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Abstract

Using a previously developed inversion platform for functional cerebral med-
ical imaging with ensemble Kalman filters, this work analyzes the sensitivity
of the results with respect to different parameters entering the physical model
and inversion procedure, such as the inlet flow rate from the heart, the choice
of the boundary conditions, and the nonsymmetry in the network terminations.
It also proposes an alternative low complexity construction for the covariance
matrix of the hemodynamic parameters of a network of arteries including the
circle of Willis. The platform takes as input patient-specific blood flow rates
extracted from magnetic resonance angiography and magnetic resonance imag-
ing (dicom files) and is applied to several available patients data. The paper
presents full analysis of the results for one of these patients, including a sensitiv-
ity study with respect to the proximal and distal boundary conditions. The results
notably show that the uncertainties on the inlet flow rate led to uncertainties of
the same order of magnitude in the estimated parameters (blood pressure and
elastic parameters) and that three-lumped parameters boundary conditions are
necessary for a correct retrieval of the target signals.
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1 INTRODUCTION

Cardiovascular diseases are obviously major health concerns nowadays as according to the World Health Organization,
they are the leading cause of death globally.1 Among these diseases, intracranial aneurysms, which usually take place
in the circle of Willis (CoW),2 require special attention. Indeed, according to the Brain Aneurysm Foundation, the cere-
bral aneurysm is known as silent killer because in most of the cases, it is completely asymptomatic and is discovered by
chance frequently in people undergoing brain imaging, such as magnetic resonance angiography and magnetic resonance
imaging (MRA&MRI), and for other reasons, such as evaluation of headaches, after head trauma, or in work-up of other
neurological symptoms.3 Often in these situations, the aneurysm itself is an incidental finding, unrelated to the symptoms
that prompted the imaging, but a ruptured aneurysm can cause life-threatening blood loss, which leads to death. That
is why over the last few decades, to better understand and identify the mechanisms linked to aneurysm formation and
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rupture, many researchers, across a series of studies, made every effort to establish the key factors that contribute to the
development and the rupture of cerebral aneurysms.4-9 Some addressed the substantial challenges facing them regarding
hemodynamics and the blood flow mechanism in the CoW.10-13 Their main objective was to understand the factors increas-
ing the risk of stroke and the blood flow distribution in the brain. Others have demonstrated the considerable influence
of patient-specific anatomy of cerebral arterial network on blood flow patterns in local cerebral aneurysms.10,14-19

In previous studies,20-24 still others have developed an algorithm based on a data assimilation technique to estimate
hemodynamic parameters such as elastic properties of arteries, arterial compliance, and boundary condition parameters
(Windkessel boundary parameters and reflection coefficients).

In our recent publications,25,26 the usefulness of this kind of algorithm in estimating the hemodynamic parameters
(eg, the wall thickness and the Young modulus), which are difficult to identify noninvasively, was demonstrated. And to
examine the robustness of the approach, several sensitivity analyses have been carried out. More precisely, the behavior
of the algorithm has been analyzed for

• different initial guesses for the parameters,
• different levels of observations uncertainty,
• the effect of bias in known parameter values and the type of observations,
• the effect of the ensemble size qens on the estimated parameters,
• the location of observations and the number of observations nobs.

This work considers other sources of uncertainties and studies their impacts on the inversion outcomes. More precisely,
it will address

• the uncertainties on the inlet flow rate time series from MRA&MRI, which has been considered as deterministic in
our previous works;

• the uncertainties related to the choice of the boundary conditions at the terminations;
• the uncertainties related to the symmetry assumption previously used between the left and right network

terminations.

Another proposal in this paper is a deterministic construction for backward uncertainty propagation not using an
ensemble approach and an alternative estimation of the covariance matrix of the estimated parameters after inversion.
This construction can be used even without an ensemble formulation and with deterministic gradient-based minimization
algorithms.

The general minimization framework in which the fluid-structure coupling is cast is recalled in Section 2. The cardiovas-
cular network model, which is made of 0D lumped compartments, is presented together with the associated minimization
problem in Section 3. Section 4 presents the set up, which will be used to illustrate the different results. This is from one
of the patient-specific data provided by Montpellier University Hospital, Gui de Chauliac. Section 5 gathers the results of
various sensitivity analyses. The inversion procedure is based on the ensemble Kalman filter (EnKF) algorithm described
in Lal et al.25 These ensemble algorithms give an estimation of the covariance matrix covx of the optimization parameters.
This is compared with an alternative derivation of the covariance matrix in Section 6. Section 7 discusses some limitations
of the paper in the light of the model assumptions.

2 GENERAL SETTINGS

This section presents materials for this work. It follows in broad outline the description made in Mohammadi.27

This study focuses on a class of minimization problems written as follows:

min
x∈Oad

J(y(x, z), 𝑦obs), y, yobs ∈  ⊂ ℝnobs , z ∈  ⊂ ℝm, x ∈ Oad ⊂ ℝn, (1)

where x, yobs, and z are independent variables. Only the state variable, y, depends on the cost function, J. The optimization
parameter x belongs to Oad the optimization admissible domain.28 The physical meaning of all the variables will be given
in Section 3.2.

This is a very general context, and it is important to address the effects of the variability in z and yobs on the solution
of the minimization problem. To analyze these, different approaches will be adopted: an ensemble approach (ie, EnKF
here) for the effect of the variability in yobs and a separated treatment through a consideration of adequate ensemble of
ensembles for the effect of the variability in z.
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To be more precise, attention is paid on functional J of the form

J(y(x, z), yobs) = ||y(x, z) − 𝑦obs||∗, (2)

where the state y(x, z) is solution of a state equation F(y(x, z)) = 0, yobs comes from a direct observation (measurements)
of the system, and ||.||∗ is a suitable norm. These will be specified in Section 3.2. The variable yobs is assumed uncertain
and independent, and its components are given by their probability density functions here assumed Gaussian  (𝜇i, 𝜎

2
i ),

i = 1, … ,nobs with means 𝜇i and variances 𝜎2
i .

