Secondly, for the general case of complete transport (3.12), the value of β tends to ≃ 0.7

from below — rather than from above — at large n, so one may think that in this latter

asymptotics the slippery and complete cases tend to coincide.

5.3. Comparison between different schemes

The results for ω∗ corresponding to imposing (3.12) — with its numerical counterpart

from YALES2BIO — or (5.4) or (5.6) are plotted in figure 11, for three sets of parameters:

our reference case, a case with different n, and a case with increased ν∗. The full CFD

approach turns out to be in excellent agreement with the present analytical point of

view. From the larger spreading of the grey symbols we deduce that, when the reduced

viscosity is higher, the role of the interface conditions is more relevant, in the sense that
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Figure 11. Location of the solutions in the complex ω∗ plane for the reference case #0 (open

symbols), together with cases #1 (filled symbols) and #2 (grey symbols). Squares represent

the usual calculations with constraint (3.12), and diamonds their numerical counterparts from

YALES2BIO; circles represent droplets (constraint (5.4)); triangles represent purely-radial trans-

port with slippery membrane (constraint (5.6)).

the cases of droplets and of purely-radial transport become definitely separated from the

original capsule one. On the contrary, filled symbols are as spread out as open ones, which

means that the importance of the interface conditions does not change when increasing

the mode index from 2 to 3.

In particular, it is interesting to investigate the ratio between the (absolute value

of the) imaginary part and the real one, and its behaviour with the reduced viscosity.

Figure 12 shows that a power law with exponent 0.55 and unit prefactor is an excellent

approximation of all three schemes — membrane, droplet and radial transport. This

implies that, once an effective inverse time scale is introduced as a reference unit via Re(ω)

and/or expressions (5.3,5.10), the damping rate in this unit is of course a growing function

of ν∗, but is almost independent of the implemented physical scheme. In other words,

at fixed reduced viscosity, the effects of the interfacial boundary layer look negligible to

compute Im(ω∗) in the aforementioned rescaled unit.
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Figure 12. Ratio between the (opposite of the) imaginary part and the real part of the complex

frequency plotted in figure 5. Squares, circles and triangles have the same meaning as in figure

11, while the dashed line represents the fit |Im(ω∗)|/Re(ω∗) = ν0.55
∗

.

6. Conclusions and perspectives

We have investigated the damped oscillations of a massless elastic membrane immersed

in a two-dimensional viscous incompressible fluid. By introducing a normal-mode de-

composition of the stream function, we have analytically obtained a fourth-order linear

ordinary differential equation. Such an equation possesses non-trivial solutions only for

a subset of complex frequencies, and namely for a unique value of ω with non-zero both

real (oscillation angular frequency) and imaginary (damping rate) parts. By means of an

appropriate nondimensionalisation of the problem, the latter two quantities have been

shown to depend on the oscillation mode, on the reduced viscosity and on the pre-inflation

ratio. A detailed numerical study of these behaviours has been performed, as well as an

(excellent) comparison with the results of a fully-computational procedure we have de-

veloped using the YALES2BIO code, in terms of both the complex-valued eigenvalues ω

and the corresponding eigenvectors — i.e. the spatial structure of the induced fluid flow.

An interesting feature of our approach is that it unifies the case of an elastic capsule
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with those of a droplet or of a slippery membrane, in the sense that simply turning on or

off some parameters in the equations we have been able to reproduce the corresponding

results from the scientific literature or from the simple physical model we have proposed.

The present work is also the first, to the best knowledge of its authors, to provide

semi-analytical results in the case of damped oscillations of a two-dimensional capsule

closed by an elastic membrane, though it has proven to be a popular configuration in

quality assessment of numerical methods for computing the dynamics of capsules. It is

anticipated that our results could be used as a quantitative validation for future numerical

methods.

Among the perspectives, we would like to mention the possibility of introducing an

external shear flow or a background velocity around the membrane, rather than the pres-

ence of a circular solid wall. Also, it would be interesting to consider small perturbations

of non-circular geometries, especially in the presence of inextensible membranes (Veera-

paneni et al., 2011). Finally, in the framework of fluid–structure interaction and energy

harvesting, a connection possibly arises with the study of 2-D hinged flapping filaments

(??), where spontaneous symmetry-breaking in the oscillations induces non-trivial effects

on drag and lift.

