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Abstract

This paper uses machine learning to enrich magnetic resonance angiography

and magnetic resonance imaging acquisitions. A convolutional neural network

is built and trained over a synthetic database linking geometrical parameters

and mechanical characteristics of the arteries to blood flow rates and pressures

in an arterial network. Once properly trained, the resulting neural network

can be used in order to predict blood pressure in cerebral arteries noninva-

sively in nearly real-time. One challenge here is that not all input variables

present in the synthetic database are known from patient-specific medical

data. To overcome this challenge, a learning technique, which we refer to as

implicit manifold learning, is employed: in this view, the input and output data

of the neural network are selected based on their availability from medical

measurements rather than being defined from the mechanical description of

the arterial system. The results show the potential of the method and that

machine learning is an alternative to costly ensemble based inversion involv-

ing sophisticated fluid structure models.
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1 | INTRODUCTION

At the junction of optimization, statistics, and computer science, machine learning (ML) has gained tremendous interest
throughout all scientific disciplines. One can say without exaggeration that it is a revolution in the way solutions
of scientific problems are considered. This revolution is very noticeable in biomedical applications with the works
of Rahul, Liang et al, Adam et al, Pozin et al, Koeppl et al, Koprowski et al, Cang et al, Luo et al, Cilla et al,1-9 and
also more recently, with the works of Goceri, Zhang et al, Chen et al, and Nguyen and Wei,10-13 to name just a
few. According to several researchers, ML will undoubtedly continue to significantly revolutionize biomedical
research and global health care in the future.1,14,15 Indeed, fueled by increasingly powerful computers and avail-
able storage capacities, ML methods are able to deal with large, complex and heterogeneous data typically found
in biomedical applications.1,13-17 Thus, ML can contribute to identify and engineer features from the data, perform
more robust predictions and therefore lead to more accurate diagnostic algorithms and individualize patient
treatments.15,18-22

ML-based strategies most often rely on models applied to a carefully constructed dataset so that the training and test
data are drawn from the same feature space and the same marginal probability distribution.23 As pointed out by
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Ruder,24 these models sorely lacks the ability to generalize to conditions that are different from those encountered dur-
ing learning and for which the models might be unable to make reliable predictions. This is the case, for instance, when
a model learns from simulations and is being applied to deal with actual data. As data from the real world is messy and
may contain several new scenarii, many of which were not present during the learning step, the model tuned from
numerical data suffers from a significant loss in performance or even breaks down completely when used in practice.24

In the field of ML, the ability of a model to transfer knowledge to new conditions is generally known as transfer learn-
ing (TL) and this is one of the key features used in this paper.

Many examples exist in the ML literature where TL has been applied successfuly: text categorization, text and
Web-document classification,25-28 learning in real-time strategy game,29 text mining,27,30 natural language
processing,31 WiFi-based Indoor Localization,32 reinforcement learning,33-37 to cite a few. In this paper, we apply
TL, in particular learning from simulations, to the prediction of blood pressure in a cardiovascular system.

Learning from simulations is one particular application of TL commonly used in ML when one needs to deal with
data, which is either rare, incomplete, expensive or simply dangerous to obtain.24 In all these situations, analytic models
or numerical simulations can fill the gap. In previous works, the use of an algorithm based on ensemble Kalman filter
(EnKF) technique coupled to a 0D compartement network has allowed to noninvasively estimate patient-specific blood
pressure in cerebral arteries.38,39 However, this procedure, which requires inverse problem solving, is too long, expen-
sive and difficult to integrate in a medical acquisition device. The present work aims at remedying that with focus on
the following three key messages:

• Use supervised ML together with a Convolutional Neural Network (CNN)—a type of ML algorithms used with great
success in miscellaneous image recognition applications and prediction tasks, such as handwriting recognition and
face detection40-43—as an alternative to the ensemble based inversion procedure by EnKF used in our previous works
for cerebral blood pressure estimation. In particular, on the basis of magnetic resonance angiography and magnetic
resonance imaging (MRA & MRI) acquisitions provided by physicians and using a learning database generated with
the same numerical procedure as that used in the inversion procedure, the aim is to recover the EnKF outcomes pre-
viously achieved by Lal et al38 through the solution of an inverse problem. This allows to augment/enrich already
available information in MRA & MRI images.

• Use “implicit learning on a manifold” to deal with situations where part of the information in the input variables are
missing while observations are available on some output variables. This is why the term “implicit” is introduced. The
term “manifold” is used to reflect the fact that among all the variables contained in the database, only a subset of
them will be used for the learning. This is like working on a vector subspace and consists of reorganizing the data-
base into structured variables in order to take into account unavailable patient-specific data. Therefore, “implicit
learning on a manifold” should not be seen as a particular Artificial Intelligence (AI) algorithm. In fact, it should be
regarded as just a multi-output convolutional neural network. Thus, any multi-output regression method (eg, linear
models, multi-output random forests or other forms of neural nets with autoencoding) could have been used instead
of this multi-output convolutional neural network implementation.

• Apply the outcome of the learning from simulations to patient-specific data and we use the term “transfer” in that
sense. The network and its coefficients obtained during the learning from simulations are kept unchanged when
applied on patient-specific data.

The remainder of the paper is organized as follows. First, an overview of the methodology followed in this work is
provided in Section 2. Section 3 details the procedure for building the synthetic database. Section 4 presents the state of
the art in ML and discusses some mathematical aspects of the CNN approach used in this study. Section 5 illustrates
the effectiveness of the method by considering a very simple problem while Section 6 shows its application for the esti-
mation of blood pressure in cerebral arteries. Finally, Section 7 discusses some of the limitations of the present study
and Section 8 provides concluding remarks.

