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Numerical simulations supported by previously published experimental data are used
to compare the impact of the internal fluid viscosity and the membrane viscosity on a
tank-treading red blood cell. The method used is based on a continuum framework both
for the fluid and the membrane, their interaction being ensured thanks to the immersed
boundary method. The finite-strain model implemented to account for membrane viscosity
assumes a free energy form that leads to an additive decomposition of the equilibrium
and nonequilibrium stresses. It also assumes that the stress tensor can be separated into a
deviatoric part and a hydrostatic part, which are independent. Only the deviatoric part is
accounted for in this study. Both the viscosities of the cytoplasm and of the membrane yield
a decrease of the tank-treading frequency, with only moderate changes in the deformation
of the red blood cell. However, it is shown that the values of tank-treading frequency from
the literature cannot be explained by the internal fluid viscosity only. On the contrary,
adding the membrane dissipation produces a good agreement with experimental results
when using acceptable values of the internal fluid and membrane viscosities. In addition,
this study proposes a direct inference of the value of the membrane viscosity as a function
of the shear rate from the comparison between simulations and experiments and confirms
experimental results that highlighted the shear-thinning behavior of the red blood cell
membrane.

DOI: 10.1103/PhysRevFluids.6.043602

I. INTRODUCTION

Red blood cells (RBCs) are the most common cells in blood. They are non-nucleated cells in
charge of carrying oxygen to the tissues. Oxygen is fixed by the RBCs thanks to the haemoglobin
contained in their cytoplasm, which is itself enclosed in a biological membrane. In humans, the
RBCs are biconcave disks of characteristic sizes about 8 μm in diameter and 2 μm in height.

To ensure the body oxygenation, RBCs have to circulate through narrow capillaries of only a
few micrometers in diameter. Moreover, in the spleen, they have to squeeze through submicrometer
openings much smaller than their size at rest. As a consequence, RBCs need to be able to change
their shape to adapt to the narrowest passages in the body. This ability is referred to as the
deformability of the RBCs. In fact, two elements are important to understand this property: (1) there
is an excess area of the RBC’s membrane with respect to the volume of the cell, which authorizes
changes of shape with mild deformation of the membrane, and (2) the membrane is a soft material
able to deform. Any alteration of these elements may result in an important decrease in the RBC
deformability [1]. Deformability is altered in different pathological conditions, which is sometimes
used as a biomarker for diseases such as malaria, sickle cell anemia, or diabetes [2].

The RBC membrane is composed of a lipid bilayer and a cytoskeleton. Mechanically, the lipids of
the bilayer may circulate, but the bilayer strongly resists any change of area: the lipid bilayer is thus
responsible for the resistance to area change of the membrane, but also to membrane bending [3].
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In this bilayer is anchored the cytoskeleton, a spectrin network that gives the elastic shear resistance
to the RBC membrane [4].

Resistances to shear, area changes, and bending are essential to define the RBC deformability.
However, when time-varying loadings are considered, the viscosity of the RBC becomes another
critical component of deformability. The viscosity of the cytoplasm has been demonstrated to
control the dynamics of the RBC under shear flow [5,6]. On the other hand, numerous experiments
have highlighted the importance of membrane viscosity in dynamic deformations [7–9].

Over recent decades, the numerical simulation of RBC dynamics has developed tremendously
[10–12]. If the elastic properties of the membrane are always accounted for, membrane viscosity is
very often neglected. Only a few studies include it [13–17], generally without a detailed study of its
effects. The absence of membrane viscosity is sometimes invoked as an explanation for insufficient
dissipation in the simulations, for instance to explain the overestimation of tank-treading frequencies
of RBCs under shear [18].

One reason why membrane viscosity has been neglected in so many theoretical works is
that other elements of the system may dissipate energy: the suspending fluid and the cytoplasm
[4,16,18,19]. Accounting for these dissipation sources may be sufficient to reproduce qualitative
trends [5,6]. Quantitative agreements may even be obtained in some cases: for instance, when the
suspending fluid is very viscous, the membrane dissipation may be small compared to external
dissipation, so that relaxation times in viscous fluids may be retrieved even neglecting membrane
viscosity [16]. However, when red blood cells are suspended in a fluid with low viscosity (such as
plasma or saline solutions), membrane viscosity controls the relaxation time [7,17]. The value of
membrane viscosity itself is not precisely known. Guglietta et al. have gathered values of membrane
viscosity from the literature: they vary from 5.0 × 10−5 to 100.0 × 10−5 cP m. In their recent
simulations, Guglietta et al. [17] used a membrane viscosity value of 31.8 × 10−5 cP m to reproduce
RBC relaxation times.

Experimentally, it is extremely difficult to separate different dissipation sources. In particular,
internal dissipation and membrane dissipation cannot be individually controlled in an experiment.
This confusion has been reinforced by some modeling works. Keller and Skalak have notably
developed a theoretical model for the dynamics of RBCs in shear flow [20], which has been extended
to more complex cases [19,21–24], in which internal viscosity and membrane viscosity act in the
exact same manner, the two being combined in an effective RBC viscosity. Membrane viscosity has
sometimes been used to account for the whole viscosity of the system. For example, Mancuso
and Ristenpart [25] fit experimental data of RBCs stretched in a sudden contraction to extract
the membrane viscosity of the RBC thanks to a model neglecting internal viscosity. Are internal
viscosity and membrane viscosity equivalent? Do they contribute in the same way to the dissipation
in the system? These questions are open, but numerical simulation of RBC dynamics can contribute
to answering them, as we show in this study.

To compare the effect of internal and membrane viscosities, a relevant configuration is that of
an RBC that is tank treading in a pure shear flow, which has already been extensively studied
experimentally [21,26,27] and numerically [18,28–33]. In a shear flow, when the suspending
medium is viscous enough and for high enough shear stresses, the membrane circulates around
the cell like the tread of a tank [20]. The RBC lengthens in the direction of the flow and adopts
an almost constant angle with respect to the flow direction [21]. Tank-treading results are generally
characterized in terms of RBC elongation, inclination angle, and tank-treading frequency, measured
experimentally by attaching a bead to the RBC membrane to track its circulation [34].

