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The problem of understanding the movement of red blood cells (RBCs) is at the heart of hemorhe-
ology. It has thus motivated an extensive body of experimental and numerical works, which showed
that RBCs display a rich dynamical behavior in pure shear flow. However, a clear physical un-
derstanding of the coupling between cells orientation, membrane deformations and circulation is
still not emerging, notably due to the lack of a comprehensive and tractable model to serve as the
theoretical foundations for data analysis. Here, we propose a new low-order model which, combined
with detailed simulations and existing experimental data, demonstrates how membrane in-plane
deformations and elasticity are the essential ingredients responsible for RBCs dynamics at low shear
stresses. Our approach demonstrates that out-of-plane deformations and fluid inertia are not nec-
essary to explain the RBC dynamics and underlines the importance of membrane stress-free shape.
By reproducing all the details of known RBCs dynamics in shear flow, the new low-order provides
a single framework to understand the full dynamics of RBCs at low shear stresses.

Red blood cells (RBCs) are the essential oxygen carri-
ers of our body and compose almost half of blood’s entire
volume. Understanding their behavior in flow is there-
fore a key step to characterize both physiological and
pathological blood circulatory conditions, and to propose
non-invasive diagnostic tools by testing their impaired
dynamics. The apparent structural simplicity of RBCs
contrasts with the complexity of predicting their dynam-
ics [1]. Indeed, a RBC is a micron-scale deformable bag,
of the shape of a biconcave disk at rest, containing a
Newtonian solution of hemoglobin of viscosity ηi, typi-
cally five times the viscosity of water and higher than
the outer viscosity ηo in physiological conditions. This
solution is enclosed by a thin composite membrane made
of an incompressible fluid lipid bilayer, scaffolded inside
by a two-dimensional network of elastic filaments of spec-
trin [2] with a typical in-plane shear modulus Gs. Under-
standing the dynamics of a RBC comes down to two main
issues: how its shape adapts to viscous stresses and how
the resulting internal flow impacts cell behavior. This
fluid-structure problem is highly non-linear and non-local
in nature and despite decades of research, the full phase
diagram of the different dynamical states of a RBC in
pure shear flow is still not available, as demonstrated by
the recent discovery of new dynamical states observed in
physiological conditions of strong flows [3].

However, experiments realized during the last decades
on single RBCs for shear stresses ηoγ̇ lower than 0.1
Pa [4, 5] identified numerous dynamics of orientation
where membrane out-of-plane deformations are small and
cells maintain their discocyte shape. For instance, RBCs
present a dual solid-liquid behavior for increasing ηoγ̇, de-
pending on the viscosity ratio λ = ηi/ηo [6, 7]. For λ >∼ 3,
the cell flips like a solid coin. Its axis of symmetry pre-
cesses around the vorticity direction, describing a closed
trajectory. However, unlike a solid ellipsoid [8], this orbit
progressively drifts for increasing shear rate γ̇ until the
symmetry axis aligns with the vorticity direction: the cell

rolls [5, 6, 9, 10]. For λ <∼ 3, the orbital drift to rolling
is maintained [5, 9], but for higher γ̇, rolling is not sta-
ble and is replaced by a modified droplet-like behavior
called swinging [4, 5]: the membrane circulates around
the center of mass like a tank-tread, while the orienta-
tion of one of the cell’s largest axis of inertia oscillates
around an average angle whose value decreases with γ̇.
A rich corpus of numerical simulations reproduced part
of these motions [3, 11–16], but even a simple question
as the essential ingredients yielding this complex dynam-
ics remains unanswered. Dupire et al. [5] hypothesized
for instance that in-plane elasticity may be responsible
for orbital drift, but the only test provided was to rigid-
ify the RBCs, indeed preventing drift but simultaneously
precluding in-plane and out-of-plane deformations and
inner flow. Whether out-of-plane deformations are nec-
essary to explain RBC dynamics at low shear stress, or
solely the viscosity ratio is unknown. Moreover, iner-
tia, which is known to promote rolling motion for solid
ellipsoids [17], may play a role. Inertia and out-of-plane
deformations are small in this flow regime, but the orbital
drift is a very slow process, occurring over hundreds of
time units γ̇−1. This suggests that even small effects may
contribute to the long-term dynamics of RBCs.