2 | PRELIMINARIES

2.1 | General methodology

Figure 1 presents the general flowchart for this work with the following main steps:
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1. Hemodynamic and morphological data extraction: first, from magnetic resonance angiography and magnetic
resonance imaging acquisitions and segmentation of a 3D time of flight magnetic resonance angiography (3D-
TOF-MRA)—dicom files provided by the Department of Neuroradiology of the Centre Hospitalier Régional
Universitaire de Montpellier (CHRU), Montpellier, France,—blood flow rates in ascending aorta (AA), right and
left internal carotid arteries (R-ICA and L-ICA) have been extracted using the GTFlow sofware (http://www.
gyrotools.com/products/gt-flow.html/) together with the morphological data relevant to geometric measure-
ments and the morphology of some arteries through the use of the RadiANT DICOM Viewer software (http://
www.radiantviewer.com/).

2. Patient-specific arterial network construction: on the basis of these images, a patient-specific arterial network
of 33 arteries as shown in Figure 2 consisting of the aorta, vertebral, carotid, and brachial arteries together with the
complete circle of Willis has been then constructed. For more details, the reader is referred to previous works.38,39

3. Machine learning
a. Database generation: the next step has consisted in generating synthetic data by performing a series of

forward simulations of the blood flow model (ℳ) described in detail below in Section 2.2. The outcome of
these simulations relates the model input parameters (namely, the blood flow rates in AA, the geometrical
(radius r, thickness h, and length l) and mechanical characteristics (Young moduli) of the 33 arteries as well
as the Windkessel three-element parameters) to the model output parameters (namely, the blood flow and
pressure in the 33 arteries.)

b. The use of CNN as ML algorithm: subsequently, a multi-output CNN-based approach was introduced
in order to learn on structured variables from the database, the relationship between CNN input and out-
put parameters, and then, apply the acquired knowledge to patient-specific data for blood pressure
estimation.

4. Validation: Finally, to test the accuracy of the method, pressure estimated using CNN was compared with that pre-
viously predicted in Lal et al38 by solving an inverse problem using EnKF.

Compared with the method used in previous works,38,39 the novelty in the general framework proposed here is the
use of ML method instead of EnKF-based parameter estimation algorithm.

FIGURE 1 The general framework of the proposed

methodology. The numbers on the left side refer to the four steps of

the general methodology described above
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2.2 | The blood flow model

Mathematical modeling is a powerful tool for a better understanding of the cardiovascular system in an inexpensive
and noninvasive way. There are several cardiovascular models (0D, 1D, 3D) available in the literature, each coming
with its advantages and drawbacks. In this work, we adopted a 0D formulation, also known as lumped-parameter
model, due to its simplicity and effectiveness in describing first order features of the human cardiovascular system.

In general, the mathematical formulation of the lumped-parameter models is derived by decomposing the cardio-
vascular system into single arterial segments or compartments, each segment being represented with a single electrical
circuit, consisting of resistance R, inductance L, and compliance C, as shown in Figure 3. In this way, the full arterial
network is built by connecting single electrical compartments together.

Applying the laws of conservation of mass and momentum to a single compartment filled with an incompressible
Newtonian fluid, the following linear first order ordinary differential equations can be obtained:

C _Pout = qin−qout
L _qin =Pin−Pout−Rqin,

(
ð1Þ

where (Pin, qin) and (Pout, qout) refer to the pressure and flow rate at the inlet and outlet of the vascular segment, respectively.
For arteries with a radius r < 0.2 cm, the inertial effect is ignored44 and the flow rate is given by qin = (Pin − Pout)/R. Let r, h,
l, μ, ρ, and E be the radius, the wall thickness, the length, the blood viscosity, the blood density, and the Young modulus of
the arterial segment, respectively. The three parameters R, L, C are obtained from physical principles (momentum and mass
conservation) applied to the arterial sector and read45:

• the viscous flow resistance, R, is derived from the Poiseuille's equation, which describes the relation between pres-
sure drop, ΔP, and the steady blood flow, q, through a uniform, and rigid blood vessel: R = 8 μl/πr4;

FIGURE 2 The 0D arterial network model38 of the patient-

specific upper body arteries and the circle of Willis. The arterial

segments in red and the red circles represent the four arteries of

interest examined in the rest of paper and the WK3 model,

respectively
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• the inductance of the vessel, L, which represents the acceleration and deceleration of the inertial blood at each heart
beat, is equal to L = ρl/πr2;

• the vessel compliance, C, which represents the ability of a vessel wall to expand and contract with changes in pres-
sure, is equal to C = 3πr3l/2Eh.

In order to close the arterial network and accommodate the cumulative effects of vessels beyond the terminal seg-
ments, the three-element Windkessel model (WK3-lumped parameter model)46,47 is prescribed at the outlet of each ter-
minal segment. As a reminder, the equation relating the instantaneous blood pressure and the flow rate reads as
follows:

_p tð Þ+ p
RDC

=RP _q tð Þ+ qRT

RDC
, ð2Þ

where p, q, C, RP, and RD refer to the instantaneous pressure at the inlet of the WK3 model, the instantaneous flow rate,
the compliance, the proximal resistance, and the distal resistance of the vascular beds, respectively, and RT refers to the
total peripheral resistance meaning that RT = RP + RD. For simplicity, the blood flow model—let us refer it to as (ℳ)—
can be formally expressed as follows:

ℳð Þ :
_Y tð Þ=FX Y tð Þð Þ
Y 0ð Þ=Y 0,

(
ð3Þ

where Y (t) = (P(t), q(t))>, Y0 is the initial condition, X represents the geometrical parameters of the problem (ie, r, h, l),
the inlet flow rate from AA, the Young moduli, the Windkessel WK3 boundary conditions38 at the same time, and FX is
a linear or nonlinear function defined by the blood flow model describing the relation between Y (t) and its time deriva-
tives _Y tð Þ . Here and for the rest of the paper, the notation “function with suscript X,” for examle FX, means that the
function F depends on the parameter X. This is a generic formalism for any 0D arterial network and therefore includes
the 0D formulation of the cardiovascular network investigated in the current study (Figure 2). This network is taken
from Lal et al38 because both studies focus on the same patient.

