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Abstract

As a step in the development of a numerical procedure able to perform parallel computations of
the dynamics of capsules/cells in non-physiological configurations, a numerical method is developed
and its validation is described. The fluid-structure interaction problem is solved using an immersed
boundary method, adapted to an unstructured finite-volume flow solver thanks to the reproducing
kernel particle method. A specific treatment to ensure volume conservation of the fluid enclosed
in the immersed structure is also detailed. The present paper focuses on quantitative validation
of the method in 2-D, against existing reference 2-D results. Excellent agreement is obtained for
configurations of capsules and vesicles evolving with or without mean flow. Applications of the method
to non-zero Reynolds number cases, including non-trivial geometry, is shown. This unstructured
immersed boundary method proves robust to tackle the dynamics of deformable particles in complex
flows.
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1 MOTIVATION AND OBJECTIVES

Over the last decades, numerical simulation of capsules, vesicles and cells under flow has
developed tremendously. All these systems, which will be referred to as deformable particles,
are constituted by a liquid droplet enclosed by a very thin structure (its thickness is much
smaller than the size of the object). This structure can be a polymer structure for capsules,
a phospholipid bilayer for vesicles or a more complex biological membrane in the case of red
blood cells [1]. Computing the dynamics of these deformable objects in flows is usually done
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by coupling fluid equations with the relevant structure equations and by assuming an infinitely
thin massless structure/membrane [1–5]. The flexible structure will be referred to as membrane
in the following.

The most mature methods for computing flows of these deformable particles are based on
boundary integral methods (BIM). Capsules, vesicles and red blood cells are small particles
(of typical size of a few microns) and are generally carried by slow flows. The Reynolds number
associated with many practical situations is so small that the flow is well described by the Stokes
equations. Stokes equations are linear and the boundary integral method [6] can be used to
predict the fluid velocity everywhere, knowing the state of the membrane. This reduces the
fluid-structure interaction (FSI) to a problem where the only unknowns are the membrane
coordinates over time. Boundary integral method is thus a very popular technique to compute
flows of capsules [4, 5, 7–11], vesicles [12–16] and red blood cells [17–19], because of its precision
and its relatively moderate computational cost.

The drawback of boundary integral methods is their limitation to Stokes flows. More recently,
several methods have been adapted to the computation of deformable particles without this
limitation to very small Reynolds number. Specific particle-based methods have successfully
computed the dynamics of vesicles and red blood cells in various flows [20–23]. Such meth-
ods predict the fluid flow by solving equations of motion for particles representing clusters of
molecules or atoms. They are generally coupled to another particle-based formalism to repre-
sent the membrane. Recently, lattice-Boltzmann methods have also been adapted to compute
flows of red blood cells [24, 25]. Regarding Eulerian formalisms for the fluid flow, methods with
the fluid grid following the deformation of the interface, based on the Arbitrary Lagrangian-
Eulerian formalism are developed [26, 27]. However, they are not the most popular, as they
involve frequent remeshing. Authors generally prefer one-fluid formalisms, where the fluid
equations are solved everywhere, over a fixed Eulerian grid. The membrane location is com-
puted by advecting either a function as the level-set function or a second Lagrangian grid
(typically, a triangulation of the membrane) following the membrane displacement. One can
cite the advected-field approach [28, 29], level-set methods [30–33] and immersed boundary
or immersed interface methods [34–41]. In particular, the immersed boundary method has
proven to be mature, providing 3-D results for the dynamics of capsules [39–44]. Recently,
the immersed boundary method has also been used to study particle interactions [40] and
relatively dense suspensions [43]. Note that the immersed boundary method can be used in
the lattice-Boltzmann context to account for the fluid-structure coupling [24].

Immersed boundary methods (IBM) are used, in general, in conjunction with a regular Carte-
sian grid. However, for some applications, it might be useful to rely on unstructured methods
for solving the fluid equations to account for complex geometries accurately. This is notably the
case when dealing with medical artificial devices which usually involve complex manufactured
geometries, possibly evolving over time (as in ventricular assist devices). Flow computations
in such systems are challenging not only for their geometrical complexity but also for the high
flow speed encountered: flow speeds and Reynolds number are often much larger in artificial de-
vices than in the circulatory system [45]. Optimization of such systems (for instance to prevent
hemolysis or thrombosis) thus necessitates methods able to account accurately for 1) presence
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of biological cells, 2) high Reynolds number flows and 3) complex geometries. In addition,
one could also take advantage of an unstructured method to refine the fluid grid locally, for
instance in near-wall regions to better describe the cell-wall interactions.

The first objective of the paper is to address the question of how to adapt an existing un-
structured finite-volume flow solver to the simulation of the dynamics of deformable objects
under flow (note that a similar approach has been undertaken by Liu and co-workers, to adapt
the IBM to the finite element context [36, 46–48]). The method is detailed in section 2. As
a first step towards full 3-D calculations, the 2-D implementation is detailed in the present
study. Two-dimensional implementation has the advantage of focusing the attention on the
coupling between the fluid flow and the membrane dynamics. Specific 3-D difficulties are more
related with the calculation of membrane force over a discretized 3-D surface than with the
fluid-structure coupling. As already stated, using such a method in the context of deformable
particles is not standard. As a consequence, special attention is paid to the validation of the
solver, which is the object of section 3. Careful validation of our 2-D solver is the second ob-
jective of the paper: validation is indeed not that simple in 2-D. This comes from the fact that
most of the reference results (either from experiments or BIM) are in 3-D. The moderate cost
of BIM makes 3-D simulations have a relatively low computational cost. This explains why
validations of solvers predicting the dynamics of deformable particles is often only qualita-
tive. Nevertheless, BIM simulations in 2-D are rare, but some results are available in the open
literature [12, 14, 49, 50]. They will be of primary help for validation of the present solver.
Finally, the last section shows some applications beyond the test cases usually reported in the
literature: section 4 shows two cases at non-zero Reynolds number. First, the influence of the
Reynolds number is shown for a capsule suspended in a simple shear flow. Then, the evolution
of a capsule deposited in a contraction flow at main flow Reynolds number 220 is computed.

2 NUMERICAL METHOD

2.1 Modeling framework

The present numerical method is dedicated to the numerical simulation of the dynamics of
deformable particles, composed by an internal fluid enclosed by a flexible structure. The fluid
inside and outside the cell is supposed to be incompressible and Newtonian. The fluid flow is
thus governed by the incompressible versions of the continuity and the Navier-Stokes equations:

∇.u = 0, (1)

ρ (
∂u

∂t
+ u.∇u) = −∇p + ∇.[µ(∇u + (∇u)T )], (2)

where u is the fluid velocity, p the pressure and t the time. The dynamic viscosity µ can be
different for the internal fluid and the external fluid. Density variations are neglected, so that
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ρ takes the same value inside and outside the membrane.

The flexible structure, or membrane, is an infinitely thin massless structure, completely closed,
and transported by the fluid. In dimension n, the membrane is a structure of dimension n− 1
(a surface in 3-D), denoted by S (see Fig. 1a). Given a membrane position, it is possible to
define a structural membrane energy E , composed by an elastic component Ee and a bending
component Eb: E = Ee + Eb. The elastic component can be taken as:

Ee =
∫

S
T dS, (3)

where T is the surface tension in the membrane. It is related (see further) to Ee, the membrane
elastic modulus (in Pa.m).