3 MODELING AND PROBLEM SPECIFICATION

3.1 Physical model
Many sophisticated and complex physical models representing the human cardiovascular system exist in the
literature,10,29-32 the simplest of these being the 0D model (also called compartment model or lumped parameter model).
It is the physical model adopted for this work. In this model, built using an electrical analogy,32-35 the arterial network
is divided into different compartments, each with a resistor (resistance R of blood due to blood viscosity and the vessel
diameter), an inductor (blood inertia L), and a capacitor (compliance C of the artery corresponding to the quality of the
latter to accumulate and release blood due to elastic deformations) as shown in Figure 1.

The governing system of equations relating the variables R,L, and C for this model results from the Kirchhoff cur-
rent and voltage laws (corresponding to the momentum and mass conservation principles here) applied to a single
compartment assumed being filled with an incompressible Newtonian fluid. They take the form32-34

dPout

dt
=

qin − qout

C
dqin

dt
=

Pin − Pout − Rqin

L
,

(3)

where for each artery, Pin, Pout, qin, and qout are inlet blood pressure, outlet blood pressure, inlet flow rate, and outlet flow
rate, respectively. For arteries with a radius r < 0.2 cm, the inertial effect is ignored,36 and in this case, the flow rate is
given by qin = (Pin − Pout)∕R.

To calculate the parameters R,L, and C of each compartment, the following equations35 are used: Hagen-Poiseuille
equation for resistance, R = 8𝜇l∕𝜋r4, L = 𝜌l∕𝜋r2, and C = 3𝜋r3l∕2Eh, where r, l, 𝜇, 𝜌, h, and E are the radius of the
artery, the length of the arterial segment, the blood viscosity, the blood density, the arterial wall thickness, and the Young
modulus, respectively.

Each arterial segment of the full network including the CoW is represented by a reduced-order 0D model containing
the three elements R,L, and C (see Figures 3C,D, where each of the arterial segments is modeled with a single compart-
ment). In this way, the full network is represented by a distributed lumped parameter model in which multiple lumped
compartments are interconnected.

At the bifurcations, the enforcement of the mass conservation principle and of the continuity equation for pressure
permits to prescribe the boundary conditions. In order to include the effect of the downstream vasculature, the blood
flow model is coupled to the three-element Windkessel model (WK3-lumped parameter model)12,37 at the outlet of each
terminal compartment. In the WK3 model, the equation relating the instantaneous blood pressure and the flow rate reads
as follows:

dp(t)
dt

+
p

RDC
= RP

dq(t)
dt

+
qRT

RDC
, (4)

FIGURE 1 A single compartment circuit illustration
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where p, q, C, RP, and RD are the instantaneous pressure at the inlet of the WK3 model, the instantaneous flow rate,
the compliance, the proximal resistance, and the distal resistance of the vascular beds, respectively. RT = RP + RD
expresses the total peripheral resistance. The sensitivity of the present approach with respect to the choice of the boundary
conditions will be discussed in Section 5.3.

It is not easy to solve the first-order differential Equations 3 and 4 in view of the stiffness of the system.
That is why the Fortran version of a implicit numerical integration solver DVODE,38,39 available on http://www.radford.

edu/~thompson/vodef90web/, is used to solve the system.

3.2 Problem specification
With the physical model above adopted, the general optimization problem presented in Section 2 can be more specified.
The optimization parameter x of size n are the hemodynamic parameters for each segment plus the number of parameters
in the termination boundary conditions. The vector z of size m contains the parameters used to describe the flow rate from
the heart. Thus, m corresponds either to the number of points in a discrete representation or to the number of parameters
for a reduced-order representation of the signal as shown in Section 5.2. The variable yobs (called observations) is flow rate
time series from MRA&MRI acquisitions at given arteries as described in Section 4. With time-series observations yobs(t),
different functional J can be considered. Following Lal and colleagues,25,26 this work aims at minimizing a time-dependent
functional based on instantaneous incoming information:

J(t, y(x, z, t), yobs(t)) = ||y(x, z, t) − yobs(t)||∗ = 1
2
||y(x, z, t) − yobs(t)||2.

4 PATIENT-SPECIFIC CLINICAL DATA

This section presents patient-specific clinical data used in the remainder of the paper. These data have been provided by
the Department of Neuroradiology of the Centre Hospitalier Régional Universitaire de Montpellier (CHRU), Montpellier,
France, and have been extensively described in Lal26 together with their acquisition procedures.

As a reminder, before and after image acquisition, arterial systolic brachial pressure (SBP) and diastolic brachial
pressure (DBP) at rest were measured using a brachial automatic sphygmomanometer (Maglife, Schiller Medical). The
pressure values measured were (115 and 72 mmHg) in the left brachial artery and (125 and 72 mmHg ) in the right one.
The ascending aorta and the internal carotid arteries (right and left ICAs) have been considered for the analysis of blood
flow rates.

Figure 2 shows two pairs of the magnitude and phase contrast images acquired—one for the ascending aorta (Figure 2B)
and the other one for ICAs (Figure 2C)—and their corresponding blood flow rates (Figure 2A,C). These flow rates have
been obtained from the GyroTools software, called GTFlow(http://www.gyrotools.com/products/gt-flow.html/).

Figure 3 shows the typical 3D model (and morphology) of CoW (see Figure 3A,B) determined through segmentation
of a 3D time of flight magnetic resonance angiography (3D-TOF-MRA) of the patient's CoW.