3 | IN SILICO DATABASE GENERATION

In this section, we describe the procedure for generating synthetic data. This data consists of geometrical parameters
(the radius, r, the wall thickness, h, and the length, l), physical parameters (the Young moduli, E), blood flow rates, q,
blood pressures, P for the 33 elements of the arterial model (Figure 2) on top of the 11 WK3 models used as boundary
conditions (the proximal resistances, RP, the distal resistances, RD, and the compliances, C).

For a forward simulation using the blood flow model (ℳ) presented in Section 2.2, this data is interrelated in the
sense that the variables r, h, l, E, RP, RD, C of the network associated with the variable qin, the inlet flow rate (the blood
flow rate in AA), represent the input parameters of the model, which we refer to as model input parameters, and
the variables q and P, the output parameters, which we refer to as model output parameters. As a reminder, the
Young moduli E are given by Eh= r k1 ek2r + k3

� �48 where k1, k2, k3 are model constants and the inlet flow rate qin is
defined using two components α and τ as follows38,39:

FIGURE 3 A single compartment circuit illustration
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qin tð Þ= αsin πt=τð Þ if t< τ,

0 otherwise

�
ð4Þ

where α = 302 mL/s and τ = 0.3 second are nominal values taken from Lal et al.38 These will be randomly perturbated
below following a Gaussian distribution with means equal to these nominal values and standard deviations σ, which
will be specified later, to produce samples of qin. For more details, the reader is referred to Lal et al.38

To generate the database, blood rheological parameters were fixed as: the blood density ρ = 1050 kg/m3 and
the blood viscosity μ = 0.004 Pa/s, and the same WK3 boundary conditions for left and right pairs of terminal
compartments were assumed. This means that the terminal compartments such as the segment connecting P27
and P25 and the one linking P29 and P14 in Figure 2, for instance, are assigned with the same WK3 boundary
conditions. A series of forward simulations of the blood flow model (ℳ) is then performed using a series of
perturbated model input parameters (~qin ,~r ,~h ,~l ,~E ,~RP ,~RD ,~C ). The series of outcomes obtained from these simulations
(P= ~P1, � � �,~P33 ,q= ~q1, � � �,~q33 ) associated with the series of perturbated model input parameters constitutes the data-
base. This is illustrated on Figure 4. Note that, while not expressly stated, all the parameters in the database
representing blood flow rates and pressures are time-dependent. It is also worth noting that the parameters in the
database can be subdivided into two categories: the class of known parameters (easy to measure) and the class of
unknown parameters (difficult to measure). Table 1 provides a general overview of these different parameters
listed by category.

To obtain the series of perturbated model input parameters for each forward simulation of the blood flow model
(ℳ), we randomly perturbate each model input parameter following a Gaussian distribution with a mean equals to the
nominal value of each input parameter taken from Lal et al,38 and a SD σ of 5% of this nominal value. The SD σ of 5%
of each nominal value is chosen in order to obtain perturbated model input parameters tending to realistic values
encountered in the literature. E being given by the relation Eh= r k1 ek2r + k3

� �
, ~E is obtained by perturbating the param-

eters appearing in the relation giving E meaning that ~E~h=~r ~k1 e
~k2~r + ~k3

� �
, where each of the three constants ~k1, ~k2, and

~k3 is also obtained from a Gaussian distribution with a mean equals to the nominal value of each constant k1, k2, and k3
taken from Lal et al38 and a SD of 5% of this nominal value.

4 | THE STATE OF THE ART IN MACHINE LEARNING

A tremendous number of ML algorithms have been developed, which all share the same goal: to provide sufficient flexi-
bility to minimize training error but, at the same time, allow generalization to new data sets, all in a computationally
efficient way.1 Among these algorithms, the most commonly used ones are Linear Regression, Logistic Regression, Lin-
ear Discriminant Analysis, Decision Tree, Support Vector Machine (SVM), Naive Bayes, k-Nearest Neighbors (kNN),
Learning Vector Quantization (LVQ), K-Means, Bagging, Random Forest, Dimensionality Reduction Algorithms, Con-
volutional Neural Networks (CNN), Gradient Boosting algorithms, and AdaBoost.49-52 These algorithms tasks mainly
include regression, classification, predictive modelling, clustering, association or survival analysis, link mining, and
dimensionality reduction.52-54 The details of these different algorithms are beyond the scope of this paper. However,
CNN is discussed below because of its ability to manage complicated relationships between input and output data that
are not easily captured by manual measurement,14 its relevance to biomedical research, its frequent use within the liter-
ature15 and its use within the current work.

4.1 | The implicit CNN: notation and database destination

The first step in our approach is to receive from a user raw data made of a set of scenarii linking input and output vari-
ables (let us refer to them as input data and output data, respectively). In the sequel, as we are interested in biomedical
applications, the considered database will consist of a set of N scenarii linking n input real variables (these are typically
blood flow rates values at temporal discretization points) to m output real variables (these also typically correspond to
blood pressure values at temporal discretization points): {X ∈ IRn ! Y ∈ IRm} where X = (X1, …, Xn) and Y = (Y1, …,
Ym). Hence, the required data is as follows:
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X1 = X1
1,…,X1

n

� �!Y 1 = Y 1
1,…,Y 1

m

� �
,

..

.

XN = XN
1 ,…,XN

n

� �!YN = YN
1 ,…,YN

m

� �
:

In the applications we are interested in, data is often rare, expensive to obtain or confidential. The aim, therefore, is
not to handle very large amount of data, but rather see the potential of learning of CNNs based on small amount of data
in opposition to big data situations. The destination of the data is rather classical. The database is splitted in three sub-
sets to be used to train, validate and a posteriori test the network. In this splitting, the major part of data is used for
learning. A second subset is used to make sure to avoid over-fitting during learning (this is called validation). The third
subset is for a posteriori test of the quality of the network. This kind of splitting is very classical in statistical data treat-
ment and widely described in dedicated manuscripts.55

4.2 | The implicit CNN algorithm construction

Classical CNN algorithms are usually built to mimic and replicate the investigated physical model process. This means
that in the classical CNN, the input and output data of the neural network are exactly the same as those used in the
physical model considered. This is illustrated in Figure 5 in the case examined here, where the input data and the out-
put data of the network are directly derived from the series of perturbated model input parameters and from the series