The bending part is:

Eb =
Eb

2

∫

S
κ2 dS, (4)

where Eb is the membrane bending modulus (in Pa.m3), κ the curvature (inverse of the radius
of curvature; with n the outward pointing normal vector to the membrane, κ = ∇.n). This
energy corresponds to the bending energy proposed by Helfrich (1973) [51], in its version
for 2-D closed membranes. Spontaneous curvature is supposed to be zero. The formula with
spontaneous curvature can be found in numerous references [3, 52].

By calculating the functional derivative of the energy with respect to an infinitesimal deforma-
tion of the membrane [29], it is possible to derive the force per unit surface that the membrane
exerts on the fluid. The elastic and the curvature components, F elas and F bend, are separated
(unit outward normal vector n and tangential vector τ are displayed in Fig. 1a):

F elas = −κT n +
∂T

∂s
τ , (5)

with s the arc length along the interface, measured in the direction of τ [49].

F bend = Eb [
1

2
κ3 + ∆LB κ] n, (6)

where ∆LB is the Laplace-Beltrami operator, ie: ∆LB = (Is∇).(Is∇) and Is = I − nn [3].

To couple the movements of the fluid and of the membrane, one must have continuity of the
velocity at the interface, while fluid stress undergoes a discontinuity related to the membrane
forces. With [q] = qext − qint the jump of a quantity q between its external value qext and
internal value qint, these conditions read: [u] = 0 and [σ].n = −(F elas + F bend) [49], where σ

is the stress tensor at the interface.
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2.2 Fluid-structure coupling with the immersed boundary method

The present framework relies on the immersed boundary method (IBM), developed by Peskin
and co-workers [34, 53, 54] and the front-tracking (FT) method [55]. First, the membrane
movement is described in a Lagrangian manner. Membrane is simply transported by the fluid,
and at the same velocity. Adherence of the fluid over the membrane makes fluid velocity
continuous at the membrane location, and the membrane motion is described by:

dX(t)

dt
= U(X(t), t) =

∫

Ω
u(x, t) δ(x−X(t)) dx. (7)

X denotes the membrane coordinates and U the membrane velocity. Ω is the fluid domain:
recall that since the IBM is a one-fluid formalism, Ω is the union of the internal and external
fluid domains. The velocity of the membrane is calculated from the fluid velocity field, using
the Dirac function δ, which ensures the continuity of velocities at the interface.

The effect of the particle deformation on the fluid motion is twofold: 1) fluid properties are
variable in space (e.g. viscosity may differ inside and outside the membrane) and 2) as a reaction
against its deformation, the membrane exerts a force f on the fluid, so that the momentum
conservation equation reads:

ρ (
∂u

∂t
+ u.∇u) = −∇p + ∇.[µ(∇u + (∇u)T )] + f . (8)

The force per unit volume f is obtained from the membrane forces F = F elas +F bend, through

f (x, t) =
∫

S
F (X(t), t) δ(x−X(t)) dS. (9)

The addition of this source term to the fluid momentum equation is a way of ensuring the
correct stress discontinuity across the membrane.

2.3 Discretization of the coupled problem

The discretized problem is represented in Fig. 1(b). The membrane is discretized using a
set of M Lagrangian markers. The discrete unknowns are thus the markers locations Xm =
(Xm , Ym)t (m = 1, ..., M) and Eq. (7) is advanced for each marker. The markers transport
equation is advanced explicitly, using an explicit Euler scheme.

Fluid equations are discretized over unstructured grids. Discretization of the fluid equations
leads to a transport equation for the membrane markers involving discrete Dirac functions to
interpolate the fluid velocity at the markers location xn = (xn , yn)

t (n = 1, ..., N):

Um(t) =
N

∑

n=1

un(xn, t) ∆m(xn −Xm(t)) dVn, (10)
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Fig. 1. Schematic of the physical problem (a) and of the IBM principle (b). The grid of the fluid
domain Ω is represented as a triangular mesh. The fluid grid is fixed. Markers of the membrane S are
shown by dots, linked by bold lines. This surface grid follows the membrane surface.

The grid contains N vertices; dVn is the volume of the element associated with grid vertex n.
The definition of the discrete Dirac function ∆m is the object of next section.

The force per unit volume applied on the fluid by the membrane is calculated from the discrete
forces calculated at the markers. This is called force regularization.

fn(t) =
M
∑

m=1

Fm(Xm(t), t)dSm ∆m(x−Xm(t)). (11)

dSm is the surface element (line in 2-D) associated with marker m and ∆m denotes a discrete
Dirac function, detailed later.

Fm is the discrete force per unit surface applied by the membrane on the fluid around marker
m. Calculus of the 2-D discrete elastic and curvature forces (Eqs. 5 and 6) is now described.

The elastic forces are calculated following the original IBM procedure by Peskin (1977) [53].
To approximate Eq. (5), the membrane is seen as a collection of links (the membrane edges)
connecting the markers. The surface tension T is the elastic tension due to deformation of the
elastic links: T = Eeǫ, where ǫ is the membrane strain in the direction of the membrane tangent
[49]. More sophisticated elastic energy formulations (and subsequent tension formulae) can also
be used, for example by adapting hyperelastic strain energy functions to 2-D [56]. Figure 2(a,b)
shows the principle of the method. The reference (unstressed) configuration and the current
configuration are displayed in Fig. 2(a) and Fig. 2(b), respectively. Strain is calculated for each
edge m, by comparing the edge length lm with a reference edge length lref

m representing the
zero-stress configuration. The tension in each edge Tm is equal to

Tm = Eeǫm = Ee

lm − lref
m

lref
m

. (12)

One obtains the elastic membrane force (F elas
m dSm) at marker m by summing the force con-

tributions coming from the two edges (labelled m − 1 and m) connecting marker m to its
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neighbors:

F elas
m dSm = Tm

Xm+1 −Xm

||Xm+1 −Xm||
+ Tm−1

Xm−1 −Xm

||Xm−1 −Xm||
. (13)

More sophisticated approximations can be employed, for example using cubic spline interpo-
lation as in [49]. Note that such a modeling tolerates negative edge tension.

(a)

(b)

(c)Reference configuration Current configuration

Current configuration

X
ref
m+1

X
ref
m

X
ref
m−1

Xm+1

Xm+1

Xm

Xm

Xm−1

Xm−1

edge m

edge m

edge m− 1

edge m− 1

lm

lm−1

l
ref
m l

ref
m−1

nm

Felas
m dSm

1
|κm|

Fig. 2. Schematics for elastic force (left) and curvature (right) calculation. Elastic forces: differences in
the length of the membrane edges between the reference unstressed configuration (a) and the current
configuration (b) enables the calculation of the tension in each edge (grey arrows in sub-figure b).
Contributions from the edges are summed at the vertices to calculate the elastic forces at the markers,
F elas

m dSm. Curvature: the circumscribed circle passing through marker m and its two neighbors is
calculated. The inverse of the radius gives the curvature κm.