Using these different images, a complex arterial network of 33 arteries (Figure 3D) consisting of the aorta, vertebral,
carotid, and brachial arteries together with an integral CoW adapted from Alastruey et al10 has been modeled, and as
shown in Table 1, some geometric measurements such as lengths and radii of CoW's blood vessel have been obtained.
More precisely, in the cerebral regions with best/high image quality, lengths and radii of cerebral arteries have been
manually extracted from MRA using RadiANT DICOM Viewer software (http://www.radiantviewer.com/), while in the
regions with poor image quality, they were obtained from average data reported in the literature. Also, other geometries,
such as the carotid vascular tree one, could not be obtained because their acquisition requires the injection of contrast
material called gadolinium, which is impossible to perform on healthy volunteers. To fill this kind of geometries and all
the missing geometry of the full network, data reported in the literature were also necessary.

The inverse hemodynamic problem aims at identifying unknown parameters (the arterial stiffness and the WK3 model
boundary parameters) for the network as shown in Figure 3D and as described in Lal and colleagues.25,26 In the param-
eter estimation problem, both available patient-specific flow rate waveforms for the right internal carotid (R-ICA; #21
in Table 1) and the left internal carotid (L-ICA; #23 in Table 1) were used as observations during EnKF assimilation
steps. Blood rheological parameters 𝜇 and 𝜌 were set at 0.004 Pa s and 1050 kg m−3, and at the inlet (ascending aorta,
compartment #1 in Figure 3D), specific values of flow rates, qin, measured by PC-MRI (see Figure 2A,B) were imposed.

http://www.radford.edu/~thompson/vodef90web/
http://www.radford.edu/~thompson/vodef90web/
(http://www.gyrotools.com/products/gt-flow.html/)
(http://www.radiantviewer.com/)
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(A)

(B)

(C)

(D)

FIGURE 2 PC-MRI of the patient-specific ascending aorta and internal carotid arteries (right and left) showing the blood flow through
one of the selected slices. In the center, on the left are the magnitude images and on the right are the phase contrast images B, and C, with
Venc setting of 200 and 80 cm s−1 for the ascending aorta and the internal carotid arteries, respectively. The instantaneous blood flow rate
values, q(t), are acquired at each time frame and are plotted against time for one cardiac cycle as shown on the top for AA A, and at the
bottom for ICAs D,. In panel A, the signals obtained from three different segmentations performed by the same “operator” are reported to
give a feeling of the uncertainty on the inlet flow rate

The results shown in the next section were obtained under the following assumptions on the unknown model
parameters:

• The parameters R,L,C, and the WK3 boundary condition parameters are assumed to well reproduce the
patient-specific description of the 0D blood flow model expressed by Equation 3.
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(A) (B)

(C) (D)

FIGURE 3 A TOF MRI scan A, and the corresponding segmented 3D model of the CoW B, for the considered patient-specific case. The
network10 of a 1D blood flow model of the upper body arteries and of the CoW C, and its equivalent compartment model D,. The lines size
indicates relative size of the arteries. The numbers on segmented model refer to the Ids of the arterial segments in Table 1. Arrows indicate
the direction of flow. Flow rates are assigned the compartment numbers corresponding to those in Table 1. At the inlet (ascending aorta,
compartment #1), specific values of flow rates, qin, are imposed

• Eh, the product of Young modulus and thickness of arteries, is the unknown quantity to recover by data assimilation,
and it is assumed to be given by this empirical formula40:

Eh = r(k1 ek2r + k3), (5)

where the radius (r) is measured from MRA. An estimation of the product Eh is found by looking for an estimation
of the unknown constants ki with their initial guesses as k1 = 2.0 × 107 g cm−1s−2, k2 = −22.0 cm−1, and k3 =
8.0 × 105 g cm−1s−2.

• For each left and right pair of terminal compartments, the same WK3 parameters are assumed by symmetry. For
instance, the terminal compartments #22 and #24 are assigned with the same WK3 boundary conditions. The
parameters RPi , RDi , and Ci where i = 9, 10, 19, 22, 29, 31 denotes the compartment numbers are also considered as
unknown model parameters. Thus, 21 parameters consisting of six proximal resistances, six distal resistances, six
compliances, and three constants defining the product Eh are estimated. The initial estimates for the proximal resis-
tances and the compliances were taken from the data published by Alastruey et al,10 and the initial guesses for the
distal resistances RD are chosen such that the ratio RP∕RT = 0.2, ie, RD = 4RP.41
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TABLE 1 Geometric parameters corresponding to arterial segments (and compartments) in Figure 3 measured from magnetic resonance
imaging

Id Name l, cm r, cm Id Name l, cm r, cm

1 Ascending aorta (AA) 4.00∗ 1.200∗ 18 L. post. comm. artery (L.PCoA) 1.20 0.075
2 Brachiocephalic (BraCe) 3.40∗ 0.620∗ 19 R. post. cerebral artery P2 (R.PCA, P2) 8.50 0.100
3 Aortic arch I (Aa I) 2.00∗ 1.120∗ 20 R. post. comm. artery (R.PCoA) 1.20 0.075
4 R. subclavian (R.Sub) 3.40∗ 0.423∗ 21 R. internal carotid I (R-ICA) 17.7∗ 0.200
5 R. common carotid (R.CC) 17.7∗ 0.250∗ 22 R. external carotid (R.ECA) 17.7∗ 0.150∗

6 L. common carotid (L.CC) 20.8∗ 0.250∗ 23 L. internal carotid I (L-ICA) 17.7∗ 0.200
7 Aortic arch II (Aa II) 3.90∗ 1.070∗ 24 L. external carotid (L.ECA) 17.7∗ 0.150∗