FIGURE 4 Illustration of the database generation procedure. In the case studied here, the parameters in red are considered as known

parameters (easy-to-measure parameters) while the remainder is considered to be unknown

TABLE 1 The two categories of parameters in the database: the known parameters (easy-to-measure parameters) and the unknown

parameters (not-easy-to-measure parameters)

Known parameters Unknown parameters

blood flow rates in AA, ~qin = ~q1 geometrical parameters of the 33 arteries, ~r1, � � �,~r33, ~h1, � � �,~h33,~l1, � � �,~l33
blood flow rates in R-ICA, ~q21 Young moduli of the 33 arteries, ~E1, � � �, ~E33

blood flow rates in L-ICA, ~q23 blood pressures in the 33 arteries, ~P1, � � �,~P33

— blood flow rates in 30 arteries, ~q2, � � �,~q20,~q22,~q24, � � �,~q33
Abbreviations: AA, ascending aorta; L-ICA, left internal carotid artery; R-ICA, right internal carotid artery.
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of model output parameters, respectively. Note that except the blood flow rates ~qin and (~q21 ,~q23 ) in the input data and
the output data, respectively, the other parameters constituting the input/output data in the classical CNN are
unknown (not easy to measure). This prevents us from performing the a posteriori test of the quality of the network,
hence the idea of changing the structure of the classical CNN algorithm so that all the known parameters in the data-
base can be gathered as consisting of the network input data.

The CNN algorithm proposed here, which we refer to as implicit CNN, is not usual. One of its particularities is that
its input data is neither usual nor classical. Indeed, in contrast to the classical approach, the input and output data of
the network in the implicit CNN algorithm does not mimic those from the physical model. They are rather reorganized
in structured variables. The example shown in Figure 6 demonstrates such organizational change in the implicit CNN:
the input data consists of one subset of the series of perturbated model input parameters, ~qin, and one subset of the series
of model output parameters (blood flow rates ~q1, � � �,~q33), and the output data consists of the remaining part of the series
of model output parameters (blood pressure ~P1, � � �,~P33 ). However, in practice, we are interested in predicting the blood
pressure in a specific artery and not in all at once. Thus, instead of using all available information as shown in Figure 6,
a simpler construction where the input and output data of the implicit CNN will consist of ~qin and the series of blood
flow rates in the artery of interest on the one hand, and on the other hand, the series of blood pressure in the same
artery (see Figures 10–13 below) takes over from it. This unusual construction is motivated by the available parameters
from the patient's MRA & MRI images. Indeed, only the parameters available (known parameters) within the patient-
specific data (see Table 1), namely the parameters extracted from MRA & MRI images and not requiring the resolution
of an inverse problem—the blood flow rates in AA, R-ICA and L-ICA, ~qin , ~q21 , and ~q23 (see Figure 2), respectively are
used as input data of the network. The idea behind this construction is to obtain a network capable of linking only the
easy-to-measure parameters (known parameters in model input parameters) from the patient's MRA & MRI images to
the model output parameters. This implies that the information in the unknown parameters from model input parame-
ters which are not used for building the network is implicitly contained in the model output parameters used for the
network construction and can therefore be indirectly recovered. This means that exploiting only known parameters
from model input parameters as input data of the network allows to access to hidden information in the unknown
parameters not used. In addition to allowing the a posteriori test of the quality of the network, this construction avoids
the problem of unknown parameter estimation through inverse problem solving before performing the convolutional
neural network construction.

Another particularity of our implicit CNN concerns the definition of the network. In the classical CNN techniques,
the number of layers and the number of hidden variables in each layer must be a priori defined by the user before the

FIGURE 5 The classical Convolutional Neural Network (CNN) construction. The network input data consists of a series of model input

parameters perturbated ~qin,~r,~h,~l, ~E, ~RP, ~RD, ~C, and the network output data is composed of the corresponding series of model output

parameters (~q1, � � �,~q33 and ~P1, � � �,~P33 in Figure 2). The known parameters are in red and the unknown ones are in black
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parameters of the network are found through error backpropagation. This is known to require lots of know-how by the
user. We avoid this a priori definition introducing an incremental procedure for the definition of the network structure.
We proceed in a systematic way combining an incremental construction of the network with the use of the information
available through activation functions. This means that different network depths are tested with increasing number of
layers. For each of these networks, a maximum number of variables per layer is prescribed. In our case, we consider a
maximum allowance of 200 hidden variables for all layers. Eventually, after this optimization procedure, only the vari-
ables which are found to sufficiently contribute to the network outcome are retained. These correspond to those with
the activation function beyond a given user-defined threshold. The network we retain is the one with the best fitting
capability over the learning database while avoiding overfitting. This optimization of the network structure is interest-
ing for both the optimization and inference steps. For the former, once a given variable is found not being of sufficient
importance, it is removed from the optimization set. This means that search activities along this variable are abandoned
hence reducing the size of the optimization space. For the latter, a lighter network will obviously permit more effective
inference steps in term of computational effort. Figure 7 illustrates this procedure for the simple example given in
Section 5. It shows the evolution of the mean average error over the test database for increasing network depth and the
evolution of the cumulative number of the variables of the network. The network, which shows the best compromise
between accuracy and complexity is found to be of depth 20: adding extra layers and variables do not significantly
improve the quality of the results. The results presented below in Figure 9 corresponds to the outcome of this network.
Note also that in our implicit CNN, 1D convolution operations with Gaussian kernels are used in convolution layers as
we handle time series. The supports of the convolutions are also automatically identified in the same way as the optimal
number of layers of the network.

5 | ILLUSTRATION ON A SIMPLE EXAMPLE: CNN AND SOLUTION OF A
FOWARD PROBLEM

Let us illustrate the proposed approach on the solution of an ordinary linear differential equation:

FIGURE 6 The implicit Convolutional Neural Network (CNN) construction. The network input data consists of a series of structured

variables: the series of known parameters from the series of model input parameters perturbated, namely the perturbated inlet flow rate, ~qin,

and the corresponding series of blood flow rates from the series of model output parameters (~q1, � � �,~q33 in Figure 2), and the network output

data is composed of the corresponding series of blood pressure from the series of model output parameters (~P1, � � �,~P33 in Figure 2).