We thank Etienne Gibaud, Vanessa Lleras, Daniele di Pietro, Matthieu Alfaro and

Rémi Carles for useful discussions and suggestions. We acknowledge financial sup-

port from LabEx NUMEV (ANR-10-LABX-20), ANR FORCE (ANR-11-JS09-0011) and

Dat@Diag (OSEO).

Appendix A. Local instantaneous elongation of the membrane

The membrane elongation is defined as

χ(θ, t) =
L(θ, t) − L0

L0
. (A 1)
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letter definition description

A matrix in appendix C

a, b, c Boolean indicators in appendix C

d equivalent fluid thickness for vibrating string

E membrane thickness times Young modulus (constant)

êr radial unit vector

êθ azimuthal unit vector

ERe relative error for real part in grid convergence (4.2)

EIm relative error for imaginary part in grid convergence

f (r, θ, t) line force per unit volume exerted by membrane on fluid

fr(r, θ, t) radial component of f

fθ(r, θ, t) azimuthal component of f

g(n, ν∗, R∗) Im(ω∗) damping rate of membrane oscillation

h(n, ν∗, R∗) Re(ω∗) angular frequency of membrane oscillation

K k − 1

k matrix row index in appendix C

L(θ, t) local instantaneous length of infinitesimal membrane arc

L0 constant value of L in deflated state

M number of total discretisation points in radial direction

m number of discretisation points in internal region

M mass (per unit arclength and z) of vibrating string

N̂ unit vector inward normal to membrane

n oscillation mode index

p(r, θ, t) fluid pressure

q △r/R

R radius of reference circle (inflated membrane at rest)

R0 radius of the unstressed circular membrane

R∗ R0/R inverse of inflation ratio

r space variable

r radial coordinate

r∗ r/R nondimensionalised radial coordinate

R(θ, t) local instantaneous membrane location

s curvilinear abscissa

T
p

ρR3R0/E(R−R0) membrane characteristic time

t time variable
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symbol definition description

α d/λ

β 1/
√

2πα

Γ(θ, t) local instantaneous membrane curvature

γn, γ amplitude of χ̃ in mode n

∆(θ, t) R(θ, t) −R local instantaneous membrane departure from circle

△r W/(M − 1) grid spacing in the radial direction

θ azimuthal angle

λ 2πR/n wavelength

µ ρν constant fluid dynamic viscosity

ν constant fluid kinematic viscosity

ν∗ νT/R2 reduced viscosity

ρ constant fluid mass density

σφ(r) arctan[−Im(φ)/Re(φ)]|r phase shift of stream function amplitude

σξ arctan[−Im(ξ)/Re(ξ)] phase shift of membrane excess radius amplitude

σω arctan[−Im(ω)/Re(ω)] phase shift of complex angular frequency

τ̂ unit vector counterclockwise tangential to membrane

φn(r), φ(r) amplitude of ψ in mode n

χ(θ, t) local instantaneous membrane elongation

χ̄ constant mean membrane elongation (averaged on θ)

χ̃(θ, t) local instantaneous fluctuation of membrane elongation

ψ(r, θ, t) fluid stream function

ξn, ξ amplitude of ∆ in mode n

Ω oscillation angular frequency of vibrating string

ωn, ω complex angular frequency in mode n

ω∗ ωT nondimensionalised complex angular frequency

ext relative to external fluid

int relative to internal fluid

WP computed at working point △r/R = 0.0001

′ ∂/∂θ angular derivative

˙ derivative with respect to argument

(l) ∂l/∂rl l-th order radial derivative

+ limr→R+
limit of fluid quantity at interface from exterior

− limr→R− limit of fluid quantity at interface from interior
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To describe the membrane elongation, let us consider a material element of length L(t) =

||x − x†|| = ds, between a point x = (R + ∆(θ, t), θ) (in polar coordinates) and its

neighbour x† = x + τ̂ds. After an infinitesimal time dt, these two points are located

in x⋆ = x + u(x, t)dt and x⋆
† = x† + [u(x, t) + (x† − x) · ∇u(x, t)]dt, respectively,

from which one can easily obtain the new length L(t + dt). Using τ̂ = [(R + ∆)2 +