8 L. subclavian (L.Sub) 3.40∗ 0.423∗ 25 R. internal carotid II (R.ICA) 0.50 0.200
9 Thoracic aorta (ThorA) 15.6∗ 0.999∗ 26 L. internal carotid II (L.ICA) 0.50 0.200
10 R. brachial (R.BRA) 42.2∗ 0.403∗ 27 L. middle cerebral artery (L.MCA) 11.9 0.143
11 R. vertebral (R.VA) 14.8∗ 0.136∗ 28 L. anterior cerebral artery A1 (L.ACA, A1) 1.20 0.117
12 L. vertebral (L.VA) 14.8∗ 0.136∗ 29 R.middle cerebral artery (R.MCA) 11.9 0.143
13 L. brachial (L.BRA) 42.2∗ 0.403∗ 30 R. anterior cerebral artery A1 (R.ACA, A1) 1.20 0.117
14 Basilar (BAS) 2.70 0.150 31 R. anterior cerebral artery A2 (R.ACA, A2) 10.3 0.120
15 R. post. cerebral artery P1 (R.PCA, P1) 0.56 0.110 32 Anterior comm. artery (ACoA) 0.30 0.074
16 L. post. cerebral artery P1 (L.PCA, P1) 0.56 0.110 33 L. anterior cerebral artery A2 (L.ACA, A2) 10.3 0.120
17 L. post. cerebral artery P2 (L.PCA, P2) 8.50 0.100

The missing geometry (marked with an asterisk) of larger arteries is taken up from the average data in the literature.10,12 R indicates right and L, left.

5 PATIENT-SPECIFIC RESULTS

This section presents typical convergence of the inversion algorithm and sensitivity analysis for the inverse problem with
respect to several modeling issues and parameters of the direct model. Before presenting these results, it seems appropriate
to clarify first the meaning of convergence in the remaining of this paper.

More precisely, it is said that there is convergence if, on the basis of a visual inspection, the estimated parameters have
only very minor variations from systole to diastole on the one hand, and on the other, from one cardiac cycle to the next.
Quantitative parameters for convergence could be introduced, but it would weigh down the procedure.

5.1 Convergence
Figure 4 shows the target and model signals in time. One observes that there is a good agreement between the target and
predicted flow rate waveforms after 10 cycles (about 8.35 s).

Figures 5 and 6 show the evolutions of the first two moments of the 21 estimated optimization parameters x. One sees
very different convergence patterns. Some variables do not fully converge even though the observations are well recovered.

FIGURE 4 Comparison of the model simulated blood flow rate waveform in R-ICA (on the left) and L-ICA (on the right) to the target signals
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FIGURE 5 Histories of the mean and standard deviation of the nine first estimated parameters during EnKF iterations

This suggests that those variables have small effects on the solution. The final estimates of the 21 parameters with their
associated uncertainties are tabulated in Table 2. As the most important information is the elastic characteristics of the
vessels, Figure 7 shows the evolutions of three of the estimated Young moduli during the EnKF iterations. As the Young
moduli are obtained through a same expression, they bare similar convergence patterns. The most important thing here
to note is that all the Young moduli for the 33 arteries tend to realistic values with respect to the literature (ie, between
0.1 and 1.2 MPa).10,42,43

To illustrate this, a compared overview of some of estimated parameters with those reported in previous studies10,12,41,43-45

was carried out, and the model-simulated flow rates through all the termination models and carotid arteries were also
examined. The results of the comparison of the parameters are shown in Figure 8 and the model-simulated flow one in
Figures 4 and 9. These latter are also compared with blood flow rates values reported in Alastruey et al10 and Reymond
et al12 and with clinically measured blood flow rates using MRI in Table 3. One notices that almost all estimated param-
eters were found to be in the same order of magnitude than those reported in other studies.10,12,41,43-45 Furthermore, one
observes good overall agreement in flow waveforms but considerable differences in flow amplitude at all arterial termi-
nations. All mean, systolic, and diastolic flow rates reported in Alastruey et al10 and Reymond et al12 are much higher
than model outputs except those of MCA. This is to a large extent due to the difference of patients and models considered
in investigated cases and especially to flow rate difference from the beginning in the ascending aorta (420, −33, and 96
mL s−1 for systolic, diastolic, and mean flow rate, respectively, in Reymond et al12 versus 302, 0, and 62.4 mL s−1 for sys-
tolic, diastolic, and mean flow rate, respectively, in the model). This prevents from properly comparing the different flow
divisions of the model with those reported in Alastruey et al10 and Reymond et al.12

Despite these substantial differences, note that the model provided flow rate predictions that faithfully reproduced wave
characteristics in the ICAs. This is illustrated in Figure 4, which shows the comparison between the target (clinically
measured blood flow rates in the ICAs using MRI) and blood flow model simulations (predictions) based on the estimated
parameters. From the results, the comparison between the assimilated 0D model and in vivo data (MRI) is fair. All mean,
systolic, and diastolic flow rates measurements using MRI and model outputs in ICAs differ by less than 5%, and thus,
one can conclude, in the absence of other clinically measured flow rates, that the 0D model considered here may very
well predict blood flow rate in the entire arterial tree.
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FIGURE 6 Histories of the mean and standard deviation of the 12 last estimated parameters during EnKF iterations

5.2 Sensitivity analysis with respect to the inlet flow rate qin(t)
One important source of uncertainty in the inversion is due to the variability in the segmentation procedure by the
“operator” in charge from PC-MRI data to define the variable called z in the minimization problem (1).