The known parameters are in red and the unknown ones are in black
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_p tð Þ = f X tð Þ,
_q tð Þ = gX tð Þ,
p 0ð Þ = p0,

q 0ð Þ = q0,

8>>><
>>>:

ð5Þ

with X = (X1, X2), fX(t) = X1cos(X1t + X2), gX(t) = − X1sin(X1t + X2), p0 = sin(X2), and q0 = cos(X2).
Setting Y = (p, q)>, HX(t) = (fX(t), gX(t))

>, Y (0) = (p(0), q(0))> and Y0 = (p0, q0)
>, this ordinary linear differential

equation can be restated as:

_Y tð Þ =HX tð Þ,
Y 0ð Þ =Y 0:

(
ð6Þ

The solution Y* of the latter differential equation is trivial and we have Y*(t) = (p*(t), q*(t))
> = (sin(X1t + X2), cos

(X1t + X2))
>. In order to apply CNN-based technique to this simple problem, a database containing samples of X ∈I Rn

and Y ∈I Rm, is digitally generated.
For the classical CNN, we have n = 2, the size of input data X. Moreover, the solution Y* is represented by Y (output

data), a vector of size m = 86 corresponding to the number of points in a discrete representation of the solution Y*

(43 for each of the two components of Y). In this test case, the database contains N = 200 samples of Y obtained for
200 values of X. In the applications we are interested in, N = 200 different scenarii is already quite large as data is often
not that easy to obtain. This choice of 200 samples is not coerced. This is arbitrary and we could, of course, have chosen
any other reasonable number of samples.

For the implicit CNN, data is reconstructed as follows: the input data X
0
is built from a subset of X and a subset of Y.

For instance, one can consider X
0
= (X1, q). The output data Y

0
is made of the remaining part of Y, p. Thus, the size of

input data is now n = 44 (1 for X1 and 43 for q), and that of output data is m = 43. Note that X2 belongs neither to the
input nor the output but its effect on the output is present, although not explicitly written.

The results obtained using the classical CNN and the implicit CNN for this simple problem are illustrated in
Figures 8 and 9, respectively. In these Figures, the upper parts (Figures 8A and 9A) show the networks determined to
properly represent the actual “physical” system described in Equation (6): a network consisting of 30 locally fully con-
nected layers with up to 155 hidden variables for the classical CNN, and a network of 20 locally fully connected layers
with up to 84 hidden variables for the implicit one. By locally fully connected we mean that the variables of two succes-
sive layers are connected. In the remaining part of these Figures (Figures 8B, C and 9B), the desired solution is referred
to as Target, the prediction of the desired solution referred to as CNN, and data used for learning referred to as Learn-
ing data. Comparing the Target and CNN data, the results are very good with a relative error of less than 3% and mean
absolute errors (MAE) of 0.05 and of 0.024 for the classical and implicit CNN, respectively. Note that the implicit CNN

FIGURE 7 Incremental implicit network construction for the simple example given in Section 5. A, Mean average errors vs number of

layers; and B, total number of network cumulative variables vs number of layers
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is able to recover the partial output p without using the explicit knowledge of the X2 input. This is a big advantage
compared to the classical CNN formulation, especially in any case where X2 is difficult to measure.

6 | APPLICATION OF THE IMPLICIT CNN TO 0D BLOOD FLOW MODEL

6.1 | A test case with synthetic data

We are interested in the blood flow model (ℳ) presented in Section 2.2 and we would like to build a database allowing
to estimate the blood pressure in some arteries of interest. In practice, for the hemodynamic applications we are

FIGURE 8 Learning the solution

of an ordinary differential equation

using a database of 200 available

solutions with the classical

Convolutional Neural Network

(CNN). A, The network determined for

this problem consists of 28 locally fully

connected hidden layers with up to

155 hidden variables; and B and C, the

results of the target solution prediction

using the classical CNN
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interested in, some parameters are measurable and others not. In the case investigated here, blood flow rates in AA, R-
ICA and L-ICA (qin, q21 and q23, respectively), and systolic and diastolic blood pressure in left and right brachial arteries
(SBP and DBP in L.BRA and R.BRA, the maximum and the minimum value of P10 and P13), were measured. This infor-
mation led to choose both ICAs and both brachial arteries as the arteries of interest. To estimate the blood pressure in
these four arteries of interest, we first generate the database following the procedure described in Section 3. From this
database, four different CNNs, one for each artery of interest and each based on N = 100 samples, were built following
the implicit CNN structure for a single artery of interest described in Section 4.2. To build each CNN, a relationship is
created between the input data of size 34 (2 for the two components ~α and ~τ of blood flow rates in AA, ~qin , and 32 for
the number of points in a discrete representation of the blood flow rates in the artery of interest) and the corresponding
output data of size 32 representing the number of points in a discrete representation of blood pressure in the artery of
interest. To be more precise, Figures 10–12, and 13, referred to as CNN R-ICA, CNN L-ICA, CNN R.BRA, and CNN L.
BRA, respectively, show the implicit CNN structure for each of the four arteries of interest (Figures 10 and 11 for ICAs,

FIGURE 10 The implicit Convolutional Neural Network (CNN) for the right internal carotid artery (R-ICA). The network input data

consists of a series of perturbated inlet flow rates parameters ~qin and of the corresponding series of blood flow rates in R-ICA (~q21 in

Figure 2) and the network output data is composed of the corresponding series of blood pressure in R-ICA (~P21 in Figure 2)

FIGURE 9 Learning the solution

of an ordinary differential equation

using a database of 200 available

solutions with the implicit

Convolutional Neural Network

(CNN). A, The network determined for

this problem consists of 18 locally fully

connected hidden layers with up to

84 hidden variables; and B, the results

of the target solution prediction using

the implicit CNN
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and Figures 12 and 13 for brachial arteries). Thus, for each artery of interest, the input data size is n = 34, the output
data size is m = 32, and the number of samples is N = 100.