Important breakthroughs in the physical understand-
ing of RBC dynamics sprung from the development of
theoretical models where the axis of symmetry of the
cell is bound to the shear plane. Keller and Skalak [18]
understood the fundamental role played by λ in the tran-
sition between flipping and tank-treading. Later, the ex-
istence of the membrane stress-free shape different from
the sphere was added to this approach [4, 19], inspired by
the observations of in-plane elasticity and shape memory
for the RBC membrane [20, 21]. These models predicted
the transition between flipping and swinging with γ̇ [4].
The membrane elements have to overcome an energy bar-
rier to circulate around the RBC and make the cell tank-
tread/swing. In-plane elasticity was thus identified as a
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key element controlling dynamics for this planar config-
uration. However, such conclusions have not been gen-
eralized to 3-D dynamics: the absence of comprehensive
approaches coupling arbitrary orientation, membrane cir-
culation and stress, isolating the role played by the ge-
ometry and by each structural element, has been a true
limitation for the understanding of RBC dynamics.

In this letter, we propose a three-dimensional low-order
model for RBCs dynamics that we compare to detailed
simulations and existing experimental data. We demon-
strate the essential role played by both membrane in-
plane deformations and viscosity ratio. Our approach
underlines the importance of membrane stress-free shape
and reproduces all the dynamics observed both experi-
mentally and numerically, simultaneously ruling out out-
of-plane deformations and fluid inertia as necessary ele-
ments to explain the behavior of RBCs under shear.
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FIG. 1. Geometry and variables of interest (a,b) and examples
of dynamics in shear flow (c-e). (a) The orientation of the
body frame (xi) with respect to the fixed frame (x̂i) is defined
by the Euler angles [44]. (b) The membrane tank-treading is
defined in the body frame by the tank-treading rate vector
Ω̇ and the small axis of the reference shape X. The RBC is
colored by the reference shape radius (radial distance to the
cell center), from blue (low values, small axis) to red (large
values, long axes). (c) Simulation of an orbit selection (λ = 1,
Ca = 0.016, vref = 0.997): ϕ along time. The minimum angle
in the stationary state, ϕorbit, characterizes the limit orbit.
(d-e) Simulation from flipping to rolling (λ = 1, Ca = 0.025,
vref = 0.997): ϕ along time (d) and corresponding sequence
(e) of the simulated RBC colored as in (b). The + in (d)
mark the instants when the shapes are displayed in (e).

The problem geometry is shown in Fig. 1. x̂i (unit
vectors êi) denote the coordinates of a fixed frame R̂,
and xi (unit vectors ei) the coordinates of a body frame
R of same origin, whose axes correspond to the principal

axes of the cell. To define the orientation of the cell
with respect to the fixed frame, the Euler angles θ, ϕ
and ψ are used (Fig. 1(a) and supplementary material
[44]). An external shear flow is imposed: û0

1 = γ̇x̂2.
The relative strength of the shear flow is defined by the
capillary number Ca = ηoγ̇a/Gs, with a = 2.82 µm a
characteristic size of the RBC [12].

The small axis (symmetry axis) of the RBC is along
x3. The Euler angle ϕ is the angle between x3 and the
vorticity direction x̂3, and thus characterizes the orbits of
the cell. Membrane circulation is tracked in a Lagrangian
way following the location of the small axis of the stress-
free shape of the cytoskeleton in the body frame, denoted
by vector X (Fig. 1b). When X is not along x3, the mem-
brane has circulated and stored in-plane elastic energy.