∆′2]−1/2 [∆′êr + (R+ ∆)êθ], after straightforward algebra, the length increment reads

L(t+ dt) − L(t) = dt ds







∆′ dur

dτ
+ (R+ ∆)

duθ

dτ
√

(R+ ∆)2 + ∆′2
+

(R + ∆)ur − ∆′uθ

(R+ ∆)2 + ∆′2






, (A 2)

where all velocities and their derivatives must be computed at (R+∆(θ, t), θ). Plugging

this result into (A 1) and eliminating L0, we get:

χ(t+ dt) − χ(t) =
L(t+ dt) − L0

L0
−
L(t) − L0

L0
=
L(t+ dt) − L(t)

L(t)/[χ(t) + 1]
(A 3)

=
dt [χ(t) + 1]

(R+ ∆)2 + ∆′2

[

∆′

(

∂ur

∂θ
− uθ

)

+ (R + ∆)

(

∂uθ

∂θ
+ ur

)]

.

Replacing the membrane elongation by its decomposition into a mean part and a fluc-

tuating part χ̃ into (A 3), on the left-hand side only the fluctuating part survives, and

at leading order on the right-hand side we can neglect both the fluctuating part in χ

and the quadratically-small terms with ∆ and ∆′ (remember that, in this approach, u

is a small quantity itself). For the same reason, dividing (A3) by dt, we can interpret

the material derivative dχ̃/dt as a temporal partial derivative ∂χ̃/∂t, because of the

quadratic smallness of the convective contribution; and we can also consider all velocities

and their derivatives as computed at (R, θ). We are left with:

∂χ̃(θ, t)

∂t
=
χ̄+ 1

R

[

∂uθ

∂θ
+ ur

]

(R, θ, t) . (A 4)

Appendix B. Details of the analytical procedure

In this appendix we show in more details the calculations leading to equation (3.6).
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Plugging (3.2) into (3.1), we get:

r4
∂3ψ

∂r2∂t
+ r2

∂3ψ

∂θ2∂t
+ r3

∂2ψ

∂r∂t
= ν

(

r4
∂4ψ

∂r4
+ 2r2

∂4ψ

∂r2∂θ2
+
∂4ψ

∂θ4
+ 2r3

∂3ψ

∂r3

−2r
∂3ψ

∂r∂θ2
− r2

∂2ψ

∂r2
+ 4

∂2ψ

∂θ2
+ r

∂ψ

∂r

)

+
E

ρR0

{[

∆′

(

1 −
R0

R

)

(

1 −
r

R

)

−
rR0

R
χ′

]

δ̇(r −R)

+

[

∆′′′

R

(

1 −
R0

R

)

− 2
R0

R
χ′

]

δ(r −R)

}

r3 . (B 1)

Equation (B 1) is accompanied by an appropriate rewriting of the continuity and bound-

ary conditions, and can be closed thanks to two relations expressing the geometric dis-

placement ∆ and the dynamical elongation χ as functions of the fluid quantity ψ(R), as

we are going to show.

Substituting the normal mode decomposition of ψ, ∆ and χ̃ (3.3–3.5) into (B 1), we are

left with an ordinary differential equation for φ for each value of n, namely a fourth-order

linear homogeneous one:

φ(4) +
2

r
φ(3) +

(

−
2n2 + 1

r2
+

iω

ν

)

φ(2)

+

(

2n2 + 1

r3
+

iω

νr

)

φ(1) +

(

n4 − 4n2

r4
−

iωn2

νr2

)

φ

+
inE

µR0

{[(

1 −
R0

R

)

(

1 −
r

R

)

ξ −
rR0

R
γ

]

δ̇(r −R)

−
1

R

[

n2

(

1 −
R0

R

)

ξ + 2R0γ

]

δ(r −R)

}

= 0 . (B 2)

This must be supplemented with a proper reformulation of the constraints on velocity

at the membrane (2.13) and of the boundary conditions (2.14) in terms of the stream

function and then of φ. The boundary conditions at the origin and at the (circular) wall

now read

φ

r
inei(nθ−ωt)