While simulations generally compare favorably with experiments in terms of elongation and
inclination, tank-treading frequencies are overestimated in the absence of membrane viscosity in the
model, as shown by Dodson and Dimitrakopoulos [18]. Because membrane viscosity contributes to
internal friction in the membrane, it always opposes to the load. Moreover, it adds a delay between
the load and the response. Implementation of an internal membrane dissipation is expected to slow
down tank-treading motion, thus decreasing the tank-treading frequencies.
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The purpose of this study is to compare the dissipative sources in an RBC and to study their
impact on the tank-treading behavior. Numerical simulations with and without membrane viscosity
were performed to systematically assess its effect. Because we assume membrane incompressibility,
we neglect area change viscosity [14,35] and only shear viscosity is accounted for in the membrane.
We first introduce the numerical method and how an existing RBC simulation framework has been
extended to account for membrane viscosity, with relevant validation. In this work, we build on
a classical framework for predicting the dynamics of capsules and red blood cells, based on the
immersed boundary method [36,37]. In this framework, we introduce the membrane viscoelasticity
following Yazdani and Bagchi [14] and more recent works [17,38]. However, for the sake of
completeness and clarity of our approach, the numerical implementation is presented in detail in
the next section. Then, the tank-treading configuration of interest is presented before detailing
the results, focusing on the comparison between internal viscosity and membrane viscosity. A
comparison with existing experimental results is also shown. Finally, experiments and simulation
results are combined to infer the effective value of membrane shear viscosity in this configuration
of tank-treading RBCs.

II. METHODOLOGY

A. Continuum modeling of membrane viscoelasticity

A common approach to model the membrane of an RBC suspended in a fluid is to assimilate
the full membrane as a single surface and give to this infinitely thin object similar mechanical
properties as the whole membrane. The membrane is thus represented as an interface between two
viscous fluids, with specific rheology linking its stress state to its deformation. Generally, stress
from deformation is obtained as the sum of several submodels accounting for different mechanical
properties of the membrane [11,13,18,19,28,30]. Here, we use and extend such a continuum
framework, in which an inviscid hyperelastic model accounts for the in-plane resistances in the
membrane, while a curvature resistance is implemented separately.

The finite-strain model implemented in this study to account for membrane viscosity is based on
Simo’s work [39] and assumes a free energy form that leads to an additive decomposition of the
equilibrium and nonequilibrium stresses. It also assumes that the stress tensor can be separated into
a deviatoric part and a hydrostatic part, which are independent. In this study, we will modify an
existing inviscid model by adding purely deviatoric viscosity.

Let us first start by describing the inviscid model. Here, the in-plane elastic resistances are
modeled using the Skalak hyperelastic law [40]. This law controls the membrane shear and area
change resistance. In the local strain eigenbasis, it is expressed as

σ11 = Gs

λ1λ2

{
λ2

1

(
λ2

1 − 1
) + C(λ1λ2)2[(λ1λ2)2 − 1]

}
,

σ22 = Gs

λ1λ2

{
λ2

2

(
λ2

2 − 1
) + C(λ1λ2)2[(λ1λ2)2 − 1]

}
,

σ12 = σ21 = 0, (1)

with σi j the components of the Cauchy stress tensor σ on the surface (in Pa m), λi the eigenvalues
of the transformation gradient tensor F expressed as F = ∂x(t )

∂x(0) , with x(t ) the current state and x(0)
the stress-free state. Gs is the Skalak shear modulus (in Pa m) and C is the ratio between the area
change modulus and the shear modulus. In this work, to ensure area incompressibility, a large value
of C is imposed, as is done classically for RBCs [33,41]. This leads to an almost incompressible
material, which justifies the choice of implementing membrane viscosity on the deviatoric part
of the membrane deformation only. Thus, in the viscoelastic model developed in this study, the
hydrostatic behavior of the membrane follows the Skalak hyperelastic law, whereas the deviatoric
part is viscoelastic. We now detail how the viscoelastic model is implemented.
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FIG. 1. Rheological model of the behavior law used in this study. The curved springs represent the Skalak
hyperelastic law and the straight spring represents the Hooke law. (a) Viscoelastic rheological model for the
deviatoric part and (b) purely hyperelastic model for the hydrostatic part.

In the literature, the RBC viscoelasticity of the membrane is generally modeled with the Kelvin-
Voigt model [8]. However, because of its versatility and because some experimental studies point
towards more complex membrane behaviors [9], we choose to implement the Zener rheological
model [also named standard linear solid (SLS)], as sketched in Fig. 1. This model has also been
shown to increase the stability of the numerical methods compared to a direct implementation of
the Kelvin-Voigt model [14,42]. It consists of a Maxwell model in parallel with the purely elastic
model so that the stress of the two branches is added during deformation. The elastic law set in the
branch of the Maxwell branch is the Hooke law, expressed as

σ11 = Gs

1 − νs

[
λ2

1 − 1 + νs
(
λ2

2 − 1
)]

,

σ22 = Gs

1 − νs

[
λ2

2 − 1 + νs
(
λ2

1 − 1
)]

,

σ12 = σ21 = 0. (2)

As a summary, the purely elastic branch follows a hyperelastic Skalak law, while in the Maxwell
branch, the spring follows a Hooke law and the damper a linear viscosity law. This makes the model
behave like a pure Skalak material once fully relaxed, thus ensuring that the hyperelastic properties
of the model, for instance assessed by static techniques [43,44] and validated independently [45],
are conserved. However, for transient situations, the membrane will behave like the addition of
the branches. The way this model is discretized and implemented actually depends on the general
algorithm used to predict the dynamics of RBCs. This existing algorithm is first detailed, before
presenting its modifications to include membrane viscosity.

B. General fluid-structure interaction algorithm

The numerical framework used in this work is the YALES2BIO solver [46], dedicated to the
simulation of RBC dynamics under flow and already used in several publications in recent years
[5,6,19,24,45,47]. It is based on a continuum framework both for the fluid and the membrane. The
membrane is supposed to be massless and may be viewed as an interface with specific surface
tension that depends on its state of deformation. The fluid and the membrane are coupled by the
immersed boundary method [37]. This technique enables the communication between two meshes,
one for the fluid and one for the membrane. Inside the temporal loop, the main YALES2BIO algorithm
can be reduced to four main steps:

(1) For a given state of deformation of the membrane and using the material behavior law, the
membrane stress field is computed. Nodal forces are then calculated under the massless membrane
assumption.