Each of the four implicit CNNs built as in Figures 10–13 is trained using 99 samples whose the output data is
referred to as Learning data in Figure 14. The last sample whose the output data is referred to as Target (the desired
outcome) is used as testing sample. The results obtained are shown in Figure 14 which illustrates the networks used for
R-ICA (Figure 14A) and for the left brachial artery (Figure 14B). Prediction of the desired blood pressure is referred
to as CNN (Figure 14C, E for ICAs, and Figure 14D, F for brachial arteries). It is worth pointing out that for the two
networks illustrated here, about 20 locally fully connected layers with up to 64 hidden variables have been effective in
providing good results, and that using CNN with the same number of layers and hidden variables, similar results were
observed for L-ICA (Figure 14E) and R.BRA (Figure 14F). From Figure 14, the predicted blood pressure recovers quite
well the target blood pressure. Indeed, in all cases, the relative error between CNN prediction and the target values is
less than 4%. Moreover, for the ICAs, the relative error for systolic and diastolic blood pressure is less than 1%. As for
the brachial arteries, they have a relative error of less than 2% as well for systolic blood pressure as diastolic one.

To assess the relevance of these results and evaluate the skill and the performance of the four implicit CNNs on
new data, a traditional approach is to undertake k-fold cross-validation. This approach consists first in splitting the

FIGURE 11 The implicit Convolutional Neural Network (CNN) for the left internal carotid artery (L-ICA). The network input data

consists of a series of perturbated inlet flow rates parameters ~qin and of the corresponding series of blood flow rates in L-ICA (~q23 in

Figure 2) and the network output data is composed of the corresponding series of blood pressure in L-ICA (~P23 in Figure 2)

FIGURE 12 The implicit Convolutional Neural Network (CNN) for the right brachial artery (R.BRA). The network input data consists

of a series of perturbated inlet flow rates parameters ~qin and of the corresponding series of blood flow rates in R.BRA (~q10 in Figure 2) and

the network output data is composed of the corresponding series of blood pressure in R.BRA (~P10 in Figure 2)

FIGURE 13 The implicit Convolutional Neural Network (CNN) for the left brachial artery (L.BRA). The network input data consists

of a series of perturbated inlet flow rates parameters ~qin and of the corresponding series of blood flow rates in L.BRA (~q13 in Figure 2) and

the network output data is composed of the corresponding series of blood pressure in L.BRA (~P13 in Figure 2)
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N = 100 samples of the database into k roughly equal-sized subsamples.56 Then, one of the k subsamples is retained as
testing set, and the remaining subsamples are used as learning data. This process is then repeated k times with each of
the k subsample being used for learning. Thus, all the subsamples are used for both learning and testing and each sub-
sample is used for testing exactly once. For the choice of k, even if the choice k = 10 is very common in the field of
applied ML, and is recommend if one is struggling to choose a value for the dataset, there is no formal rule.16,57,58

However, as pointed out by Kuhn, Gareth, and many others before them, in practice, one perfoms k-fold cross-
validation using k = 5 or k = 10.16,58-60 In fact, Both values of k have been shown empirically to yield test error
rate estimates that suffer neither from excessively high bias nor from very high variance.16 Given these consider-
ations, k-fold cross-validation technique is performed here using k = 5, 10, and 100. The case k = 100, also known
as leave-one-out cross-validation (LOOCV), is also taken into account since this case generalizes the results pres-
ented above where 99 samples make up the training samples and only one sample is used as testing sample. Still,
for each k-fold cross-validation run, the MAE obtained are averaged to produce a single estimation, which we
refer to as the k-fold mean absolute errors (k-MAE). Table 2 shows typical k-MAE values obtained for blood pres-
sure estimation using the implicit CNN in R-ICA and L.BRA and the corresponding relative errors with respect
to the Target diastolic and systolic blood pressures (DBP and SBP). Just for the record, these Target values (DBP
and SBP, in mmHg) were 110.67 / 161.49 for R-ICA, and 117.59/172.73 for L.BRA. The results in Table 2 shows
that the k-MAE values decrease with the increase in the size of the training dataset meaning that more learning
data leads to fewer errors in the prediction. This is consistent with the results in ML literature. Moreover, the
relative errors with respect to the Target values for the case k = 100 (less than 2%) seems to be comparable with
the results obtained above without cross-validation using 99 samples for learning and a single sample for testing.

FIGURE 14 Typical

networks determined once for

all for estimating blood

pressure in the right internal

carotid artery (R-ICA) (A) and

in the left brachial artery (B),

estimated blood pressure in the

four arteries of interest (in R-

ICA (C), in left brachial artery

(D), in the left internal carotid

artery (L-ICA) (E), and in the

right brachial artery (F)) using

four different implicit

Convolutional Neural Networks

(CNNs) (n = 34, m = 32, and

N = 100). For R-ICA and L-

ICA, the network determined

has 22 hidden layers with up to

64 hidden variables, and for the

brachial arteries, there are

21 hidden layers
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These results being quite encouraging, the next step will focus on applying the implicit CNN to patient-
specific data.