The present analysis is based on models of decreasing
complexity. We first present simulations of the full fluid-
structure interaction problem, including all modes of de-
formations and small yet non-zero fluid inertia. Simula-
tions provide reference data for the subsequent low-order
modeling. Simulations are performed using YALES2BIO
[3, 16, 22–26] (see supplementary material [44]), a solver
for the incompressible Navier-Stokes equation based on
the immersed boundary method. The infinitely thin
membrane resists shear and area changes following the
Skalak model [27]. Bending resistance is modeled by
the Helfrich curvature energy [28, 29]. The membrane
is prestressed at rest, its stress-free shape being a quasi-
spherical oblate ellipsoid [12, 13, 30, 31], with the same
surface area as the RBC. Different stress-free ellipsoids
are used, defined by their reduced volume vref , the vol-
ume of the ellipsoid divided by the volume of the sphere
having the same surface area. This reference shape is first
deflated until an equilibrium biconcave shape is reached,
which is then subjected to shear. The higher vref , the
lower the elastic energy barrier for membrane circulation
[13, 20, 32]. In all simulations, Gs = 2.5 µN.m−1 [31, 33],
and the bending modulus is κb = 3.0× 10−19 J [16].

As a first result, we show an example of orbit selection
in Fig. 1(c: after a transient flipping, the cell initially
in the shear plane (ϕ = π/2) reorients and flips over a
specific limit orbit, characterized by ϕorbit, the minimum
value of ϕ after reorientation. At higher external stress,
the cell may reorient to rolling: the RBC small axis aligns
with the vorticity direction (ϕ → 0, Fig. 1d). During
the reorientation, the reference shape circulates along the
RBC without major cell deformation (Fig. 1e).

The orbital drift of RBCs as a function of Ca is first
examined for λ = 1.0 (Fig. 2): RBCs flip over orbits of
decreasing value of ϕorbit when Ca increases, until rolling
is reached (ϕorbit = 0), as seen in experiments [5]. For
higher Ca, RBCs return to the shear plane (ϕorbit = π/2)
and tank-tread/swing [4, 5]. This reorientation from
rolling to tank-treading is performed without flipping:
the RBC takes a fixed inclination and spins without an-
gle oscillations, a motion called ‘frisbeeing’ or ‘hovering’,
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reported in simulations [12, 15] and transiently in exper-
iments with a step increase of shear rate [5].

In Fig. 2, results at λ = 1 show that the stress-free
shape of the cell determines the stress at which orbital
drift occurs. The energy barrier for membrane circulation
being higher at vref = 0.96 than at 0.997, the reorienta-
tion occurs for higher Ca. As a consequence, the frisbee
motion disappears. Instead, the RBC buckles [3, 16] and
becomes a stomatocyte [16]: at such higher stresses, the
whole RBC deforms. Note that results align well with
the experiments [5] for vref = 0.96 (Fig. 2, inset).
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FIG. 2. Orbital drift of a RBC with Ca in shear flow varying
λ and membrane energy barrier. Comparison of ϕorbit from
simulations (filled symbols) and low-order model (solid lines).
The energy barrier is modified in the simulations by changing
vref (0.997 and 0.96) and adjusted in the model (Eq. 3) by
changing C (0.00625 and 0.0175, respectively) based on the
data at λ = 5 and λ = 1, respectively. Frisbee angles are
also displayed for vref = 0.997 and λ = 1 (open symbols for
simulations and dashed line for the model). Inset: angle α
between the flow axis and the small axis when the RBC is
on the edge while flipping: experiments for different RBCs in
PBS-dextran solutions with dextran molecular weight of 105

g/mol (solid lines) [5] and simulations at λ = 1 (symbols).

The simulations highlight the importance of the mem-
brane stress-free shape [12, 13, 32], and thus its in-plane
elasticity, as a key parameter controlling the 3-D dynam-
ics of RBCs. However, the roles of inertia or shape de-
formations, inherently present both in simulations and
in experiments, remain unclear. In order to separate the
different mechanisms possibly leading to orbit selection
and rolling, we introduce a theoretical model in which
inertia and shape deformations are absent. This is in-
spired by the works of Jeffery [8], Keller and Skalak [18]
and their extensions for elastic membranes [4, 19, 32].

