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Abstract Stretching red blood cells using optical tweezers
is a way to characterize the mechanical properties of their
membrane by measuring the size of the cell in the direc-
tion of the stretching (axial diameter) and perpendicularly
(transverse diameter). Recently, such data have been used in
numerous publications to validate solvers dedicated to the
computation of red blood cell dynamics under flow. In the
present study, different mechanical models are used to sim-
ulate the stretching of red blood cells by optical tweezers.
Results first show that the mechanical moduli of the mem-
branes have to be adjusted as a function of the model used. In
addition, by assessing the area dilation of the cells, the axial
and transverse diametersmeasured in optical tweezers exper-
iments are found to be insufficient to discriminate between
models relevant to red blood cells or not. At last, it is shown
that other quantities such as the height or the profile of the
cell should be preferred for validation purposes since they
are more sensitive to the membrane model.
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1 Introduction

Blood is a complex substance consisting in a suspension of
platelets, white blood cells and red blood cells (RBCs) in
a Newtonian fluid, the plasma. The RBCs, which typically
represent 40–45% of the whole blood volume, are composed
of a membrane enclosing an internal fluid, the cytoplasm.
The RBC membrane is a composite structure composed
of a lipid bilayer and a two-dimensional elastic cytoskele-
ton, both linked through temporary tethering sites thanks
to transmembrane proteins embedded in the lipid bilayer.
This complex structure confers to the RBC membrane very
specific mechanical properties: The cytoskeleton provides a
resistance to shear solicitations and slightly resists to area
dilatation, while the lipid bilayer provides to the membrane
its bending stiffness and quasi-incompressibility. The RBCs
have a biconcave discocyte shape at rest with a remarkable
deformability, because of the excess of surface area enclos-
ing the inner volume. RBCs are thus able to undergo very
large deformation preserving their area, squeezing through
capillaries with inner diameter less than 3 µm, although the
average large diameter of a RBC is about 8 µm. As men-
tioned by Mohandas and Gallagher (2008), the normal RBC
can deformwith linear extensions of up to 250%, but a 3–4%
increase in surface area results in cell lysis.

So far, there is no universal model to describe the mechan-
ical behavior of the RBC membrane. The local elasticity
of the RBC membrane is generally described using either
continuum models (Le et al. 2009; Klöppel and Wall 2011;
Farutin et al. 2014; Sinha andGraham2015) or networkmod-
els (Li et al. 2005; Dao et al. 2006; Pivkin and Karniadakis
2008; Fedosov et al. 2010a, b, 2014; Chen and Boyle 2014),
which can be complementedwith other globalmodels to treat
the quasi-incompressibility of the lipid bilayer (Pivkin and
Karniadakis 2008; Fedosov et al. 2010a, b). Detailed experi-
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mental investigations of the RBC mechanics are nonetheless
needed in order to: (1) characterize and validate a numer-
ical model of the RBC membrane and (2) once validated,
determine the mechanical parameters of the model.

To gain insight into the mechanical behavior of RBCs,
experimental techniques were developed for measurements
of the RBC membrane properties (Abkarian and Viallat
2016). Micropipette aspiration (Evans 1973) and optical
tweezers (Hénon 1999;Mills et al. 2004) are themost popular
ones and were notably used to determine the shear modulus
of the RBC membrane. The optical tweezers experiment by
Mills et al. (2004) provides a useful means for the analysis of
the single cell mechanics under a variety of well-controlled
stress states, where stretching of an isolated RBC is gener-
ated by means of attached silica microbeads and optical trap.
Using a continuum model of the RBC membrane to solve
the deformation of the RBC subjected to optical stretching,
Yeoh (1993) successfully matched the force-extension data
obtained from the experiment, thus enabling the extraction
of the shear modulus of the RBC membrane.