Numerically, curvature is calculated by finding the circumscribed circle of the triangle formed
by each marker and its two neighbors (Fig. 2c). The inverse of the radius of the circumscribed
circle is the curvature, in absolute value. With the definition κ = ∇.n, the curvature κm is
positive in Fig. 2(c). Using the circumscribed circle is valid when the local radius of curvature
of the membrane is large enough compared to the edges length, which is always verified here.
Numerical forces are simple to calculate in 2D. The Laplace-Beltrami operator is calculated
by simple second-order finite differences accounting for non-uniform membrane mesh.

To perform computations of flows of deformable particles, the present IBM is implemented in
an existing flow solver, YALES2 (http://www.coria-cfd.fr/index.php/YALES2). YALES2 is a
finite-volume research code that solves the Navier-Stokes equations on unstructured meshes. It
is dedicated to massively parallel computations of turbulent flows [57–59]. The incompressible
Navier-Stokes equations are solved using a projection method [60]. The fluid velocity is first
advanced using a 4th-order central scheme in space, and a 4th-order Runge-Kutta like scheme
in time (see Moureau et al. [59] for more details). The new solver, gathering YALES2 and
the IBM, is named YALES2BIO. In YALES2BIO, the forces exerted by the membrane on the
fluid are included in the prediction step. Divergence-free velocity is obtained at the end of
the time-step by solving a Poisson equation for pressure, to correct the predicted velocity. A
Deflated Preconditioned Conjugate Gradient algorithm is used to solve this Poisson equation
[57]. The correction step is not modified by the IBM. The fluid velocity at the end of each time
step is interpolated to the markers, to convect the membrane.
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2.4 Interpolation and regularization over unstructured meshes

In the original IBM formulation, as in a majority of studies using IBM, finite differences are
used to solve the fluid equations, using a regular Cartesian grid of constant grid size h. In this
case, the discrete Dirac function ∆m involved in the velocity interpolation (Eq. 10) and force
regularization (Eq. 11) can be easily defined. ∆m is taken as a product of one-dimensional
delta functions, ∆m(xn −Xm) = D(xn −Xm) D(yn− Ym). The cosine representation is often
used:

D(r) =



























1

4h

[

1 + cos
(

πr

2h

)]

if |r| < 2h

0 if |r| ≥ 2h

. (14)

The volume of the grid cells (involved in Eq. 10) is also defined in terms of grid size: dVn = h3.
Note that more sophisticated delta functions were also proposed: see for example the discussions
by Roma et al. [54] and Peskin [34] about the discrete Dirac functions and their properties.
Over regular Cartesian grids, the discrete Dirac functions can be defined independently of the
position of the markers.

Over unstructured grids, Cartesian versions of ∆m cannot be used. This issue was dealt with in
the context of finite elements by Liu and co-workers [36, 46–48] and their ideas were adapted
later to the finite difference/finite volume context by Pinelli et al. [61]. Adaptation of the
immersed boundary formalism to unstructured meshes rely on the Reproducing Kernel Particle
Method (RKPM) [62].

The principle is briefly explained in 1D before detailing the implementation in the 2-D case.
Based on an initial window function φ as the cosine one (Eq. 14; in that case φ(r) = D(r)),
one can introduce the following modified window function φ:

φ(X, x−X) =
K

∑

k=0

βk(X)(x−X)k φ(x−X). (15)

X would be the marker coordinate and x the coordinate where the weight is to be calculated.
βk are the K + 1 coefficients of the polynomial correction of the original window function (the
value of K is determined hereafter). They are calculated by imposing conditions on the first
moments of φ. Defining the pth moment of function φ as :

mp(X) =
∫

Ω
(x−X)p φ(X, x−X) dx, (16)

one easily obtains that

mp(X) =
K

∑

k=0

βk(X) m(k+p)(X), (17)

with m(k+p)(X) the (k + p)th moment of φ at the location of the marker, X. For a point force
applied at coordinate X, moments calculated at X are known: the first moment is 1 and the
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following are all 0. These conditions, which are naturally true for the force to regularize, are
imposed on the regularized force. Verification of the moments conditions ensures the quality
of the regularization process. In 1D, imposing that m0(X) = 1 and mp(X) = 0 for 1 ≤ p ≤ P ,
one can determine the corresponding βk for 0 ≤ k ≤ K = P , by inverting a (P + 1)× (P + 1)
symmetric matrix [36, 61]. When discrete Dirac functions are used for regularization of a
marker force, having m0(X) = 1 and m1(X) = 0 guarantees that the regularized force has the
same intensity and the same application point as the marker force.

marker m
4h

4h

x

y
node j

dVj

Fig. 3. Schematics of the procedure to compute the window function for regularization/interpolation
over unstructured fluid grids. Membrane markers are shown by black dots, as in Fig. 1 (membrane
edges are not represented to lighten the figure). Square symbols are used to show the J fluid grid
nodes involved in the regularization of the force known at marker m: they are all enclosed in a square
of edge length 4h around marker m. For node j, the associated cell volume dVj is also shown.

Extension to two 1 and three dimensions is shown in Pinelli et al. [61]. In practice, the following
2-D algorithm is used to calculate the weights of the window function associated with each
marker. Figure 3 clarifies the regularization algorithm. For one marker m, the algorithm is:

(1) First, the local grid size h is defined. A unique value, typical of the fluid grid size at the
particle location, is used. Different values for each marker could be used, but have not
been tested.

(2) For all the J fluid nodes located in the square of edge length 4 × h centered on marker
m, the intermediate window function weights w(Xm, xj) = D(Xm − xj) D(Ym − yj) are
calculated (j = 1, ..., J).

1 Note however that typos remain in the 2-D matrix (their Eq. (28) [61]), which can be identified in
the last column, by lack of symmetry.
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(3) Moments of the intermediate window function are calculated as:

mp,q(Xm) =
J

∑

j=1

(xj −Xm)p (yj − Ym)q w(Xm, xj) dVj, (18)

where dVj is the area of the element associated with vertex j.
(4) In 2-D, moments of the intermediate window function are calculated as:

mp,q(Xm) =
J

∑

j=1

(xj −Xm)p (yj − Ym)q w(Xm, xj) dVj. (19)

For the modified window function to be a good regularization of a point force, the values
of moments of order 0, 1 and 2 are imposed: m0,0 = 1 and mp,q = 0, if 1 ≤ p + q ≤ 2.
This necessitates, for each marker, the use of 6 coefficients (βk)m (0 ≤ k ≤ 5). In order to
calculate them, the 2-D moments matrix is built (the dependence of moments on Xm is
omitted):

M2D =



































m0,0 m1,0 m0,1 m1,1 m2,0 m0,2

m1,0 m2,0 m1,1 m2,1 m3,0 m1,2

m0,1 m1,1 m0,2 m1,2 m2,1 m0,3

m1,1 m2,1 m1,2 m2,2 m3,1 m1,3

m2,0 m3,0 m2,1 m3,1 m4,0 m2,2

m0,2 m1,2 m0,3 m1,3 m2,2 m0,4



































(20)

and inverted for each marker. The coefficients (βk)m are then calculated using



































(β0)m

(β1)m

(β2)m

(β3)m

(β4)m

(β5)m



































= M
−1
2D



































m0,0

m1,0

m0,1

m1,1

m2,0

m0,2



































= M
−1
2D



































1

0

0

0

0

0



































. (21)