The model considers an axisymmetric ellipsoid sus-
pended in an unbounded shear flow û0

1 = γ̇x̂2, at zero
Reynolds number. The internal fluid can flow inside the
ellipsoid of prescribed fixed shape. The membrane can

circulate along this shape. In the existing models for
fluid ellipsoids [4, 18, 19, 32], one principal axis was ly-
ing in the shear plane. Here, the orientation is left free
to adapt to the flow and the membrane circulation is
solved in three dimensions. The tank-treading velocity is
defined by an unknown vector Ω̇ around which the mem-
brane circulates (Fig. 1b): the membrane surface velocity
vmi in the body frame reads vmi = ai εijk Ω̇j xk/ak [18],
where εijk is the Levi-Civita symbol in three dimensions

and Ω̇j is the tank-treading rate around axis xj .
Since the total moment acting on a freely suspended

neutrally buoyant particle vanishes, it may be shown
that the spins of the ellipsoid around its axes (ω̇1 =
θ̇ sinϕ sinψ+ϕ̇ cosψ, ω̇2 = θ̇ sinϕ cosψ−ϕ̇ sinψ, ω̇3 =
θ̇ cosϕ+ ψ̇) read:
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with a1, a2 and a3 the semi-axes of the ellipsoid (a1 = a2

for the axisymmetric ellipsoid considered). Ω̇3 cannot be
distinguished from ω̇3 because x3 is an axis of symmetry.
The e0

ij are the components of the strain rate tensor of
the undisturbed flow in the body frame: e0
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)
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.
(2)

The tank-treading rates are obtained by writing the
balance between the stress jump across the membrane
and the membrane elastic load (calculated assuming that
the membrane is a prestressed Kelvin-Voigt viscoelastic
material [4, 32]):

Ω̇1 =
−2f3

f2 − λefff1

[
e0

23 +
γ̇βC

Ca
ξ2ξ3

]
,

Ω̇2 =
2f3

f2 − λefff1

[
e0

31 +
γ̇βC

Ca
ξ1ξ3

]
.

(3)

The fi and β are geometric factors [1, 18]. λeff is an ef-
fective viscosity ratio accounting for membrane viscosity
(here we use λeff = λ). C is a non-dimensional con-
stant accounting for membrane prestress [32] (the larger
the reduced volume of the reference shape, the lower C).
ξi are the coordinates of the small axis of the reference
shape mapped on a sphere: ξi = Xi/ai (no summation).
Xi and thus ξi, are advanced from the tank-treading ve-
locity vmi . The model is consistent with existing models
for solid and fluid ellipsoids [4, 8, 18].
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FIG. 3. Dynamics of a fluid ellipsoid (a1 = a2 = 4.2375 µm, a3 = 1.2511 µm, C = 0.01), in shear flow shown by the trajectories
projected in the shear plane of

(
e3
)
R̂ (solid red line) and

(
ξ
)
R̂ (blue dotted line). The circle of radius 1 is also shown; black

dots mark the initial orientation. Dynamics (see supplementary movies [44]) for different values of λ and Ca: flipping with
orbit selection (a), rolling (b) frisbee (c), transient kayaking and swinging (d).

The system of non-linear ordinary differential equa-
tions is solved numerically. The input data are the ge-
ometry of the ellipsoid (here, a1 = a2 = 4.2375 µm and
a3 = 1.2511 µm to match the volume and surface of the
simulated RBC), γ̇, Ca, C, λ and the initial orientation.
Results of the model are displayed in the fixed frame R̂
by projecting on a unit sphere the evolution of the small
axes of both the ellipsoid with the vector

(
e3

)
R̂ and of

the stress-free shape with the vector
(
ξ
)
R̂ .