A recent work of Dimitrakopoulos (2012) showed that
large differences of shearmodulus reported in various studies
may be explained based on the different membrane models
used to fit the experimental data. Theoretically investigat-
ing continuum models under uniaxial extension and local
area incompressibility, he showed that the only constitutive
law able to properly match the wide variety of experimental
data available in the literature is the Skalak law, specifically
developed by Skalak et al. (1973) to represent the in-plane
elasticity of the RBCmembrane. Based on this finding, Dim-
itrakopoulos stated that Mills et al. (2004) found the shear
modulus that represents the Yeoh law, but not the true shear
modulus of the RBCmembrane. This purely theoretical work
was specifically dedicated to the response of different mem-
brane laws under small, moderate and large shear strains.
A more realistic configuration where the whole RBC is
stretched as in the Mills et al. (2004) experiment was, how-
ever, not considered by Dimitrakopoulos (2012); this is done
computationally in the present paper.

As a consequence, the numerical results of Mills et al.
(2004) were successfully matched to the force-extension
data obtained from optical tweezers using the Yeoh law,
whereas a proper modeling of the RBC membrane should
rather rely on the Skalak law. This reveals the simplistic
nature of these experimental data, whichwas also pointed out
by Dimitrakopoulos (2012). Despite this observation, optical
tweezers data continue to be used as a way to validate numer-
ical models of the RBC membrane (Li et al. 2005; Dao et al.
2006; Pivkin and Karniadakis 2008; Le et al. 2009; Fedosov
et al. 2010a, b, 2014;Klöppel andWall 2011;Chen andBoyle
2014; Farutin et al. 2014; Sinha and Graham 2015), notably
to probe the accuracy of solvers dedicated to the study of the
RBC dynamics under flow. However, a proper validation test

case needs to be selective to discriminate between appro-
priate and inappropriate models. There is a suspicion that
computing optical tweezers experiment does not constitute a
true validation test case.

The present paper constitutes a numerical studywhichfirst
aims at emphasizing previous findings of Dimitrakopoulos
(2012), highlighting the limitations of the optical tweezers
experiment for characterizing the mechanics of the RBC
membrane. Theoretical investigations of Dimitrakopoulos
(2012) are here complemented with detailed simulations
of the optical tweezers experiment by Mills et al. (2004),
using a numerical method dedicated to the simulation of the
dynamics of RBCs under flow. After a brief description of
this numerical method, an easy-to-implement computational
setup is presented and validated against the numerical results
of Mills et al. (2004). Then, different continuum membrane
models are investigated, based on various combinations of
strain, area conservation and bending energies. If the mem-
brane incompressibility can be easily imposed theoretically
(Dimitrakopoulos 2012), it is rarely done in models of red
blood cells. The membrane is generally modeled using a
mechanical resistance to area dilatation, which enables some
small area variationof themembrane (Li et al. 2005;Dao et al.
2006; Pivkin and Karniadakis 2008; Fedosov et al. 2010a, b,
2014; Chen and Boyle 2014; Sinha and Graham 2015). In
the present study, the impact of this area dilatation resistance
is carefully investigated, restraining the area variation of the
membrane either locally or globally. Detailed analysis of the
shape of the stretched RBC are also carried out in order to
identify which kind of additional experimental data could
be helpful to better characterize the mechanics of the RBC
membrane.

2 Numerical method

The present numerical method is very similar to the one
developed byMendez et al. (2014) and Sigüenza et al. (2016)
for fluid–structure interactions (FSI) of deformable mem-
branes, and is based on the immersed boundary method
(IBM) introducedbyPeskin (2002).Two independentmeshes
are considered to discretize the RBCmembrane and the fluid.
The RBC membrane is discretized by a moving Lagrangian
mesh, and the fluid is discretized by a fixed Eulerian unstruc-
tured mesh. The different steps of the present method are the
following:

(1) The membrane force
−→
F is calculated on the Lagrangian

mesh, which depends on themembrane deformation and
on the models used to represent the membrane rheology.

(2) The forces exerted by the membrane on the fluid are rep-
resented by the fluid volumetric force

−→
f , calculated on

the Eulerian mesh by regularizing the membrane force−→
F such as
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−→
f

(−→x , t
) =

∫

�s

−→
F

(−→
X , t

)
δ
(−→x − −→

X
)
dX,

where −→x and
−→
X , respectively, denote the coordinates

vectors of the Eulerian fluid nodes and Lagrangian
nodes, �s denotes the solid domain defining the RBC
membrane and δ is the well-known Dirac function.