(5) The weights of the modified window function can thus be calculated using

w(Xm, xj) = w(Xm, xj) [ (β0)m + (β1)m(xj −Xm)

+ (β2)m(yj − Ym) + (β3)m(xj −Xm)(yj − Ym)

+ (β4)m(xj −Xm)2 + (β5)m(yj − Ym)2]. (22)

These weights are used to regularize the membrane forces on the fluid grids and for
interpolation of the fluid velocity to the markers, using :
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fn(t) =
M
∑

m=1

Fm(Xm(t), t)dSm w(Xm, xn), (23)

Um(t) =
N

∑

n=1

un(xn, t) w(Xm, xn) dVn. (24)

Note that the window function w depends both on the fluid grid and on the markers.
To avoid recomputing the weights without storing them (their size being N ×M), (βk)m

(data of size 6×M) are stored after the regularization step.

Note that this algorithm has been modified by Pinelli et al. to avoid ill-conditioned M2D

matrices [61]. Such an issue has not been encountered in the present study, presumably because
of the larger stencil used here (4h instead of 3h in [61], h being the local grid size).

The discrete Dirac function is also used to update the field of viscosity. As in the front-tracking
method presented by Unverdi and Tryggvason [55], an indicator function In = I(xn, t) is
calculated to determine if xn is located inside (In = 0) or outside (In = 1) the particle. The
dynamic viscosity thus reads

µ(xn, t) = µint + (µext − µint) In, (25)

with µint the internal viscosity and µext the viscosity outside the particle. I(x, t) is determined
as the solution of a Poisson equation:

∆I = ∇.G, with G(xn) =
M
∑

m=1

nm dSm w(Xm, xn). (26)

G, the right hand side of the Poisson equation, can be seen as the regularization field of the
membrane normal vectors (nm, m = 1, ..., M). This technique ensures that the viscosity has
the right value inside and outside the particle, with a smooth transition in the membrane
region, where the forces are applied.

2.5 Particle volume conservation

Whatever the choice made for the discrete Dirac function, the IBM does not intrinsically
conserve the volume enclosed by the flexible membrane: interpolation does not conserve the
divergence-free character of the carrying fluid flow [34]. The error indeed goes to zero when
the grid is refined but this issue is sometimes pointed out as a major drawback of the IBM
method [35]. Volume conservation errors can also come from the time advancement of the
markers position.

In the present numerical method, the markers position is corrected to ensure volume conserva-
tion. This is obtained using a Lagrange Multiplier method to calculate the smallest correction
of the markers location to conserve the particle volume.
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In two dimensions, the cell is represented by a set of M markers, each marker m being connected
with markers m − 1 and m + 1 (markers M and 1 are connected, so that the membrane is
closed; in the following, when m = 1, m− 1 = M , and when m = M , m + 1 = 1). In 2-D, the
volume enclosed in the membrane is calculated as (with X the matrix of size 2×M containing
the markers coordinates):

V (X) =
1

2

M
∑

m=1

(Xm Ym+1 −Xm+1 Ym) . (27)

Recall that Xm and Ym are the two coordinates of marker m.

At the beginning of the calculation, the volume of the deformable particle V0 is calculated.
At the end of each time step, the coordinates of the membrane markers (X) are predicted,
after time advancement of the markers position. As already stated, V (X) 6= V0 since the
interpolation does not conserve the divergence-free character of the velocity field.

The aim is then to find the smallest markers displacements (δX) in norm, so that V (X+δX) =
V0. Xfinal = X + δX denotes the matrix containing the final coordinates. Introducing a
Lagrange multiplier Λ, the sought correction displacements δX minimize the following cost
function:

JΛ(δX) =
M
∑

m=1

(

(δXm)2 + (δYm)2
)

+ Λ(V (Xfinal)− V0) (28)

First, partial derivatives of JΛ are calculated against δXm and δYm. As these derivatives are
zero at the minimum, one finds δXm = −Λ

4
d(Y final

m ) and δYm = Λ
4

d(Xfinal
m ). The following

notation is used:

d(Xfinal
m ) = (Xfinal

m+1 −Xfinal
m−1 ) and d(Y final

m ) = (Y final
m+1 − Y final

m−1 ). (29)

The following hypothesis is made: correction displacements are small, so that ||d(δXm)|| <<
||d(Xfinal

m )|| and ||d(δYm)|| << ||d(Y final
m )||. Thus, quantities calculated from Xfinal

m and Y final
m

are approximated by their counterparts from Xm and Ym, which yields:

δXm = −Λ

4
d(Ym) and δYm =

Λ

4
d(Xm). (30)

Interestingly, the normal vector to the membrane at marker m is roughly aligned with the
vector (d(Ym) , −d(Xm))t (depending on the algorithm used to calculate the normal). One
recovers the intuitive statement that points have to be moved along the normal direction
to make the volume of the particle change. Such a reasoning is also made by [63] in their
volume-conservation algorithm. However, they enforce displacement in the normal direction,
calculated with a second-order polynomial approximation. Here, δXm and δYm are found to be
optimal given the formula used to calculate the volume (Eq. 27), independently of the normal
calculation.
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When JΛ is minimum,
∂JΛ

∂Λ
= 0, which means that V (Xfinal) = V0. Using Eq. (27) and

Eqs. (30), the following second-order polynomial equation in Λ is obtained: AΛ2 + BΛ + C = 0,
with:

A =
1

32

M
∑

m=1

(−d(Xm+1) d(Ym) + d(Xm) d(Ym+1)) (31)

B =
1

8

M
∑

m=1

(−Ym+1 d(Ym) + xi d(Xm+1)−Xm+1 d(Xm) + Ym d(Ym+1)) (32)

C = V (X)− V0 (33)

The smallest solution (in absolute value) Λmin of equation AΛ2 + BΛ + C = 0 is calculated
and Eqs. (30) are used to move the markers. One thus obtains a volume-correction algorithm
with negligible computational cost. In the reported calculations, one iteration is sufficient
to maintain relative volume variations of the particles at less than 10−15. Note that Li et

al. [63] iterate their volume-conserving algorithm several times to obtain the desired volume
conservation. This probably comes from the lack of consistency between their interface normal
calculation and their volume-conservation algorithm. A similar treatment can applied in 3-D,
adapting the formula to calculate the volume. A third-order polynomial equation has then to
be solved to determine the smallest value of the Lagrange multiplier.

Another method to conserve the volume consists in slightly modifying the force balance on
the markers by adding a uniform normal force on the markers. The force is proportional to
the volume variation and to a penalty parameter [64, 65]. The technique used here has the
advantage of imposing the volume conservation more strictly and does not involve any penalty
parameter. It can can be considered as a projection correcting volume conservation errors
related to the interpolation and to the time advancement of the markers position.