Let us consider qin(t) the patient-specific blood flow rate time series through one of the selected slices in the ascending
aorta as shown in Figure 2A for one cardiac cycle. As presented in this figure, qin(t) is defined in a deterministic way.
One however observes that different segmentations, even by a same “operator,” lead to different flow rates time series.
To analyze the sensitivity of the inversion with respect to this uncertainty, it is convenient to represent qin(t) using a
reduced-order model. For that purpose, the model proposed in Alastruey et al10 involving two parameters that will be
considered as stochastic here (see Figure 10) will be adapted as follows:

qin(t) =
{

𝛼 sin(𝜋t∕𝜏) if t < 𝜏,
𝜀 otherwise, (6)

where 𝛼 (mL s−1) =  (𝜇𝛼, 𝜎
2
𝛼), 𝜏 (s) =  (𝜇𝜏, 𝜎

2
𝜏 ), and 𝜀 (mL s−1) =  (𝜇𝜀, 𝜎

2
𝜀 ) are the components of z in (1). 𝜇𝛼 , 𝜇𝜏 ,

and 𝜇𝜀 are patient specific. They are chosen solving a least square problem to fit the inflow rate shown in Figure 2. This
leads to the following values: 𝜇𝛼 = 302 mL s−1, 𝜎𝛼 = 15 mL s−1, 𝜇𝜏 = 0.35 s, 𝜎𝜏 = 0.0175 s, 𝜇𝜀 = 21.65 mL s−1, and
𝜎𝜀 = 1.0825 mL s−1. The standard deviations that are of the order of 5% of mean values model the uncertainty that an
“operator” will introduce through the manual acquisition/segmentation steps from dicom format files.

To analyze the sensitivity of the inversion with respect to the uncertainty on qin(t), 30 inversions for Gaussian sampling
in 𝛼, 𝜏, and 𝜀 have been performed. An ensemble of size 30 has been used for all inversions. This ensemble size choice is
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TABLE 2 Estimated parameters with the associated errors
for the patient specific

Parameter Initial Guess EnKF Estimate ± Error

k1 2.00 3.49 ± 0.19
k2 −22.0 −5.00 ± 0.26
k3 8.5 4.39 ± 0.24

RP9 0.02 0.028 ± 0.001
RP10 0.13 0.25 ± 0.017
RP19 4.8 1.88 ± 0.15
RP22 1.67 1.33 ± 0.12
RP29 2.61 1.54 ± 0.11
RP31 3.70 6.39 ± 0.43
RD9 0.08 0.30 ± 0.0005
RD10 0.52 1.03 ± 0.007
RD19 19.32 4.19 ± 0.034
RD22 6.68 12.88 ± 0.174
RD29 10.44 1.79 ± 0.018
RD31 14.80 9.69 ± 0.068
C9 38.78 47.12 ± 2.62
C10 2.58 1.82 ± 0.17
C19 0.62 0.63 ± 0.043
C22 1.27 4.02 ± 0.49
C29 1.16 0.17 ± 0.023
C31 0.82 2.00 ± 0.15

The values of constants k1, k2, k3 are expressed in ×107 g cm−1s−2,
cm−1, and ×105 g cm−1s−2, respectively. The proximal (RP) and distal
(RD) resistances are in ×109 Pa s m−3, and the compliance (C) is in
×10−10 m3 Pa−1.

FIGURE 7 Mean and standard deviation of estimated Young moduli for three of the 33 segments of the network. The evolution is over
8.35 seconds corresponding to about 10 cardiac cycles

based on a synthetic case study results that have shown that an ensemble of size 30 seemed to be good enough to estimate
21 for the prediction of cerebral arterial pressure with an error26 of less than 10%. To generate the 30 ensemble members,
one proceeds as follows: from initial estimate of n unknown parameters (mean x̄l and variance Pl for l = 1, … ,n), we
randomly initialize an ensemble of parameters, xi, for i = 1 … , qens where xi = (x1, x2, … , xn) and xl ∼  (x̄l,Pl) for
l = 1, … ,n. For more details, the reader is referred to Lal.26 It is interesting to illustrate the convergence not for the
optimization variables x but for the Young moduli, which are obtained from following expression (5): E = r(k1 ek2r +k3)∕h
where k1, k2, and k3 are the three first components of x.
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FIGURE 8 Comparison of estimated compliances and total peripheral resistances at the arterial terminations with reports in the
literature. The estimated parameters using the assimilated compartment model (represented by empty squares) are in the same order of
magnitude than those existing in the literature

FIGURE 9 Mean and standard deviation of estimated blood flow rate at the arterial terminations
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FIGURE 10 Uncertain inflow rate qin and the low complexity model. The latter will be used for uncertainty propagation in inversion

FIGURE 11 Mean and standard deviation of different segments Young moduli showing the impact of the uncertainty on the inlet flow rate
qin(t) on the inversion

Once all the inversions are completed, one can proceed with some statistics. Figure 11 shows the estimated mean
value and standard deviation for the Young modulus of each segment. One sees that the “operator” uncertainty can have
up to 5% impact on the elastic parameter estimation. This is therefore of the order of the patient-specific uncertainty
in z = (𝛼, 𝜏, 𝜀) in Equation 6 and obtained assimilating uncertain patient data by the low complexity qin model. This
means that the procedure seems to work linearly in connection with the errors propagation. This is not an aberration as
a result; on the contrary, this is satisfactory in that it reveals that the procedure does not seem to reduce nor to amplify
the errors. However, qin needs to receive very accurate treatment if one would like to have an uncertainty below say 5%
on the outcomes, which is may be difficult to achieve given the nature of the problem and also the way data are acquired.

Figure 12 presents the estimated mean and standard deviation for the right brachial pressure. It is quite reassuring to
notice that despite the “operator” uncertainty, the predicted brachial pressure remains coherent with the auscultatory
measure of the patient using a sphygmomanometer (ie, between 72 and 125 mmHg) taken after the acquisition. This gives
some indication for the level of uncertainty one can tolerate because of manual acquisition steps.