(3) The fluid velocity −→v is calculated on the Eulerian mesh
by solving the Navier–Stokes equations (forced by the
source term

−→
f ).

(4) Themembranevelocity
−→
V is calculatedon theLagrangi-

an mesh by interpolating the fluid velocity −→v such as

−→
V

(−→
X , t

)
=

∫

�f

−→v (−→x , t
)
δ
(−→x − −→

X
)
dX,

where �f denotes the fluid domain.

The Dirac function δ used in the procedures of regular-
ization and interpolation of steps (2) and (4) is numerically
represented by a smooth discrete Dirac function, which is
adapted to unstructured meshes using the Reproducing Ker-
nel particle method (Pinelli et al. 2010; Mendez et al. 2014;
Sigüenza et al. 2016). Interpolation of the fluid velocity on
the membrane Lagrangian mesh leads to small mass con-
servation errors. A specific algorithm has been developed to
perfectly conserve the volume of the RBC during the calcu-
lations (Mendez et al. 2014; Sigüenza et al. 2016).

2.1 Membrane forces computation

In the present method, the RBC membrane is considered to
be infinitely thin and is represented by a triangulated surface.
The membrane force is derived from a combination of strain,
area conservation and bending energies. Resistances to shear
and area dilatation aremodeled thanks to a hyperelastic strain
energy functionW , which is written as a function of the local
in-plane principal values of strain λ1 and λ2, following the
method of Charrier et al. (1989), Eggleton and Popel (1998),
Sui et al. (2008) andDoddi andBagchi (2008). Several hyper-
elastic models are investigated in the present study:

• The neo-Hookean law,

WNH = Es

2

(
λ21 + λ22 + λ−2

1 λ−2
2 − 3

)
, (1)

where Es stands for the membrane in-plane shear modu-
lus.

• The Yeoh law,

WYE = Es

2

(
λ21 + λ22 + λ−2

1 λ−2
2 − 3

)

+ C3

(
λ21 + λ22 + λ−2

1 λ−2
2 − 3

)3
,

(2)

which is an extension of the previous neo-Hookean law,
with the addition of a nonlinear term driven by the non-
linear modulus C3.

• The law introduced by Skalak et al. (1973) for red blood
cells,

WSK = Es

4

[(
λ21 + λ22 − 2

)2 + 2
(
λ21 + λ22 − λ21λ

2
2 − 1

)]

+ Ea

4

(
λ21λ

2
2 − 1

)2
, (3)

where shear resistance and area dilatation resistance are
separately taken into account through the shear modulus
Es and the area dilatation modulus Ea, respectively. It
can also be written with the ratio of the area dilatation
modulus to the shear modulus, C = Ea/Es,

WSK = Es

4

[(
λ21+λ22 − 2

)2 + 2
(
λ21+λ22 − λ21λ

2
2 − 1

)

+C
(
λ21λ

2
2 − 1

)2]
. (4)

Although the Skalak law can be used to control area vari-
ations of the RBC membrane, another approach consists in
using a global area conservation energy:

ES = κS

2

(S − S0)2

S0
, (5)

with κS the area modulus, S the area of the membrane and
S0 its target area. This energy is actually already used in
other formulations based on discrete approaches (Pivkin and
Karniadakis 2008; Fedosov et al. 2010b) or in shape pre-
dictions by energy minimization (Lim et al. 2002, 2008).
Conveniently, the force applied by the membrane on the fluid
associated with the energy term ES can be expressed explic-
itly:

−→
FS = −2κS

(S − S0)

S0
H −→n , (6)

with H themean curvature and−→n the outward normal vector
to the surface.