3 VALIDATIONS

This section is dedicated to the validation of the FSI solver, named YALES2BIO 2 . As the
present numerical method is not standard, validation is very detailed to prove the quality of
the results. Validation notably involves test cases related to vesicles (ie particles with strong
resistance to stretching and bending resistance) and capsules (ie particles with elastic mem-
branes without bending resistance).
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Test case
(section)

Diagram Elements tested
Sources of reference
data

Equilibrium
shapes of

vesicles (§ 3.2)

Forces calculation, FSI
coupling

Equilibrium shapes gen-
erated by minimization
of surface energy

Vesicles in
shear flow

(§ 3.3)
x

y

θ

u = ky ex

FSI coupling, variable
viscosity, Bending force

Veerapaneni et al. [14],
Ghigliotti et al. [12] and
Beaucourt et al. [29]

Circular
capsules in
shear flow

(§ 3.4)

x

y

u = ky ex

Elastic force, Caspule
under Stokes flow

Breyiannis & Pozrikidis
[49] and Wolfenden &
Blyth [11]

Damped
oscillations of

capsules
(§ 3.5)

Elastic force, evolution
in a non-zero Reynolds

number flow

Lee and Leveque [35],
Cottet et al. [30, 66]
and Martins Afonso et

al. [67]

Table 1
Summary of the validation test cases presented in section 3.

3.1 Overview of the validation test cases

Table 1 summarizes the different test cases reported in this validation section. Several test cases
are presented to be able to validate the different elements composing the FSI solver. All test
cases are performed using the volume-conserving algorithm, to guarantee perfect conservation
of the fluid mass enclosed in the membrane.

2 http://www.math.univ-montp2.fr/∼yales2bio/
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Non-dimensional numbers used to define the geometry and the properties of the membrane
and the flow field are now presented. The geometry of a vesicle is often characterized with
only one parameter, the reduced volume, built from the vesicle volume and membrane area.
In 2-D, the reduced area ϑ is defined as ϑ = 4π A /P2, with A and P the particle area and
the membrane perimeter, respectively. R = P/2π is an equivalent radius of the particle. The
situation is different for capsules, for which the membrane can stretch. R defines the equivalent
radius of the reference geometry for the capsule. For example, for a circular capsule of radius
a, R = a, whatever the deformation undergone by the capsule.

The viscosity of the internal and external fluids may differ. This is characterized by the internal-

to-external viscosity ratio λ =
µint

µext
.

For particles under flow, several non-dimensional numbers are used to compare the different
forces involved. The Reynolds number, comparing the inertial effects to the viscous effects is
defined as:

Re =
ρkR2

µext
, (34)

with k a characteristic shear rate. Two non-dimensional numbers, equivalent to the capillary
numbers, are constructed to compare the viscous forces to the membranes elastic and bending
forces, Ca and χ, respectively:

Ca =
µext k R

Ee

and χ =
µext k R3

Eb

. (35)

Finally, β is defined to compare the bending forces and the elastic forces. β characterizes the
membrane mechanics and is thus independent of the flow:

β =
Ca

χ
=

Eb

Ee R2
. (36)

The lower the β ratio, the closer the particle to a vesicle (elastic forces ensuring the incom-
pressibility of the membrane).

3.2 Equilibrium shapes of vesicles

The first test case is an equilibrium test case. It is inspired by the test case of vesicle equilibrium
shapes [68], used for validation of vesicle solvers [15, 29]. For vesicles, the membrane surface is
incompressible. When modeled by the Helfrich energy (Eq. 4), the bending resistance makes a
vesicle of arbitrary initial shape reach an equilibrium state which depends on ϑ, the reduced
volume (reduced surface in 2-D). In the present validation test case, the incompressibility is
not strictly enforced. Thus, it will be shown that the final equilibrium shape also depends on
β (Eq. 36).

In the present validation work, particles of initially elliptic shapes (of long radius a and small
radius b) are placed in a fluid at rest and evolve in time due to resistance to bending. The
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reference unstressed shape (necessary for elastic force calculations) is the initial elliptic shape.
Three cases are reported here. The non-dimensional parameters of the cases considered are
gathered in Table 2. Two values of the reduced volume are considered, ϑ = 0.84 and 0.54. For
ϑ = 0.54, two values of β are used. In case 2, β = 3 × 10−4, so that the perimeter is almost
conserved (as in case 1). In case 3, β is 100 times larger, so that changes in the particle perimeter
are expected. The fluid viscosity only impacts the temporal evolution of the membrane shape,
not its equilibrium shape. Note that despite the fact that the solution of the problem only
involves the membrane, the fluid-structure coupling is tested in this case, as the membrane
moves by action of the fluid. The membrane is discretized with 128 markers. The fluid flow is
solved over a triangular unstructured grid of typical mesh size 0.04 a. The grid size is of the
same order as the spacing between membrane markers, as usually advised for IBM [61].

Parameter a/b ϑ Eb/Ee R2

Case 1 2 0.84 3× 10−4

Case 2 4 0.54 3× 10−4

Case 3 4 0.54 3× 10−2

Table 2
Parameter values for the particle equilibrium shape test case.

In order to validate the results, shape optimization is performed to find the vesicle shape that
minimizes the total energy E = Ee + Eb (see Eqs. 3 and 4), discretized as in § 2.3. Strain
in the membrane and curvature are calculated as in the fluid-structure solver, so that the
comparison is used to validate 1) the fluid-structure coupling and 2) the force calculation.
Results are displayed in Fig. 4, which shows that equilibrium shapes are perfectly recovered in
the simulations. The shapes resemble to that of 2-D vesicles when β is small (cases 1 and 2).
Shapes do not depend on the initial area ratio only, but also on the membrane mechanics, as
shown by the results for case 3 (Fig. 4b). Variations of the perimeter compared to the initial
shape is less than 0.05 % in cases 1 and 2, but reaches 4% in case 3.

3.3 Vesicles in shear flow

The vesicle-like particles are now considered under flow, presenting the classical test case of
the vesicle in a simple infinite shear flow. The limit for zero Reynolds number is considered
here, to validate against BIM results. The behavior of 2-D vesicles in a simple infinite shear
flow at zero Reynolds is well known: it depends mainly on the reduced volume and on the
internal-to-external viscosity ratio λ [12, 14, 29]. For low viscosity ratios, the vesicle tank-
treads while keeping a fixed orientation angle with the flow direction. The angle depends on
the reduced volume, the vesicle being more aligned with the flow for low values of ϑ. The effect
of the bending modulus on the results exists but is small [14]. When λ increases, the vesicle
also aligns more and more with the flow, until the transition to tumbling is observed.

Several cases are computed to recover the dependence of the results to ϑ and λ. Simulations
are performed at Re = 0.001, which is often considered as a good approximation of the Stokes
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Fig. 4. Equilibrium shapes for two-dimensional particles (see Table 2) for case 1, a/b = 2 (a) and cases
2 and 3, a/b = 4 (b). Comparison between IBM results (+, ×) and shape optimization results (◦, ⋄).
Two values of β are computed, β = 3 × 10−4 (+ and ◦ symbols) for cases 1and 2 and β = 3 × 10−2

(× and ⋄ symbols) for case 3.

regime [69] (additional results on the effect of the Reynolds number are presented for the case
of a capsule in shear flow). First, the viscosity ratio between the internal and external fluids
is set to λ = 1 and ϑ is varied between 0.5 and 0.9.