(2) The forces at the nodes are regularized to the fluid mesh to act as a source term for the
Navier-Stokes equations, representing the action of the membrane on the fluid.
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(3) The next step consists in explicitly solving the incompressible Navier-Stokes equations in
a finite-volume framework with the membrane forcing, thanks to a pressure projection technique
[48–50] for imposing fluid incompressibility. This results in an updated fluid velocity field.

(4) The fluid velocity is then interpolated to the membrane vertices, with the assumption that the
membrane is displaced at the same velocity as the local fluid velocity. The membrane position is then
updated with an explicit Euler scheme, which provides the deformation state for the next iteration.
A volume conservation algorithm is used to guarantee that the volume inside the membrane does not
change during the simulation [51,52]. In case of a viscosity contrast between the cytoplasm and the
suspending fluid, the fluid viscosity is then updated from the new membrane position, with different
values inside and outside the membrane.

This algorithm is now classical and has been employed by many authors, such as in
Refs. [12,14,17,28,33,36,53,54]. Its implementation in YALES2BIO has been presented and validated
in several publications [5,45,51,52] in cases without membrane viscosity. To account for membrane
viscosity, the only difference lies in the first step, i.e., the calculation of membrane forces, which is
now detailed.

C. From in-plane hyperelastic forces to viscoelastic forces

The calculation of the purely hyperelastic RBC membrane forces is based on a first-order finite-
element framework that has often been used in RBC modeling [55]. It has already been validated
in numerous cases [24,51,52]. In order to compute forces applied on the fluid from a hyperelastic
membrane, λi, the eigenvalues of the transformation gradient are first calculated for the membrane
elements. Then, membrane stress is computed thanks to Eq. (1). The stress is then used to compute
nodal forces using the virtual work principle as in Shrivastava and Tang’s work [56]. Details about
the methodology to obtain nodal forces are provided in the Appendix.

The steps for implementation of viscoelastic behavior are similar, except that membrane viscous
stress is a priori a function of the whole history of deformation of the membrane, so that some
preliminary work is needed to express it as a function of the last time step only. Because only shear
viscosity is considered here, the expression of the membrane viscoelastic behavior can be written as

σ(t ) = σd + σ h(t )I =
∫ t

0
2G(t − s)ε̇d ds + σ h(t )I, (3)

with t the time, σ the Cauchy stress tensor, G(t − s) the relaxation modulus of the viscoelastic
model (in Pa m) at time t − s, ε̇d the time derivative of the deviatoric part of the strain tensor ε, σ h

the mean normal of the Cauchy stress tensor, calculated as σ h = tr(σ )
DIM(σ ) , and I the identity matrix.

The first hypothesis is that we are assuming additivity between the Hooke spring and the viscous
damper (see Fig. 1). This leads to the following formulation of the relaxation modulus:

G(t ) = G∞ + GH e− t
tc , (4)

with G∞ the Skalak shear modulus from the pure hyperelastic branch (in Pa m), GH the Hooke
shear modulus from the viscoelastic branch (in Pa m), and tc the Maxwell characteristic time of the
viscoelastic branch computed as tc = η

GH
, with η the membrane viscosity (in Pa s m).

With the aforementioned hypotheses, Simo [39] obtained an expression for the Kirchhoff stress
tensor, τ = det(F )σ, with σ the Cauchy stress tensor and F the deformation gradient tensor. We
will thus keep the formulation with the Kirchhoff stress tensor until the end of the derivation, which
simplifies the reading and the comparison with the existing literature, where the Kirchhoff tensor is
classically used. Using integration by part in Eq. (3) enables one to apply the derivation in time on
the relaxation modulus,

τ(t ) = τd
0 (t ) + SY M

[∫ t

0

Ġ(s)

G0
F−1

t (t − s) · τd
0 (t − s) · Ft (t − s)ds

]
+ τ h(t )I, (5)
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with τd
0 the deviatoric part of the instantaneous Kirchhoff stress computed with G0 = G(0) =

G∞ + GH , and τ h(t ) the mean normal Kirchhoff stress. Finally, Ft (t − s) represents the defor-
mation gradient computed between time t and time t − s. Also called shifter, its expression is

Ft1 (t2) = ∂x(t2)

∂x(t1)
, (6)

with x(t ) the Lagrangian position of the solid particle at the time t . It is important to note that the
main role of the shifter is to enable the stress sum. Indeed, for finite strains, it makes no sense to
add stresses from different strain configurations. Shifters Ft (t − s) transport the stress at time t − s
to the time t , for every s value between 0 and t . Now, simply combining Eq. (4) with Eq. (5) leads
to

τ(t ) = τd
0 (t ) − τvisc(t ), (7)

with τvisc(t ) expressed as

τvisc(t ) = GH

tcG0
SY M

[∫ t

0
F−1

t (t − s) · τd
0 (t − s) · Ft (t − s)e− s

tc ds

]
. (8)

From this expression, we can see that an integration between t = 0 and t is needed to compute
the stress. The next step consists in modifying this expression to make it depend on times t and
t − �t only. To do so, Eq. (6) allows expressing Ft (t − s) as a function of Ft (t − �t ),

Ft (t − s) = Ft−�t (t − s) · Ft (t − �t ). (9)

Consequently, we also have

F−1
t (t − s) = F−1

t (t − �t ) · F−1
t−�t (t − s). (10)

By substituting Eq. (9) and Eq. (10) into Eq. (8), and by doing a variable change from s to s + �t ,
Eq. (8) can be split into two terms as follows:

τvisc(t ) = GH
tcG0

SY M
[
F−1

t (t−�t )·∫ 0
−�t F−1

t−�t (t−�t−s)·τd
0 (t−�t−s)·Ft−�t (t−�t−s)e− s+�t

tc ds·Ft (t−�t )
]

+ GH
tcG0

SY M
[
F−1

t (t−�t )·∫ t−�t
0 F−1

t−�t (t−�t−s)·τd
0 (t−�t−s)·Ft−�t (t−�t−s)e− s+�t

tc ds·Ft (t−�t )
]
. (11)

We can use Eq. (8) to identify the integral from 0 to t − �t as a known term depending on
τvisc(t − �t ), which results from the previous time step. To compute the final integral term, we will
assume that τd

0 varies linearly over one time step. Finally, we obtain the following expression that
can be implemented for the computation of τvisc(t ):

τvisc(t ) = α
GH

G0
τd

0 (t ) + β
GH

G0
τ̂d

0 (t − �t ) + τ̂d (t − �t ) × e− �t
tc , (12)

with ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tc = η

GH
,

α = 1 − tc
�t

(
1 − e− �t

tc

)
,

β = tc
�t (1 − e− �t

tc ) − e− �t
tc ,

τ̂d
0 (t − �t ) = SY M

[
F−1

t (t − �t ) · τd
0 (t − �t ) · Ft (t − �t )

]
,

τ̂d (t − �t ) = SY M
[
F−1

t (t − �t ) · τvisc(t − �t ) · Ft (t − �t )
]
.