∣

∣

∣

∣

r=0

= 0 =

(

φ(1)

r
−
φ

r2

)

inei(nθ−ωt)

∣

∣

∣

∣

r=0

,

φ

r
inei(nθ−ωt)

∣

∣

∣

∣

r=W

= 0 = −φ(1)ei(nθ−ωt)
∣

∣

∣

r=W
,
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and give rise to

φ|r=0 = 0 = φ|r=W , φ(1)|r=0 = 0 = φ(1)|r=W . (B 3)

Let us remind that, from the normal-mode decomposition of ∆(θ, t) and the following

discussion, the membrane deformation is given by a superposition of modes interfering

into a stationary wave:

∆(θ, t) =
∑

n∈N

{

ξn

[

ei(nθ−ωnt) + ei(−nθ−ωnt)
]

+ ξ⋆
n

[

ei(−nθ+ω⋆

n
t) + ei(nθ+ω⋆

n
t)

]}

= 4
∑

n∈N

cos(nθ) [Re(ξn) cos(Re(ωn)t) + Im(ξn) sin(Re(ωn)t)] eIm(ωn)t

= 4
∑

n∈N

|ξn| cos(nθ) cos[Re(ωn)t+ σξ]e
Im(ωn)t , (B 4)

which defines the phase shift σξ mentioned in table 2 and in section 4.3.

Then we have to remember that the membrane moves with the same local and instanta-

neous value of the fluid velocity. In our Eulerian formalism, the full Lagrangian motion

must be projected on the radial direction, i.e.:

∂R(θ, t)

∂t
= ur(R, θ, t) =⇒

∂∆(θ, t)

∂t
=

1

R

∂ψ(R, θ, t)

∂θ

=⇒ −i

+∞
∑

n=−∞

ωnξnei(nθ−ωnt) =
i

R

+∞
∑

n=−∞

nφn(R)ei(nθ−ωnt)

=⇒ ξn = −
n

Rωn
φn(R) . (B 5)

Analogously, from (A4), for the elongation we have:

∂χ̃(θ, t)

∂t
=

1

R0R

(

∂

∂θ
−R

∂2

∂r∂θ

)

ψ

∣

∣

∣

∣

(R,θ,t)

=⇒ −i
∑

n

ωnγnei(nθ−ωnt) =
i

R0R

∑

n

n [φn −Rφ(1)
n ]

∣

∣

∣

R
ei(nθ−ωnt)

=⇒ γn = −
n

R0Rωn
[φn(R) −Rφ(1)

n (R)] . (B 6)
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Similarly to (B 4), the stream function modes interfere into a stationary form:

ψ(r, θ, t) =
∑

n∈N

{

φn(r)
[

−ei(nθ−ωnt) + ei(−nθ−ωnt)
]

+ φ⋆
n(r)

[

−ei(−nθ+ω⋆

n
t) + ei(nθ+ω⋆

n
t)

]}

= −4
∑

n∈N

sin(nθ) [Re(φn(r)) sin(Re(ωn)t) − Im(φn(r)) cos(Re(ωn)t)] eIm(ωn)t

= −4
∑

n∈N

|φn(r)| sin(nθ) sin[Re(ωn)t+ σφ(r)]eIm(ωn)t , (B 7)

where the phase shift σφ(r) from table 2 and section 4.3 must be computed at r = R.

Of course, consistently with (B 5), one would find the same result by time-differentiating

(B 4) and by defining σω = arctan[−Im(ωn)/Re(ωn)], with σφ(R) = σξ + σω.