5.3 Sensitivity analysis with respect to the boundary conditions
Another important source of uncertainty in the inversion is related to the choice of the boundary conditions at the outlet
of each of the terminal compartments. As described in Section 3.1, the blood flow model uses a three-element Windkessel
condition, which couples the instantaneous blood flow rate and pressure through Equation 4. It would be interesting to
see how the use of a simpler boundary condition will affect the inversion. More precisely, a WK1 boundary conditions
where the blood flow rates at terminations are related to the instantaneous pressure through a simple algebraic relation
involving the proximal and distal resistances are considered:

p = qRT = q(RP + RD). (7)
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Hence, a WK1 condition is a WK3 one with zero compliance. One advantage of WK1 is a reduction of the number of
optimization variables from 21 to nine: the six total resistances RTi with i = 9, 10, 19, 22, 29, 31 and the three constants
k1, k2, and k3 necessary for the definition of Eh. However, the same ensemble size of 30 is used for both inversions.

Figures 13, 14, and 15 show the impact on the inversion of a change of the boundary conditions from WK3 to WK1.
This analysis shows that the WK1 conditions are clearly insufficient to describe the underlying physics of the problem.

FIGURE 12 Right brachial pressure mean and standard deviation for two cardiac cycles showing the impact of the uncertainty on qin(t) on
the inversion. The clinically measured SBP and DBP are 125 and 72, respectively

FIGURE 13 Flow rate waveform using WK1 and WK3 and comparison with the target flow rate in R-ICA and L-ICAs

FIGURE 14 Comparison between R and L brachial pressures with WK1 and WK3. The clinically measured SBP and DBP in the right and
the left brachial arteries are 125 and 72, and 115 and 72, respectively
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FIGURE 15 Convergence of estimated parameters during EnKF using WK1 and WK3. The shaded areas represent the standard deviation
around the ensemble mean values (dashed and solid lines)

FIGURE 16 Flow rate waveform using WK3 with the same compliances and different resistances for left and right pairs of terminal
compartments and comparison with the target flow rate in ICAs

Indeed, despite the inversion's success in recovering the target flow rate at R-ICA and L-ICA segments, the brachial
pressures are miscalculated. One also sees that the convergence of the EnKF algorithm is not fully achieved. Actually,
some parameters do not converge at all and this despite the ensemble size advantages in the WK1 inversion. Yet, to be
adopted, the prescribed boundary conditions must allow at the same time to provide good convergence for the estimated
parameters, to well reproduce both available patient-specific flow rate waveforms for the right internal carotid and the left
internal carotid and to well predict brachial blood pressure. If one of these expected results is not achieved by the chosen
boundary conditions, this choice cannot be relevant. As a conclusion, only WK3 conditions will be considered for the
next sensitivity analysis regarding the interrogations of the assumed symmetry in the terminations boundary conditions.

As presented in Section 4, the same WK3 boundary conditions have been applied at the left and right pairs of the
terminal compartments. To analyze the sensitivity of the inversion with respect to this assumption, one proceeds with
several nonsymmetric scenarios.
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FIGURE 17 Comparison between R and L brachial pressures estimated using WK3 with the same compliances and different resistances
for left and right pairs of terminal ICA's compartments. The clinically measured SBP and DBP in the right and the left brachial artery are 125
and 72, and 115 and 72, respectively

FIGURE 18 Rate of variation of different pressure information with respect to aR.The different pressure information increase with the
level of resistances

FIGURE 19 Comparison of the model simulated blood flow rate waveform using WK3 with the same resistances and different
compliances for left and right pairs of terminal ICAs compartments

Unfortunately, to the knowledge of the authors, no indication on how the nonsymmetry takes place can be found in
the literature. In other words, it is unclear if, for instance, the termination resistances or compliance are higher or lower
on the left with respect to the right-hand side. Actually, it seems that the nonsymmetry is patient dependent. The analysis
will be carried out in three steps: nonsymmetric resistances with symmetric compliances, nonsymmetric compliances
with symmetric resistances, and nonsymmetric resistances and compliances.
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Let us start analyzing the effect of nonsymmetry in the resistances on the inversion keeping the compliances symmetric.
The nonsymmetry has been introduced considering Rle𝑓 t

D = aRRright
D and Rle𝑓 t

P = aRRright
P where aR is a constant. Several

inversions have been made for the values of aR = 0.5, 0.75, 1 (symmetric WK3), 1.25, and 1.5, meaning that for each value
chosen for aR, the parameter identification procedure has been applied using the EnkF algorithm, which leads to the full
set of physiological parameters. These values of aR have been a priori chosen, and different sampling can be considered

FIGURE 20 Comparison between R and L brachial pressures estimated using WK3 with the same resistances and different compliances
for left and right pairs of terminal ICAs compartments. The clinically measured SBP and DBP in the right and the left brachial artery are 125
and 72, and 115 and 72, respectively

FIGURE 21 Rate of variation of different pressure information with respect to aC. Despite the systolic and diastolic pressures vary, their
difference DeltaP is nearly invariant with respect to this nonsymmetry

FIGURE 22 Comparison of the model simulated blood flow rate waveform after inversion with different combinations of aC and aR
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without difficulty. This is an illustration of how the inversion procedure can be used to analyze a possible hypothesis
made by practitioners on the possibility of nonsymmetric behavior in terminations. Also, the sampling is made in order
for the resistance to have admissible physiological values around the reference value “1” corresponding to the symmetric
WK3 boundary conditions case. Rle𝑓 t,right

D and Rle𝑓 t,right
P replace RD and RP in expression (4) in corresponding left and right

FIGURE 23 Comparison between R and L brachial pressures after inversion with different combinations of aC and aR

FIGURE 24 Impact of the nonsymmetry on compliances and resistances on the right (R) and left (L) brachial pressures. Diastolic (left
column) and systolic (middle column) pressures (DBP and SBP) are sensitive to nonsymmetry in both resistance and compliance while
DeltaP, the difference between the two (right column), only sees the nonsymmetry in the resistance. The delimited region by the two
contours indicates where the nonsymmetric combination produces similar results than the symmetric WK3 conditions
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terminations. Figures 16, 17, and 18 show the impact of this nonsymmetry on the inversion. One notices that a loss of
symmetry on the resistances does not impact the flow rate. However, it plays a big role in pressure estimation as the mean
brachial pressures and the SBP-DBP differences (DeltaP) increase with the level of resistances on the left terminations.