(13)

Once the stress tensor is computed, we use the principle of virtual work [56] to compute the
associated nodal forces at the vertices of the element (see, also, the Appendix). The contribution
of one element to the nodal force �fn of one of its vertices n is

�fn(t ) = Velem(t )F0
−1(t )σ(t )�ϕn, (14)
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FIG. 2. Representation of a capsule under shear flow. (a) Undeformed capsule at t = 0; (b) deformed
capsule at t > 0 due to the shear flow, enabling the measurement of Dcaps = L−l

L+l .

with Velem the deformed element area and �ϕn the vector of the shape function corresponding to node
n. The final force for each node of the membrane is obtained by accumulation of the nodal forces
associated with all the elements which contain that node.

D. Model validation: Capsule in shear flow

In order to validate the implementation of the viscoelastic model, we take advantage of recent
publications reporting the dynamics of viscoelastic capsules [17,38]. Data for the deformation of
spherical capsules in a pure shear flow (see Fig. 2) are available for different values of the membrane
viscosity. In addition, the viscoelastic model used in these two studies [17,38] relies on the same
assumptions as those used in the present paper and described in the former section. It leads to
modeling the capsule membrane as a Kelvin-Voigt material (the case where GH � G∞). When a
spherical capsule is sheared, its deformation can be characterized with a deformation index, defined
as Dcaps = L−l

L+l , with L and l the large and small lengths (in the shear plane), respectively, of the
ellipsoid having the same inertia tensor as the capsule [see Fig. 2(b)].

The capsule is initially a sphere of radius a described by a triangular mesh of 2890 elements.
The typical edge length of this surface mesh is initially Lelem ≈ a

10 . The capsule is deposited in a
cubic fluid domain of size 20a, discretized by a Cartesian mesh of 2003 cubic elements, of the same
size as Lelem. The domain is large enough to minimize the effects of the boundary conditions on
the results [17,38]. Two moving walls are imposed as boundary conditions at the top and bottom
of the domain to impose the shear rate (see Fig. 2), so that the velocity field in the absence of the
capsule reads �u = γ̇ y �ex. Periodic boundary conditions are imposed in the x and z directions.

The nondimensional numbers involved in this case are the Reynolds number Re, the capillary
number Ca, the viscosity ratio λ, and the external Boussinesq number Bqext. There are defined as
follows:

Re = ργ̇ a2

μext
, Ca = μextγ̇ a

G∞
, λ = μint

μext
, Bqext = η

aμext
, (15)

with ρ the constant density, μint and μext the internal and external fluid dynamic viscosities
(in Pa s), respectively, and η the membrane viscosity (in Pa m s). All the following computations
are done at Re = 0.2 to avoid having important inertial effects while keeping the computational
cost moderate, Ca = 0.6 and λ = 1. Only Bqext is changed between the different cases. Results are
displayed in Fig. 3.

Figure 3 shows that all simulations predict the same trends regarding the effect of membrane
viscosity on the dynamics of a spherical membrane: first, deformations are reduced when Bqext is
increased. Then oscillations in the deformation appear, with a relative frequency increasing with
Bqext. The same effect has been predicted by Yazdani and Bagchi [14]. Finally, note that the present
computations are very close to the results by Guglietta et al. [17], which is the closest method to
ours in terms of membrane modeling. Despite major differences in the general algorithm with the
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FIG. 3. Deformation index as a function of nondimensional time γ̇ t for spherical capsules under shear
with different Bqext, at Ca = 0.6 and λ = 1. Comparison of present results (YALES2BIO) with those from Li and
Zhang [38] and Guglietta et al. [17].

previous studies [17,38], the results align very well, so that the implementation of the viscoelastic
model is validated.

III. EFFECT OF MEMBRANE VISCOSITY ON TANK-TREADING RED BLOOD CELLS

A. Numerical setup and operating points

Simulations of single red blood cells under pure shear are performed. The configuration is
represented in Fig. 4. An external shear flow �u = γ̇ y �ex is imposed in a periodic domain closed
by moving walls. The domain is a cube of edge 30 μm. The fluid inside and outside the membrane
may have different values of viscosity. The RBC is biconcave at rest, with diameter 7.6 μm. Its
volume is 93.9 μm3 and its surface area is 135 μm2. Concerning the internal fluid viscosity, the
literature does not provide very precise values at ambient temperature. Viscosity values between 7
and 15 cP are reported for hemoglobin solutions [57–59] for temperatures between 20 and 25 ◦C,
for a hemoglobin concentration between 330 and 360 g l−1. In this work, a value close to 11 cP will
be used where dimensional results are presented (Secs. III C and IV).

In this study, the RBC without membrane viscosity and with fixed mechanical properties is
chosen as a reference in order to highlight the impact of the lack of dissipation in the model.
For every simulated RBC presented in this study, the Skalak shear modulus value is fixed to
G∞ = 2.5 × 10−6 Pa m [6,60]. The bending modulus Eb is fixed to 6.0 × 10−19 J, which allows one
to slightly extend the upper bound in Ca for which stable results can be obtained without membrane

FIG. 4. Representation of the tank-treading behavior. (a) Side view, enabling the measurement of the
inclination angle θ . Translating walls are located at the top and bottom boundaries. (b) Top view, for the
measurement of the deformation index, D = Lp−W

Lp+W .
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viscosity. This value is higher than the classically measured value (around 2.0 × 10−19 J), but such
values with an increased bending modulus are regularly used in the literature [28,53,54]. In the
capillary range used in this study, we found no impact of Eb on the deformation index D and the
tank-treading frequencies. Using those parameter values, the initial biconcave shape is obtained
by defining the stress-free shape of the RBC as an oblate ellipsoid [28] with an axis ratio of 0.9
and the same surface area as the RBC at equilibrium and by deflating the stress-free shape to the
RBC volume of 93.9 μm3 in order to obtain the equilibrium shape [15,28]. Finally, regarding the
viscoelastic RBCs, the viscoelastic branch shear modulus is set to GH = 50 × G∞, so that the model
behaves almost like a Kelvin-Voigt model, which is often done in numerical simulations [8,15,17].