6.2 | A test case using patient-specific PC-MRA& MRI-based data

The patient-specific data used in the current study has been provided by the Department of Neuroradiology at the
Centre Hospitalier Régional Universitaire de Montpellier (CHRU), Montpellier, France. Arterial systolic and diastolic
blood pressures at rest of a healthy volunteer were measured before and after image acquisition using a brachial auto-
matic sphygmomanometer (Maglife, Schiller Medical). The systolic and diastolic values were 125 and 72 mmHg in
the right brachial artery, and 115 and 72 mmHg in the left brachial artery. 2D phase-contrast imaging was performed
on a Siemens 3T Skyra MR Scanner. The ascending aorta and the internal carotid arteries (right and left) 2D phase-
contrast images were considered for the patient-specific blood flow rates extraction. For more details, the reader is
referred to Lal et al.38

For each artery of interest, the implicit CNN built for the synthetic case (Section 6.1) is reused with patient-specific
data. More precisely, the implicit CNN algorithm applies the acquired knowledge during learning in the synthetic
case namely, the relationship between input and output data in each CNN previously built in the synthetic case (the
network and its coefficients obtained during the learning from simulations are kept unchanged) to patient-specific data.
In fact, the testing samples in the synthetic case are replaced with patient-specific data from the different arteries of
interest. Thus, each testing sample consists now of the 2 variables (α and τ) modeling the patient-specific inlet flow rate,
and the 32 points in a discrete representation of the patient-specific blood flow rates in the artery of interest. As a
reminder, R-ICA, L-ICA, R.BRA, and L.BRA are here the arteries of interest. For R-ICA and L-ICA, the implicit CNNs
obtained in the synthetic case are applied to the patient-specific blood flow extracted from MRA & MRI in the ICAs,
which is used as input data. The resulting output, the blood pressure estimated via CNN in the ICAs is then compared
to the desired outcome, the blood pressure previously estimated by Lal et al38 in the same arteries but through the solu-
tion of an inverse problem using EnKF.

In the same way, for R.BRA and L.BRA, the implicit CNNs built in the synthetic case are applied to patient-specific
blood flow but this time not to those extracted from MRA & MRI (measurements not available in these arteries) but to
those previously predicted in the brachial arteries by Lal et al38 with the blood flow model (ℳ) using EnKF. Again, in
this case, the resulting outcome, the blood pressure predicted in the brachial arteries using CNN, is compared to that
previoulsy predicted by Lal et al38 in the same arteries through the solution of an inverse problem using EnKF. Com-
parison with the brachial pressure measurements is also performed to test the accuracy of the method used.

Figure 15 shows a comparative overview between typical results of blood pressure predicted via CNN (referred to as
CNN) and typical results of blood pressure previously predicted via EnKF (referred to as EnKF). It is observed that sec-
ondary peaks in the blood pressure waveforms are well reproduced with CNN. The same trend was observed for L-ICA
and R.BRA. In all cases, for the ICAs, the CNN simulated waveforms have a relative error of less than 3% in the diastolic
and systolic blood pressure. Tables 3 and 4 summarize the cardiac cycle systolic and diastolic blood pressure estimated
using CNN and that simulated using EnKF, in the four arteries of interest (Table 3, for the ICAs and Table 4, for the bra-
chial arteries). From these Tables, all systolic and diastolic blood pressure predicted using EnKF and CNN results differ
by less than 7%. In addition, in order to give an idea of the prediction error made by CNN with respect to available blood
pressure measurements, the predicted systolic and diastolic pressure values in the brachial arteries are compared with
patient-specific blood pressure measurements. As reported in Table 4, the relative error obtained using CNN is less than

TABLE 2 The k-fold mean

absolute errors, k-MAE for k = 5,

10, 100 and the corresponding relative

errors with respect to the Target systolic

and diastolic blood pressures (SBP and

DBP) values in the right internal carotid

artery (R-ICA) and the left brachial

artery (L.BRA)

Arteries of interest
R-ICA, mmHg L.BRA, mmHg

k-MAE Relative errors k-MAE Relative errors

DBP SBP DBP SBP

k = 5 7.36 6.65% 4.56% 8.58 7.3% 4.97%

k = 10 5.47 4.94% 3.38% 4.81 4.09% 2.78%

k = 100 2.03 1.83% 1.26% 2.17 1.84% 1.26%

Note: This shows typical skill scores of the implicit Convolutional Neural Network (CNN) for in-vitro
pressure prediction in R-ICA and L.BRA.
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3% for diastolic pressure and in the two brachial arteries, less than 6% for systolic pressure in R.BRA but up to 16% for sys-
tolic pressure in L.BRA. One explanation for this larger error is that the input/output testing sample for this case is
already from previous numerical results—the results perfomed by Lal et al38—and not from patient-specific data extracted
from MRA & MRI. Moreover, note that there is a significant difference between the systolic blood pressure value previ-
ously predicted by Lal et al38 using EnKF in L.BRA (129.32 mmHg)—what needs to be predicted here—and the systolic
pressure measurement value (115 mmHg). Apart from this extreme case, the agreement between the predicted and mea-
sured pressure values is rather good. This shows that CNN can effectively be a good alternative to the previous method
proposed by Lal et al38 for blood pressure estimation through the solution of an inverse problem using EnKF. This is
interesting in terms of cost and computation time. Indeed, learning takes place in 2 minutes on a 3GHz CPU and a single
inference in 0.05 second. The learning time includes the identification of the suitable network structure. This inference
time should be compared to the 7 hours needed by the ensemble based inversion using EnKF. In other words, if the unit
time is the computation time for pressure estimation by CNN, EnKF requires 240 000 times more computation time. A

(A) (B)

FIGURE 15 Prediction of the solution of a cardiovascular problem (patient-specific blood pressure) in the right internal carotid artery

(R-ICA) (A) and in the left brachial artery (L.BRA) (B) using the network built during training in the synthetic case, in Section 6.1. The

99 available simulated solutions (blood pressure) are referred to as Learning data, the predicted pressure as Convolutional Neural Network

(CNN), and the pressure previously estimated using EnKF,38 as EnKF

TABLE 3 Validation: comparison of the cardiac cycle systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimated

using Convolutional Neural Network (CNN) with the model simulated values using ensemble Kalman filter (EnKF) in the internal

carotid arteries (ICAs)

ICA
Systolic blood pressure (SBP), mmHg Diastolic blood pressure (DBP), mmHg

CNN EnKF CNN EnKF

Right 114.80 (±0.00) (0.46%) 114.28 69.23 (±0.04) (2.32%) 67.656

Left 114.54 (±0.00) (0.46%) 114.02 69.30 (±0.04) (2.49%) 67.617

Note: The percentage difference between the results obtained using CNN and those based on EnKF is stated in bold in parenthesis.