Now, let us see the impact of a nonsymmetry on the compliances for symmetric resistances. The nonsymmetry is again
introduced through a multiplication by a constant aC on the left compliances, Cleft = aCCright.

Again, several inversions have been performed for the values of aC = 0.5, 0.75, 1 (symmetric WK3), 1.25 and 1.5. Cleft,right

replace C in expression (4) in corresponding left and right terminations. Figures 19, 20, and 21 show the impact of this
nonsymmetry on the inversion. It appears that, unlike with the nonsymmetry in the resistances, a loss of symmetry on
the compliances has much less impact on the inversions.

As a conclusion, nonsymmetry in the resistances seems to play a much bigger role.
Finally, both the resistances and compliances are considered as nonsymmetric. Figures 22, 23, and 24 show the impact

of this loss of symmetry. One sees that the target signals are well recovered by all the inversions. It is therefore unclear if
nonsymmetry should be introduced during the inversion if the only available information is the flow rate. Considering
the brachial pressures, still the improvement is not spectacular compared with the symmetric configuration as many
combinations produce acceptable brachial pressure levels. A symmetric set up appears to be suitable for this patient. This
is shown in Figure 24 indicating the acceptable nonsymmetry combinations for (aR, aC), ie, the combinations for which
similar results than the symmetric WK3 conditions are obtained. The same trends were observed for the other patients
considered in this study. In short, if one wants the inversion to identify possible nonsymmetry, one would need more
discriminating data.

6 ALTERNATIVE BACKWARD UNCERTAINTY QUANTIFICATION

6.1 Linear theory for an alternative covariance matrix construction
EnKF is an elegant way for backward uncertainty propagation as one has access to the covariance matrix (covx) of the
optimization variables during the inversion from ensemble information. Indeed, at each iteration k of the EnKF algorithm,
covx

k
can be defined with a similar expression to those used for calculating the error covariance matrices necessary to

the Kalman gain matrix computation:

covx
k
= 1

qens − 1

qens∑
i=1

[
xfi

k − x̄f
k

] [
xfi

k − x̄f
k

]⊤
,

where qens is the size of the ensemble, the superscripts f and fi stand for forecast and the ith forecast member of an
ensemble of size qens, xfi

k is the forecast ensemble of parameters for i = 1, … , qens, and x̄f
k is the mean of the forecast

ensemble of parameters ( x̄f
k = 1

qens

∑qens
i=1 xfi

k ).
This section presents an alternative low-complexity construction of the covariance matrix46 of the parameters (covx)

not necessitating ensemble information. It is based on the assumption of a local linear relationship (𝜹y =  𝜹x) between
the hemodynamic parameter variations 𝜹x = x − x̄ and the state variations 𝜹y = y − ȳ with respect to the mean values
x̄ and ȳ. One interest of this construction is that it can also be used with deterministic minimization algorithms suitable
for large dimensional problems where ensemble methods might fail.

Let us establish the expression for the covariance matrix covx of the parameters x knowing the covariance matrix covy
of the model solution. These are supposed independent, which means that covy is diagonal.

The covariance matrix of y is given by

covy = E
[
(y − ȳ)(y − ȳ⊤

]
= E

[
 (x − x̄) (x − x̄)⊤ ⊤

]
=  E

[
(x − x̄)(x − x̄)⊤

]
 ⊤

=  covx  ⊤,

and therefore,
covx =  −1 covy  −⊤,

where  −⊤ = ( ⊤)−1 and  = ∇xy. As x and y do not have the same size,  is a rectangular matrix. A least square
formulation is introduced to give a sense to  −1 through its normal form, minimizing

1
2
<  covx  ⊤, covx  ⊤ > − < covy, covx  ⊤ > .
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FIGURE 25 Comparison of the square root of covx diagonal elements coming from EnKF solution (blue points) to the square root of covx

diagonal elements calculated with the low complexity deterministic evaluation based on the linear theory given in Equation 8 (red points)

First-order optimality condition with respect to covx gives

 ⊤ covx  ⊤ −  ⊤ covy  = 0,

which implies
covx = ( ⊤ )−1  ⊤ covy  ( ⊤ )−1

and finally leads to
covx =  −1 covy  −⊤ =

(
 ⊤ cov−1

y 
)−1

. (8)

To get covx knowing covy, it is therefore sufficient to evaluate the Jacobian  . This can be done using a finite difference
approximation.

When the inversion is successful, the model states y and the observations yobs are close. Assuming that covyobs ∼ covy,
this construction from covy can be extended to covyobs .

6.2 Application to the patient-specific data
This section applies the backward uncertainty quantification construction presented in Section 6.1 to the patient-specific
data and compares the outcome with the ensemble analysis through EnKF results.

Figure 25 shows a comparative overview of the square root of covx diagonal elements calculated using EnKF (blue line)
and the low cost linear theory (red line). These values represent standard deviation associated with the estimated param-
eters. The linear theory seems to provide lower bounds for the backward uncertainty on the inversion. This comparison
shows that the linear hypothesis permits to a posteriori obtain the uncertainty on the inversion solution with an error
of less than 15%, and this especially without requiring any extra information when used together with a gradient-based
minimization algorithm.