The numerical domain and the grid are presented in Fig. 5. The numerical domain is a square
box of size 100 R × 100 R, R being the equivalent radius of the vesicle. In preliminary calcu-
lations, differences of less than 0.05 % in the equilibrium angle of tank-treading particles have
been observed when changing the size of the domain from 50 R × 50 R to 100 R × 100 R.
The size of the numerical domain is sufficient to avoid the spurious effect of confinement on
the results. Periodic boundary conditions are imposed in the x direction. Walls with tangential
motion are used at y = ± 50R to maintain a shear flow defined as u(x, y) = ky ex (Fig. 5,
left). The domain is very large compared to the size of the particle. This can be done with
a moderate extra computational cost, as the unstructured method enables the use of coarse
mesh far from the vesicle (the typical mesh size near the boundaries is 4R, as shown in the
Fig. 5, left). The grid size at the center of the domain (where the vesicle flows) is set to R/16.
For all the computed cases, the vesicle membrane is discretized with 128 markers (as shown
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Fig. 5. Numerical domain and grid for the cases of vesicles in simple shear flow. Left: complete domain
(with the boundary conditions) is shown. Right: zoom on the center of the domain; view of the fluid
grid and membrane markers (black dots).

in Fig. 5, right), initially equally spaced.

The vesicles are initially elliptic, as in the former test case. Their equivalent radius R is
kept constant, while changing their aspect ratio to obtain different values of ϑ. In the present
simulations, Ca = 10−5, so that the viscous forces do not overcome the elastic resistance. Two
values of χ are considered, 1 and 100, so that β remains very small: the difference with a truly
incompressible vesicle is minimal. Indeed, relative variations of the perimeter are less than
10−5 for χ = 1.0 and less than 10−7 for χ = 100.0. Whatever the case, the relative local area
change is never larger than 10−4.

After a transient phase, vesicles reach a stable state, with constant inclination θ with respect
to the flow, the membrane tank-treading around the internal fluid. Fig. 5(right) shows the final
orientation for a vesicle of reduced area 0.9. Equilibrium angles are calculated by assessing the
tensor of the moments of inertia [49]. The comparison of equilibrium angles as a function of the
reduced volume in shown in Fig. 6. Very good agreement is obtained with existing boundary
integral results [14]. The present simulations reproduce well the small yet visible dependance
of the results on χ.

The ability to compute configurations with different viscosity values inside and outside the
particles is now verified. For χ = 1 and ϑ = 0.9, for a given external viscosity, the inter-
nal viscosity is varied. In the tank treading regime, the equilibrium angle decreases with the
internal-to-external viscosity ratio λ. Excellent comparisons are obtained (Fig. 7) with the nu-
merical results for two-dimensional vesicles by Ghigliotti et al. [12] with BIM and Beaucourt
et al. [29] with an advected field method. Tank-treading-to-tumbling transition is found for
a critical value of λ between 5.5 and 5.6, as in [12]. Note that the smooth representation of
the viscosity discontinuity through the membrane does not introduce any measurable error in
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Fig. 6. Tank-treading vesicle in simple shear flow: equilibrium angle θ as a function of ϑ for χ = 1 (◦)
and χ = 100 (+). The viscosity ratio is kept at 1.0. Comparison with the numerical results of
Veerapaneni et al. at χ = 1 ( ) and χ = 100 ( ) is provided [14].

these results.
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Fig. 7. Vesicle in simple shear flow: equilibrium angle as a function of the internal-to-external viscosity
ratio λ for χ = 1 and ϑ = 0.9. Comparison of the present simulations (◦) with the numerical results
from [12] ( ) and [29] (⋄).

3.4 Capsules in shear flow

While studies of two-dimensional vesicles are not that rare, even using a boundary-integral
method, reference results for elastic capsules in two dimensions are scarce. BIM simulations
are rarely performed in 2-D: the computational cost being limited, authors directly published
3-D results. Two-dimensional capsules were considered in other studies, notably as a step
in the development of numerical methods [30, 35, 38, 70, 71]. However, they often rely on
diffuse interface methods (as the immersed boundary method), that involve more sources of
approximations than BIM. As a consequence, we strongly believe that careful validations should
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be performed as much as possible against BIM results, when available. In order to validate
their BIM solver to study capsules in bifurcations, Woolfenden & Blyth [11, 50] used the case
of an initially circular capsule in a simple shear flow from Breyiannis & Pozrikidis [49]. This
test case is reproduced here. Cases with identical viscosity inside and outside the capsule are
shown. In the zero Reynolds number limit, the results only depend on Ca. When the initially
circular capsule is deposited in the flow, it is progressively deformed by the flow. Beyond a
certain deformation, the capsule elastic forces become large enough to resist the viscous forces.
The capsule stops deforming and undergoes the tank-treading motion also visible for vesicles.
Elastic forces decrease with Ca: at high values of Ca, capsules are very elongated and tend to
align more with the main flow.

An initially circular elastic capsule, showing no bending resistance, is deposited in an infinite
shear flow u(x, y) = ky ex. The initial capsule radius is denoted by R. The initial shape is
considered as the reference shape for the calculation of the stresses. The same fluid is used
inside and outside the capsule (λ = 1), with a given viscosity µ.

The computational domain and boundary conditions are identical to the ones used to compute
vesicles in simple shear flow (see Fig. 5). The fluid domain is a square box of size 100 R × 100 R

with periodic boundary conditions in the flow direction and translating walls in the other
direction to maintain the shear flow. As already stated in the former section, this size of
numerical domain is sufficient to avoid confinement effects. Grid size is set to R/16 at the
center of the numerical domain, where the capsule is deposited and of order of 4R near the
boundaries. The capsule membrane is discretized with equally-spaced 128 markers. As reference
results are generated in the Stokes regime, the Reynolds number is set to Re = 0.001 in the
present simulations (differences with the zero Reynolds number limit are less than 0.3 %, see
§ 4.1).

Figure 8 shows the time evolution of the deformation parameter D and the orientation θ of
the capsule with the x axis. These quantities are calculated by computing the tensor of the
moments of inertia [49], and identify the result with the one of an ellipse of major radius A
and minor radius B and of orientation θ. D is defined as D = (A−B)/(A+B). Time is made
dimensionless using the characteristic time k−1.

The present results match the data from [49]. The behavior in time is well reproduced, and
capsules reach the correct deformation and orientation at convergence. Maximum error of 0.003
rad (3%) is observed for the final orientation of the capsule at Ca = 0.125.