TABLE 4 Validation: comparison of the cardiac cycle systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimated using

Convolutional Neural Network (CNN) with the model simulated values using ensemble Kalman filter (EnKF) in the brachial arteries (BRAs)

BRA
Systolic blood pressure (SBP), mmHg Diastolic blood pressure (DBP), mmHg

CNN measurement EnKF CNN measurement EnKF

Right 131.92 (±0.59) (3.55%) 125 (5.53%) 127.4 73.54 (±0.18) (6.57%) 72 (2.14%) 69

Left 133.71 (±0.60) (3.39%) 115 (16.27%) 129.32 73.21 (±0.17) (6.63%) 72 (1.68%) 68.66

Note: The predicted pressure values using CNN are also compared to patient-specific brachial pressure measurements. The percentage difference between the
results obtained by CNN and those based on EnKF, and the percentage difference between the results obtained by CNN and the blood pressure measurements

are stated in bold in parenthesis.
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reason for this extra cost in EnkF is that the EnKF-based technique needs to retrieve first the mechanical properties of
arteries before providing the arterial pressures while machine learning does not need any identification of the mechanical
properties of the arteries in order to retrieve the arterial pressures.

7 | DISCUSSION AND LIMITATIONS

The objective of the present investigation is to use machine learning in order to propose an alternative to an ensemble
based inversion procedure (EnKF) for cerebral blood pressure estimation. The presented implicit manifold learning
technique is found to be much faster than EnKF yet providing very similar results in terms of blood pressure signals.
The in vitro/in vivo results show good agreement between the target blood pressures and the outcome of the machine
learning procedure. In particular, the previously predicted SBP and DBP in the four arteries of interest using EnKF are
well recovered with machine learning procedure.

One of the limitations could be the use of a simple cardiovascular model comprising of 0D components and the
modelling of inflow qin using Equation (4). Indeed, several studies have pointed out the shortcomings of lumped models
and of the use of this approximation of inflow and have proposed more complex/accurate models to better capture the
characteristics of blood flow. So we are aware that more sophisticated physical models can be considered. However, to
be able to make a fair comparison, we seek a supervised learning approach encapsulating the same physics as the one
used in our previous studies38,39 with the objective to get the cerebral blood pressure in nearly real time. Again, this is
why the same cardiovascular model and the same arterial network have been considered as with the EnKF procedure.
Of course this procedure should receive more testing in a clinical environment.

One particularity of this work is that unlike most learning techniques, the implict learning proposed here is opera-
tional with small data. This should be seen as a constraint and not something we fully control. Data might come from
other teams and we do not always have control of it. Moreover, the only thing we can be sure of, regardless of the AI algo-
rithm one uses, is that the quality of a database decreases with its size because it simply becomes more difficult to guaran-
tee the quality of the data when the size of the sample is becoming large. Data quality issue can also be related to possible
inconsistency between scenarios (eg, low and high fidelity prediction of a same situation). This is a classical problem with
supervised learning. Therefore, we think that working with small database is desirable when this is possible. Furthermore,
being able to produce meaningful results with small database will permit to operate in cases where the learning is carried
out not with synthetic data but with real experiments data, which is obviously more difficult to multiply.

Another particularity of this work is that, in order to make learning and inference more efficient, learning has been
performed on a manifold, using only a subset of the parameters in the database. One natural question is then how this

(A) (B)

FIGURE 16 Ablation analysis for the patient-specific case: CNN1 and CNN2 results are practically the same. CNN1 represents the

predicted blood pressure using parts of the input features (inflow qin and blood flow rate in a particular artery of interest, in the right

internal carotid artery (R-ICA) (A) and in the left brachial artery (L.BRA) (B) here). This corresponds exactly to what is referred to

Convolutional Neural Network (CNN) in Figure 15. CNN2 is the predicted blood pressure using together inflow qin and blood flow rates in

R-ICA & the left internal carotid artery (L-ICA) as input data (A) or using at the same time inflow qin and blood flow rates previously

estimated by Lal et al38 in the right brachial artery (R.BRA) and L.BRA as input data (B)
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kind of restriction can affect the results. To address this question, ablation analysis is performed in the real data case. An
ablation study refers to removing some feature of a model in order to see how that affects the outcomes. As a reminder,
the implicit CNN relates only the inflow qin and blood flow rate in any artery of interest to blood pressure in the same
artery. But, the available information from MRA & MRI images are inflow qin and blood flow rates in R-ICA & L-ICA. So,
when the implicit CNN is performed for predicting blood pressure in R-ICA, the blood flow rate in L-ICA is systematically
ablated and vice-versa. Now all flow rates information available from MRA & MRI images (namely, inflow qin and blood
flow rates in R-ICA & L-ICA) and blood flow rates previously estimated by Lal et al38 in R.BRA and L.BRA associated
with inflow qin are used as CNN input data, respectively. This permits to see how the networks output is affected by the
addition of this extra information. The results presented in Figure 16 show that the construction is quite robust with
respect to such ablation.

8 | CONCLUDING REMARKS

The main challenge in this paper has been to use machine learning for blood pressure prediction in cerebral arter-
ies. We aim our proposal to be faster and more practical than when the pressure is recovered through the solution
of an inverse problem using ensemble methods such as EnKF, yet as accurate. Hence, machine learning has been
applied to the solution of cardiovascular problems together with a transfer learning strategy using in-silico data-
bases. Indeed, as patient data is rare, a mathematical model has been used to simulate the relationship between
blood flow rates and blood pressure in an human arterial network. The machine learning tool has been applied to
patient-specific blood pressure estimation to provide a direct link in any couple of arterial blood flow rates and
pressure in the upper body region. The proposed method demonstrated compelling results on synthetic and
patient-specific data. The results suggest that the proposed ML strategy is well-suited for the considered cardiovas-
cular problem providing real-time estimation of the pressure in patient-specific arteries, which is missing in stan-
dard MRA & MRI acquisition. In comparison with the EnKF-based pressure estimator, the suggested ML-based
estimator provides a substantial gain as regards calculation time. In that sense, we can consider inference by this
machine learning approach to provide pressure distribution in real time augmenting the MRA-MRI information
on the fly.
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