Replacing (B 5–B6) into (B 2), we get the equation

φ(4)(r) +
2

r
φ(3)(r) +

(

−
2n2 + 1

r2
+

iω

ν

)

φ(2)(r)

+

(

2n2 + 1

r3
+

iω

νr

)

φ(1)(r) +

(

n4 − 4n2

r4
−

iωn2

νr2

)

φ(r)

+
in2E

µR0Rω

{[

1

R

[

n2

(

1 −
R0

R

)

+ 2

]

φ(R) − 2φ(1)(R)

]

δ(r −R)

r

−

[(

1 −
R0

R
− 2

r

R
+
rR0

R2

)

φ(R) + rφ(1)(R)

]

δ̇(r −R)

r

}

= 0 (B 8)

(closed in φ), which can be either translated into the system (3.6,3.9–3.10), or nondi-

mensionalised into:

φ(4)(r∗) +
2

r∗
φ(3)(r∗) +

(

−
2n2 + 1

r2∗
+

iω∗

ν∗

)

φ(2)(r∗)

+

(

2n2 + 1

r3∗
+

iω∗

ν∗r∗

)

φ(1)(r∗) +

(

n4 − 4n2

r4∗
−

iω∗n
2

ν∗r2∗

)

φ(r∗)

+
in2

ω∗ν∗(1 −R∗)r∗

{[

[

n2 (1 −R∗) + 2
]

φ(1) − 2φ(1)(1)
]

δ(r∗ − 1)

−
[

(1 −R∗ − 2r∗ + r∗R∗)φ(1) + r∗φ
(1)(1)

]

δ̇(r∗ − 1)
}

= 0 . (B 9)

Equation (B9) then gives rise to (3.11) in both fluid domains, and to constraints (3.12–

3.13). These latter are obtained via a single or double integration from r∗ = 1− to 1+.

Notice in particular the relation

lim
ǫ→0

∫ 1+ǫ

1−ǫ

dr†

∫ r†

1−ǫ

dr∗
1

r∗
δ̇(r∗ − 1) = 1 .
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Appendix C. Details of the numerical procedure

The numerical procedure adopted to find ω consists in discretising (3.6) on the one-

dimensional radial domain, and in interpreting it in terms of the discretised function

φ[k] ≡ φ|r=rk
. We discretise both the internal (0 < r < R) and the external (R < r < W )

regions into uniform intervals of constant size △r (thus rk = (k− 1)r), chosen such that

m−1 = R/△r and M−1 = W/△r are integers. The leftmost node k = 1 is placed at the

origin, the node k = m is placed on the circle of radius rm = R which approximates the

unperturbed membrane, and the rightmost node k = M is placed just on the external

wall. There are thus m− 1 intervals in the internal region, M −m in the external one,

and M − 1 in total, so that M is the dimension of the vector φ[k]. Equation (3.11) is

then evaluated at each node, using centred finite-difference schemes. The boundary and

interface nodes k = 1,m,M must be treated separately, because the discrete derivatives

have a different form there. The upshot is the linear homogeneous system

M
∑

l=1

Aklφ[l] = 0 , (C 1)

which possesses a non-trivial solution only if the matrix determinant is zero. The equation

det A = 0 has been solved for ω numerically by means of a MATLAB code, and the

relevant solution is the one with the largest imaginary part (viz. the least-negative one,

all solutions being below the real axis), i.e. with the smallest damping rate or the largest

decay time. More precisely, in the framework of sparse matrices, we have plotted and

maximized the condition number (ratio of the largest to the smallest singular value) in

the complex ω plane.

The matrix Akl has been expressed in terms of the discrete derivatives used to replace

the function φ(r) with the vector φ[k]. Let us specify that at the nodes k = 1, 2,m −

1,m,m+ 1,M − 1,M we renounce to impose the differential equation, because we have
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to use the corresponding lines of the matrix to impose boundary and jump conditions.

Namely, at the interface the function is continuous by construction, and we use the lines

k = m− 1,m,m+ 1 to impose the continuity of the first derivative (3.8) and the jumps

of the second and third derivatives (3.9–3.10). From (3.7), the lines k = 1 and k = M

are used to impose the vanishing of the function, and similarly at k = 2 and k = M − 1

for the first derivative (the only exception being that, to obtain the free-slip cases in

figure 2, we use this latter line to impose constraint (4.1)). For the discrete derivatives

we use the standard formulae, centred whenever possible and suitably modified near the

boundaries, with an overall precision of O(△r2).