The RBC membrane is discretized with 3919 triangles with a characteristic element size of
0.3 μm. To ensure the accuracy of the immersed boundary method, the characteristic size of the
fluid mesh is the same [61]. The RBC, initially at rest, is subjected to the shear flow at t = 0.
After a brief transient phase, the shape of the RBC and its inclination angle θ reach a quasisteady
state, with small oscillations due to the circulation of the stress-free shape of the membrane [21,24].
The deformation is characterized with a deformation index calculated from the top view [in the
(x, z) plane] D = Lp−W

Lp+W (see Fig. 4). The tank-treading frequency fT T (in s−1) is also extracted.
Simulations are performed for a total of 150 t∗, with t∗ = γ̇ t the nondimensional time. D, θ , and
fT T are computed over the last 120 t∗.

In this study, we vary the external shear rate γ̇ , the external viscosity μext, the internal viscosity
μint, and the membrane viscosity η. The other parameters of the model (geometry, mechanical
properties) are considered fixed and are representative of an average value for RBCs. We thus ignore
natural variability or the effect of age on these RBC characteristics [60,62]. On the other hand, a
systematic study of the effects of membrane viscosity and internal viscosity is performed.

Parameters for the simulations will be expressed in terms of nondimensional numbers. As for the
case with capsules, the nondimensional numbers of the problem are the Reynolds number Re, the
capillary number Ca, the viscosity ratio λ, and a Boussinesq number characterizing the membrane
viscosity. Concerning RBCs, we chose to use the internal Boussinesq number Bqint = η

aμint
, with

a = 2.82 μm the radius of a sphere of the same volume as that of the RBC, 93.9 μm3. This
nondimensional number compares the membrane viscosity with the internal fluid viscosity. Here, it
is preferred to the external Boussinesq number, as Bqint characterizes the RBC only, independently
of its environment. As for capsules, the Reynolds number was fixed to a small value of 0.2 to shorten
the computation times without introducing fluid inertia effects.

The purpose of this study is to highlight the impact of both λ and Bqint on the dynamics of tank-
treading RBCs, for different values of Ca. Increasing either λ or Bqint is expected to produce similar
effects associated with an increase of the total dissipation in the RBC. A recap of the computations
done in this study can be found in Table I.

The numerical results are presented in two different ways: first, in a nondimensional framework
to present the impact of the membrane viscosity on the characteristics of a tank-treading RBC
and to highlight the difference between the effects of internal and membrane viscosities. Then,
results are presented in a dimensional way to enable the comparison with experimental data on the
tank-treading frequency.

B. Nondimensional study

In this nondimensional study, the results are presented in terms of inclination angle θ , defor-

mation index D, and nondimensional frequency [14,33] f ∗
T T = 4π fT T

γ̇
, as a function of Ca. We

will highlight how the characteristics of tank treading depend on λ and Bqint, i.e., of the internal
viscosity and the membrane viscosity. To do so, the following ranges of nondimensional parameters
were considered. The range of Ca is from 0.3 to 2.0, in particular to avoid the low-Ca region,
where tank treading is not stable and out-of-plane motions and deformations are possible [19,63].
In addition, high values of the capillary number yield sharp shapes of RBCs [34], which may be

043602-9



P. MATTEOLI, F. NICOUD, AND S. MENDEZ

TABLE I. Recapitulation of the simulations used in the nondimensional and dimensional studies.

Name λ Bqint Ca Figure

L02B0 0.2 0.0 0.3, 0.9, 2.0, 3.6 Figs. 7(a),7(b)
0.3, 1.0, 2.0 Figs. 5(a)–5(c)

L05B0 0.5 0.0 0.3, 0.8, 1.2, 2.0, 3.6 Fig. 7(a)
0.3, 1.0, 2.0 Figs. 5(a),5(c)

L1B0 1.0 0.0 0.3, 0.8, 1.2, 2.0, 3.6 Fig. 7(a)
0.3, 1.0, 2.0 Figs. 5(a)–5(c)

L02B1 0.2 1.0 0.3, 0.9, 2.0, 4.3 Fig. 7(b)
0.3, 1.0, 1.5, 2.0 Figs. 5(a)–5(c)

L02B3 0.2 3.0 0.3, 0.9, 2.0, 4.3 Fig. 7(b)
0.3, 1.0, 1.5, 2.0 Figs. 5(a)–5(c)

L02B5 0.2 5.0 0.3, 1.0, 1.5, 2.0 Figs. 5(a)–5(c)
L084B0 0.84 0.0 0.3, 0.5, 1.0, 1.9 Fig. 7(c)
L084B1 0.84 1.0 0.3, 0.5, 1.0, 1.9 Fig. 7(c)
L084B3 0.84 3.0 0.3, 0.5, 1.0, 1.9 Fig. 7(c)

unstable at the tip. Concerning the range of λ, it is well known that the tank-treading behavior is
no longer stable for λ values greater than 2.5–3.0 [4–6,19]. In addition, experimental studies of the
tank-treading behavior are generally performed in dextran solutions, with a high external viscosity
[27]. As a consequence, the range of λ was chosen to be between 0.2 and 1.0. Finally, Bqint values
were chosen between 0 (no membrane viscosity) and 5.0, for which the tank-treading frequency is
largely decreased (see further).