In addition, the bending resistance of the membrane can
be represented using the bending energy Eb, proposed by
Helfrich (1973):

Eb = κb

2

∫

S
(2H − c0)

2 dS, (7)
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Table 1 Different energies available to model the RBC membrane and
associated notations of mechanical moduli

with κb = 2.0 × 10−19 N m (Lim et al. 2002, 2008) the
bending modulus, and c0 a possible spontaneous curvature
(which is set to zero in the present study). The bending force
applied by the membrane on the fluid reads:

−→
Fb = κb

[
(2H − c0)

(
2H2 − 2K + c0H

)

+ 2�LBH ]−→n ,
(8)

where �LB denotes the surface Laplacian operator (Zhong-
can and Helfrich 1989) (also called the Laplace–Beltrami
operator) and K is the localGaussian curvature of the surface.
The terms of the bending force are calculated by local fitting
of a quadratic approximation of the surface. The method is
similar to the one used by Farutin et al. (2014). Table1 sum-
marizes the three energies introduced, with the associated
parameters. Every combination of these energies (W , ES ,
Eb) can be used to model the RBC membrane.

2.2 Navier–Stokes equations solver

Thefluid inside andoutside theRBC is supposed to be incom-
pressible and Newtonian. The YALES2BIO flow solver is
used (Mendez et al. 2014; Chnafa et al. 2014; Sigüenza et al.
2016; Zmijanovic et al. 2017) to solve the forced Navier–
Stokes equations over the Eulerian unstructured mesh by
using a projection method (Chorin 1968). The momentum
conservation equations reads:

∂−→v
∂t

+ −→∇ .
(−→v ⊗ −→v ) = −

−→∇ p

ρ
+ ν�−→v +

−→
f

ρ
, (9)

where−→v and p are the velocity vector and the pressure, ρ the
density and ν the kinematic viscosity. For an incompressible
fluid, the mass conservation equation becomes:

−→∇ .−→v = 0 (10)

The fluid velocity is advanced using a fourth-order cen-
tered scheme in space and a fourth-order Runge–Kutta
scheme in time. A divergence-free velocity field is obtained
at the end of the time step by solving a Poisson equation for

pressure and correcting the predicted velocity.A deflated pre-
conditioned conjugate gradient (DPCG) algorithm is used to
solve this Poisson equation (Moureau et al. 2011; Malandain
et al. 2013).

The YALES2BIO solver was validated in several test
cases where reference data (either experimental, analytical
or numerical) are available. This is described in previous
publications, where the reader can also find additional imple-
mentation details (Martins Afonso et al. 2014; Mendez
et al. 2014; Sigüenza et al. 2014, 2016; Zmijanovic et al.
2017).

3 Optical tweezers modeling

The purpose of this section is to establish a computa-
tional setup allowing the computation of the optical tweezers
experiment by Mills et al. (2004). The computational setup
presented in this section is built heavily on the one devel-
oped by Dao et al. (2003), which has also been used by
Mills et al. (2004) to simulate the optical tweezers experi-
ment.

Figure1a illustrates the experimental setup used in Mills
et al. (2004) to perform the stretching of the RBC. Two silica
microbeads, of diameter 4.12µm, are attached to the cell at
diametrically opposite points. The left bead is anchored to
the surface of a glass slide while the right bead is trapped
by a laser beam. The trapped bead remaining at rest, mov-
ing the slide and attached left bead stretches the cell. Then,
the axial diameter DA (in the direction of the stretching),
and the transverse diameter DT (orthogonal to the stretching
direction) are measured on the stretched RBC.

3.1 Computational setup

The analytical model of the RBC biconcave shape proposed
by Evans and Fung (1972) is used to define the RBC geom-
etry:

z = ±0.5R0

[

1 − x2 + y2

R2
0

]

×
⎡

⎣A1 + A2
x2 + y2

R2
0

+ A3

(
x2 + y2

R2
0

)2
⎤

⎦
(11)

where R0 = 3.91µm is the average RBC radius, A1 =
0.207161, A2 = 2.002558 and A3 = −1.122762.