3.5 Damped oscillations of an elastic capsule

This test case is based on numerous publications about numerical methods for flexible sur-
faces in flows [30, 35, 70–72]. It focuses on the relaxation of an elastic capsule. The test case
configuration is summarized in Fig. 9: an initially stretched elliptic membrane, enclosing an
incompressible fluid, is placed in a square fluid domain, closed by walls. The characteristics of
the incompressible fluid are identical inside and outside the cell. The zero-stress configuration
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Fig. 8. Tank-treading capsule in simple shear flow: time-evolution of the deformation parameter D
(a) and equilibrium angle θ/π (b) for different values of Ca, compared with existing BIM results [49]
( ). Note that Fig. 2 of their paper [49] has typos in the values of Ca: results at Ca = 0.05 are
erroneously labelled Ca = 0.04 in their paper.

is a circular membrane, of radius R0. The initial configuration is an ellipse of radii R0 and
R1 = 1.5 R0. The membrane evolves to minimize its surface (perimeter in 2-D) with prescribed
volume: given the incompressible nature of the fluid, the equilibrium configuration is a circle
of radius Rf =

√
R0R1. This equilibrium configuration is pressurized.

L

L

R1

R0

Rf

Fig. 9. Two-dimensional elastic ellipse membrane test case: the grey zone is the fluid domain. The solid
line is the initial membrane location. The dashed line is the resting configuration of the unstressed
membrane. The dotted line is the final equilibrium configuration.

Depending on the elastic modulus of the membrane and the fluid dynamic viscosity µ, the
membrane oscillates or not before reaching the equilibrium state. More precisely, for low vis-
cosity values, the capsule oscillates and the period of the oscillations is shown to be related
with an elastic characteristic time te = (ρR0

4/Ee(Rf − R0))
1

2 [67, 73]. The damping rate of
the oscillation is related to the viscous time tD = ρR0

2/µ. te/tD is thus a ratio between elastic
and viscous time scales. The larger this ratio, the less the capsule oscillates before reaching its
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circular equilibrium shape. Table 3 summarizes the values of the parameters used in the calcu-
lations. These values have been chosen to allow comparison with existing results [30, 35, 66].

Parameter L/R0 R1/R0 Rf/R0 te/tD

Value 2 1.5 1.225 0.03

Table 3
Values of the input parameters for the computation of the capsule relaxation.

Simulations are run over a fluid grid of 256 x 256 square cells. The membrane is represented by
500 regularly spaced markers. During the simulation, the membrane conserves approximately
the shape of an ellipse, with minor and major axes along the x and the y axes. Non-dimensional
diameters along the x and the y axes (initially 2 R1/R0 and 2, respectively), are extracted from
the simulations and displayed in Fig. 10 over time. Time is made dimensionless using the elastic
characteristic time te. Results are compared with published data by Lee & Leveque (2003) [35]
with an immersed interface method and by Cottet & Maitre (2006) [30] and Cottet, Maitre &
Milcent (2008) [66] with a level-set method, generated over grids of similar resolution.
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Fig. 10. Time-evolution of the diameters along the x and the y axes of an initially elliptic oscillating
capsule. Comparison of the present results ( ) with existing results from Lee and Leveque [35]
( ) and Cottet et al. [30, 66] ( ). The equilibrium diameter 2Rf/R0 is displayed as a solid grey
line.

The time evolution of the capsule diameters along the x and y directions is in good agreement
with the previous results in the literature. Note in particular that the present formulation
ensures perfect volume conservation along time despite the action of unsteady dilatational
elastic forces.

In order to further analyze the oscillatory relaxation of 2-D capsules, Martins Afonso et al.

[67] used normal-mode analysis to obtain semi-analytical frequency and damping rate of the
oscillations of capsules. The analysis stands for small perturbations of the different azimuthal
modes (the case shown in Fig. 9 corresponds to large perturbations of mode 2). As an example
of the results obtained, the case of a non-confined capsule is considered, with Rf/R0 = 2
and te/tD = 0.001. The normal-mode analysis yields the complex pulsation of the proper
mode of the system. Table 4 displays the complex pulsation for azimuthal modes 2 and 3,
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together with the results obtained in numerical simulation (in a the small perturbation regime)
using the numerical method presented in this paper. The complex pulsation values are made
dimensionless using t−1

e .

Case and parameter values Normal-mode analysis Numerical solution

Case 1 : Rf/R0 = 2, te/tD = 0.001, mode 2 ω te = 1.695 − 0.037 i ω te = 1.670 − 0.040 i

Case 2 : Rf/R0 = 2, te/tD = 0.001, mode 3 ω te = 3.395 − 0.071 i ω te = 3.335 − 0.067 i

Table 4
Non-dimensional complex pulsation ω te of proper modes of capsule relaxation in a non-confined
environment. Comparison between normal-mode analysis and the present numerical method.

Table 4 illustrates the ability of the present numerical method to reproduce results from linear
analysis for the oscillatory relaxation of 2-D capsules, in the limit of small perturbations.
Frequency is recovered with less than a 2% error. Small yet larger differences are observed for
the damping rate (8% and 5% for modes 2 and 3, respectively). A more detailed comparison
of the results is presented by Martins Afonso et al. [67]. This very good comparison confirms
the correct behavior of the present method in the test case of damped oscillations of an elastic
capsule.

4 APPLICATIONS

The study of microcirculation is one of the primary objectives for developing numerical meth-
ods based on boundary integrals. Indeed, bf the use of relatively simple geometries and the
zero-Reynolds number assumption are not restrictive in that context. The Reynolds number
in capillaries is indeed of order of 10−3. In addition, in the circulatory system, the shear stress
seen by red blood cells remains moderate (except in some specific cases as severe stenoses
[74]) so that the particle Reynolds number remains small. On the contrary, flows in medical
devices are sometimes associated with very different conditions. Red blood cells may interact
with manufactured elements having complex geometrical details. Moreover, the flow Reynolds
number can reach 104 or 105 in ventricular assist devices and blood pumps [45]. The particle
Reynolds number also gets of order of unity in devices as cytometers [75]. In order to demon-
strate the performances of the present method to compute flows in non-physiological contexts,
this section is dedicated to the computation of two cases: capsules under a simple shear flow
for different Reynolds numbers (§ 4.1) and the entry of a capsule in a contraction, with a more
complex geometry, the carrying flow being at Re = 220 (§ 4.2).

4.1 Effect of the Reynolds number in the case of a capsule in shear flow

The configuration of a capsule suspended in a simple shear flow, already presented in sec-
tion 3.4, is used here to show the effect of the particle Reynolds number on the results. Four
different Reynolds numbers are considered: Re = 0.001 (already shown for the comparison
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Fig. 11. Capsule in simple shear flow: time-evolution of the deformation rate (a) and inclination angle
(b) at Ca = 0.05 for different values of the Reynolds number. The viscosity ratio is kept at 1.0.
Lines labeled with Re∗ are obtained from calculations with the quadratic terms of the Navier-Stokes
equations turned off.

against the Stokes flow results in section 3.4), Re = 0.01, Re = 0.1 and Re = 1.0. The elastic
capillary number is Ca = 0.05 for all calculations. The time-evolution of the deformation rate
D and the angle with the main flow direction θ/π (defined as in Fig. 6 and Fig. 8) is shown
in Fig. 11. When the Reynolds number is below one, the evolution is rather monotonic, the
equilibrium values of D and θ/π decreasing with the Reynolds number. At Re = 1.0, oscilla-
tions are observed before reaching equilibrium. In addition, the capsule needs much more time
to reach the equilibrium (typically kt ≈ 30). Such behaviors are consistent with the results
obtained in 3-D by Le et al. [39], for instance.