Computational results from the L02B0, L05B0, L1B0, L02B1, L02B3, and L02B5 series are
displayed in Fig. 5. First, the deformation index is not very sensitive to the values of λ and Bqint [see
Fig. 5(b)], in particular at low values of Ca. At higher values of Ca, both λ and Bqint have the same
effect of slightly decreasing the deformation. However, Figs. 5(a) and 5(c) show a different effect
of λ and Bqint on the tank-treading frequency and on the inclination angle. In particular, differences
are more pronounced on the frequency [Fig. 5(c)]. Figure 5(c) first shows that the nondimensional
frequency decreases when Ca increases: the tank-treading frequency is not linear with respect to Ca
[a linear dependency would correspond to constant f ∗

T T in Fig. 5(c)]. This has also been obtained in
simulations without membrane viscosity [33]. Figure 5(c) also highlights the differences between
an increase in internal viscosity or in membrane viscosity. While both lead to a decrease of f ∗

T T , this
decrease is rather uniform when increasing λ, but not increasing Bqint. Membrane viscosity has a
mild effect at low shear stresses, but its influence increases with shear stress. The same comments
can be made on the effect of λ and Bqint on the inclination angle [Fig. 5(a)]. Finally, those tendencies
are also confirmed by works on the capsule tank treading [14,38]. Indeed, even if works on capsule
tank treading and impact of the membrane viscosity on this behavior are done in a larger range
of Bq, results in the same range of Bq as in this study show similar tendencies of the impact of
viscosity on the deformation index, on the angle [14,38], and on the frequencies [14].

From the modeling point of view, the consequence is that membrane viscosity and internal vis-
cosity are not interchangeable. For instance, for tank treading, one cannot properly mimic membrane
viscosity by increasing internal viscosity, contrary to what may be suggested in low-order models
and in specific situations [20,25]. As a matter of fact, it is possible to obtain similar tank-treading
frequencies from two different RBCs, as illustrated by comparing L1B0 (λ = 1, Bqint = 0) and
L02B3 (λ = 0.2, Bqint = 3) at Ca = 2.0. Even the shapes are pretty similar, despite little differences
that can be seen in Fig. 6. However, the similarity is only possible for a given Ca and does not
hold for a whole range of Ca [see how the L1B0 and L02B3 trajectories differ with varying Ca
in Fig. 5(c)]. In other words, it is not possible to infer the internal viscosity value or membrane
viscosity value using only one RBC and only one value of Ca.
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FIG. 5. Impact of the internal viscosity and the membrane viscosity on the tank-treading characteristics of
a single RBC in shear flow as a function of Ca. (a) Inclination of the RBC, (b) deformation index, and (c) the
nondimensional frequency. Only chosen data are represented on (b) to improve clarity.

FIG. 6. RBC shape comparison at Ca = 2 for (a) L1B0 and (b) L02B3, corresponding to λ = 1, Bqint =
0 and λ = 0.2, Bqint = 3, respectively. Corresponding values of D are 0.48 for L1B0 and 0.46 for L02B3.
Corresponding f ∗

T T is about 0.38 for both. Shape differences can mostly be seen on the extremities of the RBC.
Different combinations of λ and Bqint yield almost identical cells, but for a given value of Ca only.
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The difference between the impacts of the internal viscosity and of the membrane viscosity has
been highlighted in the nondimensional analysis. Now, it is interesting to study the consequences of
those differences in comparison with the experimental data in a dimensional framework. To do so,
we will make the nondimensional data (Table I) dimensional to match the experimental operating
conditions.

C. Dimensional study

As previously explained, tank treading is classically characterized by three main parameters:
the tank-treading frequency fT T , the deformation of the RBC represented by its deformation index
D = Lp−W

Lp+W , and the inclination angle between the RBC and the flow direction θ . Here we specifically
compare simulation results with experiments in terms of frequency, for which differences between
the impacts of internal and membrane viscosities have been emphasized, and for which data is
available in the literature. Experimental data for tank-treading frequencies are extracted from
Fischer’s work [27]. In this study, tank-treading experiments are performed with three different
blood samples, for multiple external fluid viscosities and different shear rates, at a room temperature
of 23 ◦C. We selected cases with external fluid viscosity of 12.9 and 53.9 cP. Assuming that the
internal viscosity of the RBC is μint = 10.78 cP, which is an acceptable value at ambient temperature
(see Sec. III A), such values of external viscosity correspond to λ = 0.84 and λ = 0.2, respectively.
The results are presented in Figs. 7(a)–7(c). The experimental results are presented in terms of
average and error bars from Fischer’s data [27]. Blood samples used in this study come from three
different donors. As the experimental data are dispersed both in terms of tank-treading frequency
and shear rate at which it is measured, the mean values and standard deviation are computed for
each cloud of data and reported in Fig. 7.

First, it is seen in all subfigures that for the baseline cases without membrane viscosity, the
tank-treading frequency is overestimated with respect to the experimental data. This is consistent
with existing results from the literature [18]. Then, an increase either in the internal viscosity or
in the membrane viscosity leads to a decrease in the tank-treading frequencies, as shown for the
case with μext = 53.9 cP [Figs. 7(a) and 7(b)]: additional dissipation in the RBC slows down the
membrane circulation, whatever the source for this extra dissipation. It is interesting to comment
on the value of the internal viscosity and membrane viscosity needed to get results close to the
experiments: Fig. 7(a) shows that in order to obtain simulation results comparable with experimental
measurements, we have to increase the internal viscosity up to a value of 53.9 cP. This value is
typically five times the expected value of the internal viscosity, which is unrealistic: even if some
uncertainties exist on the value of internal viscosity, this value is not consistent with the expected
range. In addition, if such a high value of internal viscosity is used with μext = 12.9 cP, tank treading
is no longer obtained as the viscosity contrast is too high [5,6]. As a consequence, we do not present
results increasing the internal viscosity with μext = 12.9 cP. Indeed, for results at μext = 12.9 cP,
Fig. 7(c) shows that the same range of membrane viscosity yields a favorable comparison with
experiments. Consequently, membrane viscosity seems indispensable to explain the behavior of the
RBCs during tank treading.

Figures 7(b) and 7(c) allow detailing of the impact of the membrane viscosity on tank-treading
frequency. Interestingly, the effect of membrane viscosity is not uniform with different shear rates,
as reported in the nondimensional analysis. At low shear rates, the tank-treading frequencies seem
relatively unaffected by membrane viscosity. The effect of membrane viscosity is all the more
important as the shear rate (and thus tank-treading frequency) increases. This is true for both
μext = 53.9 cP [Fig. 7(b)] and μext = 12.9 cP [Fig. 7(c)].