Figure 3 shows that the model reproduces all the typ-
ical motions of RBCs reported by experiments and sim-
ulations at low shear stress [1]. For λ >∼ 3, the model
yields a flipping dynamics over orbits (Fig. 3a) deter-
mined by Ca, the orbit shrinking around the vorticity
axis when Ca increases, until rolling is reached (Fig. 3b).
For higher values of Ca and λ >∼ 3, rolling is the only
stable motion predicted. For λ <∼ 3 and increasing Ca,
the model first predicts the flipping and the orbital drift
to rolling as for λ >∼ 3, then the frisbee [12, 15] dynam-
ics (Fig. 3c). For higher Ca, the RBC goes to the shear
plane to perform swinging [4], possibly with a transient
‘kayaking’ oscillation around the shear plane (Fig. 3d)
[11, 34]. In addition to qualitative agreement with the
documented behaviors of RBCs, the model aligns well
with full simulations (Fig. 2). For vref = 0.997, the
prestress coefficient C is adjusted in the model (Eq. 3)
using data at λ = 5 and kept constant to predict re-
sults at λ = 1 and λ = 0.2. The model is able to predict
both the orbital drift and the reorientation from rolling to
tank-treading in the frisbee state. The comparison with
simulations is excellent, despite some discrepancies, in
particular when Ca increases. This comparison supports
that the in-plane elasticity, the only mechanical property
included in the model, is the main effect driving the re-
orientation. Out-of-plane deformation and inertia only
have a second-order effect on the RBC dynamics.

Figures 3(a-d) also show the interplay between the dy-
namics of the ellipsoid and of its membrane: the dynam-
ics depends on the ability of the membrane to circulate
over the ellipsoid, which results in the separation between

the small axes of the ellipsoid and of the reference shape.
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FIG. 4. Example of closed orbits (followed in the clockwise
direction) for a fluid ellipsoid in shear flow (a1 = a2 = 4.2375
µm, a3 = 1.2511 µm, C = 0.01, λ = 5), projected in the
shear plane. The circle of radius 1 is shown in dotted lines.
(a) Cases Ca = 0 (i.e. solid ellipsoid, black dashed line)
and Ca = +∞ (fluid ellipsoid without membrane elasticity,
solid magenta line). Vectors ω̇V isc.Circ. are displayed at 16
evenly spaced instants over the period. (b) Case Ca = 0.013:
trajectory of

(
e3
)
R̂ (solid red line) and

(
ξ
)
R̂ (blue dashed

line). Vectors ω̇Elast. are displayed. (c) Schematic of the drift
due to the elastic torque.

To further understand the results, we remark that
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Eq. (1) expresses an equilibrium between moments of
forces [18]. The spins of the ellipsoid result from the
sum of the moments of forces exerted by the external
flow and those associated to membrane circulation (terms
in Ω̇i). The latter can be divided into two contribu-
tions (Eq. 3), a purely viscous one and an elastic one,
in 1/Ca. Equation (1) could thus be formally expressed
as ω̇ = ω̇Ext.F low + ω̇V isc.Circ. + ω̇Elast., where the terms
of the right-hand side are associated with the external
flow, the viscous circulation and the elastic contribution
to the circulation, respectively.

Figure 4(a) displays a comparison of the trajectory of
the small axis of the ellipsoid in the solid case (Ca = 0,
Jeffery orbits) and in the purely viscous case (Ca = +∞).
Vectors ω̇V isc.Circ. are displayed to analyze how circula-
tion of the membrane exerts an additional moment which
modifies Jeffery’s trajectory. It is worth noting that
torque vectors pointing inwards slow down the trajectory
without changing the orbit. On the other hand, torques
in the same (resp. opposite) direction as the trajectory
deviate the trajectory towards the inside (resp. outside).
Figure 4(a) thus shows how the additional moment asso-
ciated with the circulation of the membrane makes the
orbit thinner for Ca = +∞. Orbits get actually thinner
as λ decreases (not shown). Note also that ω̇V isc.Circ.
has the same symmetries as ω̇Ext.F low.

Figure 4(b) displays the trajectory of
(
e3

)
R̂ and(

ξ
)
R̂ in a case with membrane elasticity. Contrary to

ω̇V isc.Circ., the elastic torque ω̇Elast. is not symmetric
with respect to x̂1 and x̂2: the orbit thus becomes tilted.
It is easily shown that the elastic torque is actually pro-
portional to (e3 ·ξ)e3×ξ: its direction is thus normal to e3