In order to quantify the importance of the contribution of the non-linear terms of the Navier-
Stokes equations, they have been turned off in two computations at Reynolds numbers 0.1 and
1.0: the unsteady Stokes equations are thus solved to obtain the results labelled Re∗ = 0.1 and
Re∗ = 1.0 in Fig. 11. The ∗ superscript thus denotes the absence of quadratic terms (second
term of the left hand side of Eq. 2) in the simulation. When the equilibrium steady state
is obtained, such simulations provide the results for infinitely small values of the Reynolds
number. Indeed, differences with Re = 0.001 are negligible: for kt = 7, the steady state is
reached and results in the equilibrium angle differ by less than 0.3 % between Re = 0.001 and
Re∗ = 0.1. On the contrary, the transient behavior for these simulations is very different from
the one observed at low Reynolds number. Contrary to what occurs in creeping flows, the flow
does not adapt instantaneously to the membrane state: despite the absence of quadratic terms,
inertia is still present due to the unsteady term. One must keep in mind that both effects are
neglected when computing low-Reynolds number flows with the Stokes flow assumption (as in
BIM), and that both can have an impact on the flow results. The present results also show
that unsteady Stokes equations can be used to obtain quicker estimates of steady state values,
but certainly not transient information.
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4.2 Entry of a capsule in a sudden contraction at Reynolds number 220

In artificial devices, the flow can reach regimes that never occur in a physiological environment.
Typical examples are blood pumps or ventricular assist devices, where the Reynolds number
may reach 105 [45]. Another example is the flow in cytometers, where the fluid velocity reaches
several meters per second in apertures of a few tens of microns [75]. The flow Reynolds number
may reach several hundreds, in spite of the small size of the device. Typical maximal shear rate
in these systems is of order of 106 s−1. As an illustration of the flexibility of the method and its
ability to deal with such non-physiological conditions, the entry of a capsule in a contraction
is computed. Lengths and velocity scales are typical of industrial cytometers [75].

Figure 12 sketches the geometry of the problem. The fluid flows from left to right in a 20:1
contraction. The axes origin is located at the beginning of the contraction, on the centerline.
The half-height of the narrow channel is H = 25 µm. The contraction does not have sharp
edges: the entry is rounded, with a curvature radius of 5 µm. It is one of the advantages of an
unstructured method to be able to easily account for such geometrical details at no additional
cost. A zoom near the contraction corner (x = 0 and y/H = 1) is shown in Fig. 12 to visualize
the grid (a grid twice as coarse as the simulation is shown for better visualization). The flow grid
contains 280,000 triangular elements. The minimum grid size is 0.35 µm around the contraction
entrance. The membrane is discretized with 128 markers. The Reynolds number based on the
bulk velocity ub = 4.4 m.s−1 and the total height of the channel is 220. An estimate of the
shear rates encountered in the system is k = ub/H = 1.76 105 s−1.

An initially circular capsule is deposited upstream of the contraction, slightly above the cen-
terline (its center is placed at x = −2 H and y = 2 H). The initial radius of the capsule is
R = 4 µm. During its displacement through the contraction, it undergoes acceleration and
extension along its flow direction, then shear inside the small channel. k is a good estimate
of the shear rates seen by the capsules during its movement. The particle Reynolds number
is thus of order of Re = 2.7. The fluid viscosity is the same inside and outside the particle:
λ = 1. The capsule capillary number is set to Ca = 0.0136 to allow visible deformations while
preventing excessive extensions.

Figure 13 shows the dynamics of the capsule over time, superimposed with the streamwise
velocity field (in absence of the capsule). The capsule undergoes a rapid acceleration when
flowing through this 20:1 contraction. Starting from its initial location (label a in Fig. 13), it
first lengthens in the direction of the flow (see label b, at t = 5.61k−1). Inside the contraction,
the velocity gradient becomes negative along the trajectories, which results in a contraction of
the capsule, which recovers a more circular shape (t = 6.63k−1, label c) than at the entrance.
Further in the channel, the influence of the walls are seen: the capsule enters in a zone with very
small extensional motion, but with important shear. Shape now resembles the off-centerline
vesicle shapes described for instance by Kaoui et al. [76] in an unbounded plane Poiseuille
flow. Such flow is of great interest to test the numerical method, as the carrying flow presents
successively important extensional, compressional and eventually shear characters.
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40H

40H 2H

Fig. 12. Left: sketch of the contraction configuration (not to scale). + marks the axes origin and the
dot marks the initial location of the capsule. Flow goes from left (inflow) to right (outflow). Solid
lines denote non-slipping walls. Right: zoom near the contraction entrance with fluid triangular grid
and view of the membrane markers (at an arbitrary time during the simulation). Every second point
is shown for better visualization of the grid. The length of the thick grey line in the top right corner
is H/10.

Note that the streamline issuing from x = −2 H and y = 2 H and calculated from the carrying
flow (before the capsule deposit) is also displayed as a black line in Fig. 13. It shows that the
capsule essentially follows the trajectory that tracers would have in the extension-compression
zone (upstream of x = 2 H). Lateral migration is observed once the capsule lies in a zone of
substantial shear (x > 2 H): the center of mass of the capsule progressively moves away from
the streamline (see label d, at t = 8.67k−1).

5 CONCLUSION

A numerical method for simulations of the dynamics of deformable objects constituted by a
liquid droplet enclosed in a flexible structure is presented. The approach is based on the im-
mersed boundary method adapted to unstructured grids with the reproducing kernel particle
method. The specificity of the method is to enable calculations at high Reynolds number, in
complex geometries using body-fitted unstructured grids. The unstructured IBM is supple-
mented with a volume-conservation algorithm that ensures that interpolation of the velocity
field to the membrane markers in the IBM does not spoil the divergence-free character of the
velocity field.

The method demonstrates its ability to handle both low and high Reynolds number flows, for
different properties of the immersed membrane. Specific attention is devoted to the careful
validation of the numerical method. In this regard, a series of validation test cases are pre-
sented, gathering capsules and vesicles configurations. We believe that this collection of 2-D
test cases constitute a good quantitative validation process for 2-D methods, ruling out the use
of qualitative comparisons with 3-D experiments or simulations, sometimes used as validation
in method papers. Robustness of the numerical method in a complex flow involving a sequence
of extension-compression-shear of the deformable particle is also shown.
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Fig. 13. Sequence of membrane locations superimposed over the carrying flow (the x component of
velocity, U , is displayed: white iso-lines of U/ub are shown each 0.25, from 0.25 to 1.25). The black line
is the streamline (computed from the carrying flow) issuing from the initial location of the capsule
center of mass. Membrane markers are shown at t = 0, t = 2.55k−1 and t = 5.10k−1, then every
t = 0.51k−1. The center of mass is displayed at the center of the particle. Labels a to d mark the
membrane position for kt = 0, 5.61, 6.63 and 8.67, respectively.
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