In the series of simulations presented in Fig. 7, we have fixed the ratio between the membrane
viscosity and the internal viscosity (in other terms, the internal Boussinesq number Bqint) to three
different values: Bqint = 0.0, 1.0, and 3.0. It leads to three different η values: 0.0, 3.04 × 10−5, and
9.11 × 10−5 cP m, respectively. Clearly, η = 3.04 × 10−5 and η = 9.11 × 10−5 cP m yield better
results than η = 0.0 cP m, and this range of membrane viscosity yields fair comparisons with the
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FIG. 7. Comparison between computational and experimental results. (a) Impact of the internal fluid vis-
cosity on tank-treading frequencies for an external viscosity of μext = 53.9 cP. (b),(c) Impact of the membrane
viscosity on frequencies for two different external viscosities, (b) μext = 53.9 cP and (c) μext = 12.9 cP. Error
bars represent two times the standard deviation observed experimentally.

experiment. However, the evolution with shear rate of the relative impact of the membrane viscosity
on the results makes the results at η = 3.04 × 10−5 cP m [pink curve in Figs. 7(b) and 7(c)] better
at high shear rates and the results at η = 9.11 × 10−5 cP m [red curve in Figs. 7(b) and 7(c)] better
at low shear rates. Note that this statement seems independent of the value of external viscosity.

To conclude, even if imposing a large value of internal viscosity can reproduce experimental tank-
treading frequencies in some cases, membrane viscosity is the only source for dissipation enabling a

043602-13



P. MATTEOLI, F. NICOUD, AND S. MENDEZ

consistent improvement of the agreement between simulations and experiments for a large range of
operating conditions. Indeed, the values of membrane viscosity that yield a satisfactory comparison
with experiments are similar to those extracted by Tran-Son-Tay [35]. However, they are higher
than the values used by Guglietta et al. [17] to predict relaxation experiments. However, a constant
membrane viscosity does not lead to a perfect agreement between experiments and simulations.
This result suggests that a viscoelastic modeling of the membrane with a constant shear viscosity
is not enough, and that a more complex membrane viscosity behavior should be accounted for. The
idea of a shear-thinning behavior for the RBC membrane is not new. Chien et al. [64] reported
a shear-thinning behavior of the membrane from micropipette experiments. Tran-Son-Tay et al.
studied the shear-thinning behavior of the RBC’s membrane in the case of tank-treading RBCs
and studied the differences of viscosity for young and old cells [35] using the analytical model from
Keller and Skalak [20]. The variation of the apparent membrane viscosity with the shear is discussed
from our results in the next section.

IV. SHEAR-THINNING MODEL

Results obtained with a constant membrane viscosity suggest that higher values of membrane
viscosity are needed for low shear rates to reproduce experimental tank-treading frequencies. This is
in line with previous experimental works pointing out the shear-thinning behavior of the membrane
[35,64].

In this section, the value of membrane viscosity is inferred from the comparison between
numerical predictions of the tank-treading frequency and the experimental data [27] already reported
in Fig. 7, at different values of the external viscosity. We use unique red blood cells with fixed
characteristics, except for the membrane viscosity. For each experimental cloud (at approximatively
15, 35, 65, 130, and 260 s−1; see Fig. 7), we use the ensemble average of the shear rate as a reference.
For that shear rate, simulations with different values of the membrane viscosity are performed
and the tank-treading frequency is compared to the ensemble average of each cloud (these data
are plotted as blue dots in Fig. 7). By dichotomy, we converge to an inferred value of membrane
viscosity. The value was considered to be accurate if the difference between the numerical and the
experimental frequencies was less than 5%. The results of this process in terms of frequencies are
displayed in Figs. 8(a) and 8(b).

Figure 8(c) shows the inferred values of membrane viscosity as a function of the shear rate,
for μext = 12.9 and μext = 53.9 cP. In addition to the value of membrane viscosity yielding a good
comparison with the average frequency in the experiment, we use simulations to extract a dispersion
on the values of membrane viscosity [displayed in bars in Fig. 8(c)] from the dispersion of the
experimental data. Experimental dispersion is measured using the standard deviation of the data,
� fT T . In simulations, we calculate how a change in membrane viscosity changes the resulting
tank-treading frequency: this means calculating ∂ fT T /∂η at the inferred membrane viscosity. We
define the dispersion in membrane viscosity as �η = � fT T × ∂η/∂ fT T .

Figure 8(c) leads to confirming the shear-thinning behavior of the membrane, with a factor of 10
between the maximum and minimum viscosity values. Moreover, error bars are bigger as the shear
rate decreases. It leads to highlighting that the membrane viscosity seems to be a more sensitive
parameter as the shear rate increases. Finally, Fig. 8(c) also shows that the external fluid viscosity
does not seem to have a major impact on the shear-thinning curve. Note that at low shear rates, a
large change in the membrane viscosity is needed to change the resulting tank-treading frequency,
which may explain the largest differences seen at γ̇ ≈ 30 s −1.

Tran-Son-Tay [35] made a similar effort to extract membrane viscosity from experimental data
and a model. The corresponding results are also displayed in Fig. 8(c). Even if differences exist
between Tran-Son-Tay’s results and our results, the trends are similar, even using very different
methods to obtain those shear-thinning curves. In comparison, the values of the membrane vis-
cosities computed with YALES2BIO seem closer to the values for young cells, at high shear rates.
The values of the membrane viscosity of Fig. 8(c) also seem to be consistent with the one used
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FIG. 8. Comparison between the experimental frequencies [27] and the simulation frequencies obtained
from the inferred membrane viscosity values. (a) Comparison with data at μext = 53.9 cP, (b) comparison with
data at μext = 12.9 cP. (c) Inferred shear-thinning behavior of the membrane viscosity; values from Tran-Son-
Tay [35] are included for comparison. Bars in (a) and (b) represent the standard deviation of the experimental
data. Bars in (c) represent the range of values of the membrane viscosity in order to reproduce the dispersion
of the experimental frequencies.

by Guglietta et al. [17] in their simulations of RBC relaxation (η = 3.18 × 10−4 cP m), which
could then be interpreted as a value relevant to slow deformations of the membrane. Finally, using
values obtained thanks to the tank-treading behavior in order to compute relaxation time leads to
characteristic times between 0.1 and 0.01 s, which is in accordance with the literature values [17].
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V. CONCLUSION AND OUTCOMES