and ξ, while its norm is determined by the angle between
e3 and ξ, as evidenced by Fig. 4(b). The elastic torque is
of course generated by the circulation of the membrane,
which is responsible for the storage of in-plane elastic
energy. However, a second mechanism determines the
direction of the elastic torque: the ellipsoid spins around
its symmetry axis (see Eq. 1). This spinning is responsi-
ble for a rotation of ξ around e3, and consequently of a
reorientation of the restoring elastic torque. This is seen
in Fig. 4 by the difference in the orientation of ω̇V isc.Circ.
and ω̇Elast.. The spinning of the ellipsoid thus makes the
membrane restore its elastic energy with a torque ori-
ented differently from the viscous torque which made the
membrane circulate. This process is summarized in a
schematic way in Fig. 4(c). This element is essential for
the understanding of how elasticity controls the dynam-
ics of red blood cells, in particular by modifying their
orbits, which are not Jeffery’s orbits.

Finally, a full study of the dynamics of RBCs at low
shear stresses is made possible by our model: it gathers
the different dynamics of RBCs and capsules that were
studied before in experiments [5, 9, 10] and simulations
[3, 11, 12, 15, 34, 35], but only partially explained un-
til now. By proposing a model able to reproduce the

flipping dynamics over orbits, the orbital drift to rolling,
frisbeeing, kayaking, swinging in shear flow depending on
λ and Ca, we demonstrate that the whole dynamics at
low shear rates is mainly controlled by the storage and
release of in-plane elastic energy in the membrane.

The behaviors of fluid and rigid ellipsoids are differ-
ent: Jeffery [8] demonstrated that a rigid ellipsoid ro-
tates indefinitely in shear flow, its symmetry axis pre-
cessing around the vorticity direction, describing closed
orbits. These orbits are degenerate since an infinite num-
ber of them are allowed, their selection depending only
on the initial orientation of the particle. This degen-
eracy, proper to Stokes flows, is removed in real flows.
Ellipsoids have been shown to display a rich variety of
behaviors depending on both particle and fluid Reynolds
numbers [17, 36]. For instance, neutrally buoyant oblate
ellipsoids have been shown to generally roll on their edge
for moderate Reynolds numbers [17], but present a steady
inclination for higher inertia. Another cause of orbit se-
lection is the visco-elasticity of the outer fluid [37, 38],
though its origin remains unclear. Here, we have identi-
fied a new cause for removing the degeneracy of Jeffery’s
orbits: the energy barrier associated with the circulation
of the membrane over the RBC. When the RBC is not in
the shear plane, the sliding of its membrane around its
ellipsoidal shape generates a lateral torque that makes
the particle deviate from Jeffery’s orbit.

The role of in-plane elasticity is thus identified and can
be now separated from the other effects thanks to our
model. We show how the circulation of the stress-free
shape coupled to spinning, together with the viscosity
contrast, are the two main ingredients to capture the full
RBCs phase diagram of movement at low shear stresses.
Our model is easy to implement and runs orders of mag-
nitude faster than full simulations. Most importantly, it
will allow the stability analysis of the different regimes
of movement and a better characterization of their tran-
sitions. In addition, the present model paves the way
not only to the development of theoretical predictions
for blood rheology at low volume fractions, but enables
predictions of the dynamics of RBCs in general linear mi-
croflows as will be detailed in a full-length publication.

This work was supported by the Labex Numev Con-
vention grants ANR-10-LABX-20. YALES2BIO (http:
//www.math.univ-montp2.fr/~yales2bio) simulations
have used HPC resources from GENCI-CINES (grants
2016-c2016037194 and 2017-A0020307194). Profs. M.
Hillairet, T. Mignon and F. Nicoud (IMAG Montpellier)
are gratefully acknowledged for fruitful discussions.

[1] M. Abkarian and A. Viallat, “Fluid-structure interac-
tions in low-Reynolds-number flows,” (Royal Society of
Chemistry, 2016) Chap. On the importance of red blood

http://www.math.univ-montp2.fr/~yales2bio
http://www.math.univ-montp2.fr/~yales2bio


6

cells deformability in blood flow, pp. 347–462.
[2] N. Mohandas and P. G. Gallagher, “Red cell membrane:

past, present, and future,” Blood 112, 3939–3948 (2008).
[3] L. Lanotte, J. Mauer, S. Mendez, D. A. Fedosov, J.-M.
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