7 LIMITATIONS

It is worth bearing in mind the limitations of the present study, both intentional and unintentional. One of the limita-
tions could be the use of 0D models. Indeed, as pointed out by Shi et al47 and Kokalari et al,48 the 0D models consider as
uniform the distribution of fundamental variables (pressure, volume, and flow rate) at any instant in time. Thereby, they
do not account for the spatial variation of these parameters.48 They are therefore only appropriate for the study of global
distribution of the pressure, flow rate, and blood volume in systemic arterial network and for specific physiological condi-
tions. Phenomena, such as wave transmission, wave travel, and wave reflections, cannot be or are not studied.49 It is worth
noting that several studies have pointed out the shortcomings of the lumped models and have proposed more complex
and sophisticated models to better capture the characteristics of blood flow.33,47,50-52 However, this is not central to our dis-
cussion and is beyond the scope of this paper. What is shown here and is regularly employed in the literature concerning
arterial hemodynamics is that this simple model permits to give reasonable results. Moreover, the region studied being
compact (the size of the cerebral network [of order 10 cm] is small compared with typical pressure wavelength [of order
a few meters]), assuming that all the quantities are homogeneous over each segment (viz, making the 0D assumption at
the scale of each element), is acceptable. Of course, it would not be acceptable if this study was dealing with the arterial
network of the whole body.
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FIGURE 26 Importance of systemic arteries with respect to cerebral arteries in determining R and L brachial pressures estimated using
WK3 with nonsymmetry in resistances with aR = 1.5 only. Changing resistances at only thoracic aorta termination (dashed green) has the
same impact on brachial pressure as the nonsymmetry in resistances at all the arterial terminations except thoracic aorta case (dashed black).
Changing resistances at all terminations (thin blue) induces more important changes in brachial pressure. The clinically measured SBP and
DBP in the right and the left brachial artery are 125 and 72, and 115 and 72, respectively

Another limitation could be the choice of the formula relating Young modulus, thickness, and radius for the cerebral
arteries in Equation 5. This work assumes the same phenomenological relation for both large and cerebral arteries. The
other factor might be the failure to account for the variation of arteries radii along arterial axes and the adaptation of
missing data, such as the geometrical parameters of the arteries, from the literature. Future work should include sensitivity
analysis of the optimization parameters outcomes with respect to this simplification. For instance, one way to quantify
how this simplification would affect the results of optimization parameters is to perform several inversions, with the
present tool, using perturbed geometries and see the impact of this perturbation on the outcomes. This is a step to be
taken in the future to improve the robustness of the approach.

As possible improvements, one could also mention the marked changes in simulated brachial pressure wave resulting
from assigning different resistances for left and right pairs of terminal cerebral compartments. From the physiological
point of view, this might not be correct as some studies support that arterial blood pressure wave is mainly determined
by the systemic vessels rather than the cerebral vessels. In other words, changing cerebral vascular resistances should
not induce such large changes in systemic arterial pressure wave. To demonstrate the relevance of this issue, new tests
of nonsymmetry in resistances with aR = 1.5 only have been performed. The results are summarized in Figure 26.
They show that changing the resistances of only one termination in cerebral or brachial arteries has no effect on brachial
pressure. However, they reveal that changing resistances at only thoracic aorta termination has the same impact (or even
more) on brachial pressure as the nonsymmetry in resistances at all the arterial terminations except thoracic aorta case
above presented. Furthermore, one notices that changing resistances at all terminations induces more important changes
in brachial pressure. Thus, the apparent effects of resistances at arterial terminations on the brachial pressure might
result from the fact that the lower part of systemic circulation, which is of major importance in determining arterial blood
pressure wave, is only represented here by distal boundary conditions.

At last, it is necessary to highlight the lack of clinically measured flow rates in arteries other than ICA and ascending
aorta. This prevents the proper validation of the predicted flow divisions among major tissues. More clinical data are
required.

8 CONCLUSION

The robustness of a functional cerebral imaging platform has been analyzed for patient-specific situations. In particular,
detailed results for one patient have been reported to illustrate the kind of information and sensitivity analyses, which can
be produced in addition to the classical inversion results. The aim is to be able to quantify the impact of the uncertainty
of different parameters usually considered as deterministic on the hemodynamic parameters obtained after inversion.
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An important source of uncertainty being the flow rate from the heart is that the sensitivity of the inversion with respect
of the inlet flow has been analyzed. The conclusion drawn from this analysis has been that the predicted pressure and
the elastic parameter estimation are of the same order of magnitude than the assumed uncertainty on the inlet flow rate.
This provides additional guidance to practitioners as it gives some indication for the level of uncertainty one can tolerate
because of manual acquisition steps. The sensitivity of the inversion with respect to the choice of the boundary conditions
in the direct model has been analyzed. The WK3 boundary condition appear necessary for a correct retrieval of the target
signals. Then the impact of nonsymmetry in the terminations resistances and compliances has been analyzed. The former
effects appear prominent. However, one notices that available observations are not enough discriminating and, therefore,
do not make it obvious for possible nonsymmetry to be identified through the inversion procedure.

Finally, an ensemble approach might be unsuccessful if the size of the inversion problem is large. To address this issue,
one might use deterministic gradient-based inversion algorithms together with an adjoint formulation for the gradient
evaluation. But these algorithms do not propagate backward the uncertainty on the observations. To address this issue, a
low-complexity backward uncertainty quantification construction has been introduced. It uses a local linear relationship
between the blood flow rate and the hemodynamic parameters. The construction has been favorably compared with the
ensemble outcome, which is interesting as this is a generic construction and can be used with any deterministic inversion
algorithm.
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