Characterizing dissipation in the RBC dynamics has always been problematic because multiple
sources are present and it is difficult to stratify their effects. Here, simulations are presented to
specifically identify the respective roles of internal and membrane viscosity in a tank-treading RBC,
using comparisons with experiments. This study highlights the fact that because the impact on the
RBC dynamics is different as a function of the dissipation sources, it is difficult to aggregate these
two phenomena without more knowledge on each impact separately. This study also shows that
to reproduce experimental tank-treading frequencies, increasing only the internal viscosity leads
to values out of the accepted range in the literature. Moreover, depending on the viscosity ratio,
some configurations are impossible to reproduce only by increasing, even artificially, the internal
viscosity [see Fig. 7(c)]. On the other hand, the addition of membrane dissipation allows one to
reproduce the literature results by using realistic membrane viscosity values. Even if a constant
viscosity value enables one to improve the comparison, reproducing experimental mean frequencies
could be done only by using a shear-thinning model. This study confirms experimental results that
highlight the shear-thinning behavior of the RBC membrane, with simulations that fully account
for the fluid-structure interactions, not simplified models [20]. Moreover, the computed membrane
viscosity values are consistent with values found by Tran-Son-Tay [35] as well as in other relaxation
studies [17,65,66]. The next step is to challenge this shear-thinning membrane model in other flow
situations in order to establish its generality. In particular, assessing the effect of membrane viscosity
on the behavior of a single RBC in external media with a dynamic viscosity similar to that of water
or plasma (i.e., for viscosity ratios of the order of 5.0) is an interesting perspective of this work.
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APPENDIX: FROM ELEMENT STRESS TO NODAL FORCES

In YALES2BIO, a first-order finite-element method is used. The computation of the nodal forces
from the stress in the element is detailed in what follows. We use only triangular elements, which
are assumed to remain flat during the deformation of the membrane. Thus, in the element basis,
deformations are two dimensional, and each displacement can be split into X and Y components,
respectively, for the horizontal and vertical axis in the element basis. Noting u1, u2, u3 and v1, v2, v3,
the X and Y displacements, respectively, of the nodes 1,2,3 of any triangular element, and assuming
linear interpolation between the three nodes, displacements on the element can be written as

u = N1u1 + N2u2 + N3u3,

v = N1v1 + N2v2 + N3v3, (A1)

with N1, N2, N3 linear shape functions of the element, which can be computed as

N1 = (y2 − y3)x + (x3 − x2)y + (x2y3 − x3y2)

2A0
= a1x + b1y + c1

2A0
,

N2 = (y3 − y1)x + (x1 − x3)y + (x3y1 − x1y3)

2A0
= a2x + b2y + c2

2A0
,

N3 = (y1 − y2)x + (x2 − x1)y + (x1y2 − x2y1)

2A0
= a3x + b3y + c3

2A0
, (A2)
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with A0 the element area at t = 0. ai, bi, and ci are the coefficients of the shape functions, only
determined by the shape of the element at rest. Since displacements can be fully expressed as a
function of known parameters following Eq. (A2), the displacement can be used to express the

two-dimensional transformation gradient F = ∂x(t )

∂x(0)
. It can also be expressed as Fi j = δi j + ∂ui

∂x j
.

Using Eq. (A1) and Eq. (A2), F becomes

F = 1

2A0

⎛
⎜⎜⎜⎜⎝

2A0 +
3∑

i=0

aiui

3∑
i=0

biui

3∑
i=0

aivi 2A0 +
3∑

i=0

bivi

⎞
⎟⎟⎟⎟⎠. (A3)

Equation (A3) will be used when writing the principle of virtual work in order to obtain the nodal
forces. Because we are neglecting inertial effects, the equilibrium of forces and moment equations
can be written as

div(σ) = �0; σT = σ. (A4)

The virtual work principle is just a weak formulation of the following equilibrium equations. It is
obtained by integrating the stress Cauchy tensor σ contracted to a virtual arbitrary displacement
vector �δu, with δu and δv its components, over the element’s area. This leads to the formulation

∫
S

div(σ) · �δu ds = 0. (A5)

Using the divergence theorem, it leads to
∫

S
σ : grad( �δu) ds −

∫
�S

�S · �δu dl = 0, (A6)

with �S the element’s boundary, �δu the virtual displacement vector, dl the integration variable
representing an infinitesimal part of the element’s boundary, and �S the traction vector �S = σ�n, with
�n the outward unit normal vector of the element’s boundary. The gradient term can be written as

grad( �δu) = ∂δu

∂x(t )
= ∂δu

∂x(0)

∂x(0)

∂x(t )
= δFF0(t )−1. (A7)

As for Eq. (A3), by using Eq. (A1), δF,the variation of F associate with the virtual displacement
�δu, can be identified as

δF = 1

2A0

⎛
⎜⎜⎜⎜⎝

3∑
i=0

aiδui

3∑
i=0

biδui

3∑
i=0

aiδvi

3∑
i=0

biδvi

⎞
⎟⎟⎟⎟⎠, (A8)

with δui, δvi the virtual X and Y nodal displacements, respectively. The second term of Eq. (A6)
is then developed in order to identify the nodal forces. As previously stated, �δu can be identified
thanks to Eq. (A1) in

�δu =
(

N1δu1 + N2δu2 + N3δu3

N1δv1 + N2δv2 + N3δv3

)
. (A9)
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Defining �δuN and �PN , respectively, as the nodal displacement vector and the nodal force vector,

�δuN =

⎛
⎜⎜⎜⎜⎜⎝

δu1

δv1

δu2

δv2

δu3

δv3

⎞
⎟⎟⎟⎟⎟⎠

, �PN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
�S

SX N1dl
∫

�S
SY N1dl

∫
�S

SX N2dl
∫

�S
SY N2dl

∫
�S

SX N3dl
∫

�S
SY N3dl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A10)

and assuming stress and deformation gradient constant on the element, leads to Eq. (A6) being
equivalent to

tr
[
δFF−1

0 (t )σ
]
A − �δuN · �PN = 0, (A11)

with A the area of the current (deformed) element. Using the fact that this relation is true for every
virtual displacement, the components of �PN can be directly identified by splitting the equality with
respect to the �δu components, leading to an equality for each �PN component.
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