The first derivative is assumed

φ
(1)
[k] 7→ △r−1(φ[k+1] − φ[k−1]) ,

except at the nodes k = 1 and k = M where it is

φ
(1)+
[k] 7→ (2△r)−1(−φ[k+2] + 4φ[k+1] − 3φ[k])

and

φ
(1)−
[k] 7→ (2△r)−1(3φ[k] − 4φ[k−1] + φ[k−2])

respectively (both the latter expressions are also used at k = m to impose the continuity

constraint).

The second derivative is assumed

φ
(2)
[k] 7→ △r−2(φ[k+1] − 2φ[k] + φ[k−1]) ,

except at the node k = m (and also k = M in the case of free-slip wall conditions) where

the two expressions

φ
(2)+
[k] 7→ △r−2(−φ[k+3] + 4φ[k+2] − 5φ[k+1] + 2φ[k])
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and

φ
(2)−
[k] 7→ △r−2(2φ[k] − 5φ[k−1] + 4φ[k−2] − φ[k−3])

are used to impose the jump constraint.

The third derivative is assumed

φ
(3)
[k] 7→ 2−1△r−3(φ[k+2] − 2φ[k+1] + 2φ[k−1] − φ[k−2]) ,

except at the node k = m where the two expressions

φ
(3)+
[k] 7→ 2−1△r−3(−3φ[k+4] + 14φ[k+3] − 24φ[k+2] + 18φ[k+1] − 5φ[k])

and

φ
(3)−
[k] 7→ 2−1△r−3(5φ[k] − 18φ[k−1] + 24φ[k−2] − 14φ[k−3] + 3φ[k−4])

hold respectively.

The fourth derivative is assumed

φ
(4)
[k] 7→ △r−4(φ[k+2] − 4φ[k+1] + 6φ[k] − 4φ[k−1] + φ[k−2]) .

In the end, here are the non-zero terms of the sparse matrix A:

• row k = 1: A1,1 = 1;

• row k = 2: A2,1 = −3 , A2,2 = 4 , A2,3 = −1;

• rows 3 ≤ k ≤ m − 2 and m + 2 ≤ k ≤ M − 2: Ak,k−2 = 1 − 1/K , Ak,k−1 =

−4+2/K− (2n2 +1)/K2− (2n2 +1)/2K3 +iω∗q
2/ν∗− iω∗q

2/2ν∗K , Ak,k = 6+2(2n2 +

1)/K2 + (n4 − 4n2)/K4 − 2iω∗q
2/ν∗ − iω∗n

2q2/ν∗K
2 , Ak,k+1 = −4 − 2/K − (2n2 +

1)/K2 + (2n2 + 1)/2K3 + iω∗q
2/ν∗ + iω∗q

2/2ν∗K , Ak,k+2 = 1 + 1/K;

• row k = m − 1: Am−1,m−3 = −Am−1,m+3 = 1 , Am−1,m−2 = −Am−1,m+2 = −4 ,

Am−1,m−1 = −Am−1,m+1 = 5 + in2abq/2ν∗ω∗(1−R∗) , Am−1,m = in2aq2/ν∗ω∗(1−R∗);

• row k = m: Am,m−2 = Am,m+2 = 1 , Am,m−1 = Am,m+1 = −4 , Am,m = 6;

• row k = m + 1: Am+1,m−4 = Am+1,m+4 = 3/2 , Am+1,m−3 = Am−1,m+3 = −7 ,
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Am+1,m−2 = Am+1,m+2 = 12 , Am+1,m−1 = Am+1,m+1 = −9 , Am+1,m = 5 − in2(n2 −

1)q3/ν∗ω∗;

• row k = M − 1: AM−1,M−3 = −(1− c) , AM−1,M−2 = c+ [4− 1/2(M − 1)](1− c) ,

AM−1,M−1 = −4c+ [−5 + 4/2(M − 1)](1− c) , AM−1,M = 3c+ [2− 3/2(M − 1)](1− c);

• row k = M : AM,M = 1.

Here, q = △r/R, K = k − 1, and a, b, c are Boolean indicators. Namely, a = 0 only for

droplets (section 5.1) and = 1 otherwise; b = 0 only in the case of purely-radial transport

(section 5.2) and = 1 otherwise; c = 0 only in situations of free-slip external wall (part

of section 4.1) and = 1 otherwise.
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