Rather than explicitly solving the contact between the
beads and the RBC (as Dao et al. 2003 andMills et al. 2004),
most of theworks simulating the optical tweezers experiment
consider pure Neumann loading conditions to simulate the
RBC stretching, applying a constant stretching force F over
a certain percentage of nodes at the extremities of the RBC
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mean positions of

(a) Experimental setup

x

y

DA

DT

bead fixed on
the glass slide

glass slide moves
with attached bead

bead held in
optical trap

(b) Computational setup

dc F−F

DA

DT

the loaded edges

Fig. 1 a Illustration of the experimental setup of Mills et al. (2004).
The axial (DA) and transverse (DT) diameters of the stretched RBC are
measured. b Computational setup used to simulate the optical tweezers

experiment. A stretching force F is applied over the two circular edges
delimitating the contact areas between the RBC and the beads, with a
contact size dc = 2µm

(Le et al. 2009; Farutin et al. 2014; Chen and Boyle 2014;
Fedosov et al. 2014; Sinha andGraham 2015). The drawback
of this approach was nonetheless pointed out by Klöppel and
Wall (2011): The rigidity of the beads is not properly taken
into account, leading to a larger axial diameter (DA), and
thus a higher estimation of the in-plane shear modulus. An
alternative methodology which mimics the beads rigidity is
introduced in what follows, within a three-step strategy:

• The contact areas between the beads and the RBC are
properly defined following the procedure of Dao et al.
(2003). As shown in Fig. 1b, these contact areas are
defined by intersecting the surface of the RBC with two
opposite planes perpendicular to the stretching direction.
The position of these planes is chosen such that the con-
tact size between the beads and the RBC is dc = 2µm
(Dao et al. 2003).

• Rather than applying the stretching force F over all the
nodes of the contact areas, the force is applied only to the
nodes located on the edges delimiting the contact areas
(see Fig. 1b).

• Instead of evaluating the axial diameter (DA) as the dis-
tance between the extremities of the stretched RBC, the
axial diameter is determined by calculating the mean
position of each loaded edge, which are deformed during
the RBC stretching (as sketched in Fig. 1b).

Consistent with the numerical framework described in
Sect. 2, the computation of the RBC stretching consists in
solving a transient fluid–structure interaction problem until
stabilization of the shape. The RBC is immersed in a fluid

box extended from −4R0 to 4R0 in the x direction (direc-
tion of the stretching), from −2R0 to 2R0 in the y direction
(direction orthogonal to the stretching), and from −R0 to R0

in the z direction (direction perpendicular to the plane of the
RBC). The fluid mesh is composed of 881 992 tetrahedral
elements, with a constant mesh resolution of R0/12.5. The
RBCmembrane is composed of 6 434 nodes, with a constant
mesh resolution of R0/25.

The stretching force is applied on the RBC membrane as
an external force, with a time-dependent ramp ranging from
0 to the desired value of F . This external force is seen by
the fluid which starts moving, and deforms the RBC. After a
transient phase, the mechanical forces inside the membrane
and the applied external force balance, and a steady defor-
mation is obtained. The choice of the fluid properties and the
size of the computational domain may affect the transient
phase, but have no influence on the steady deformation of
the RBC and calculated axial and transverse diameters. Only
the final stabilized shapes are postprocessed.

3.2 Validation

With the aim of validating the present computational setup,
the optical tweezers experiment by Mills et al. (2004) is
simulated, and the present simulations are compared with
the numerical simulations performed by Mills et al. (2004).
Two cases are simulated, corresponding to different model-
ing of the RBC membrane. These two cases are summarized
in Table2. For both cases, only the local in-plane elasticity
is considered. The membrane is assumed to follow the neo-

123



1650 J. Sigüenza et al.

Table 2 Cases simulated with the present computational setup and
compared with the results of Mills et al. (2004)

W ES Eb
Case 1 NH: Es = 7.3 μN/m X X

Case 2 YE:
Es = 7.3 μN/m

X X
C3 = Es/30
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Fig. 2 Axial (DA) and transverse (DT) diameters of the RBC stretched
by optical tweezers. Comparison with the experimental and numerical
data fromMills et al. (2004). aTheRBCmembrane is assumed to follow
the neo-Hookean law, corresponding to case 1. b The RBC membrane
is assumed to follow the Yeoh law, corresponding to case 2

Hookean law (Eq. 1) in case 1, and the Yeoh law (Eq. 2) in
case 2.

Figure2 shows both axial (DA) and transverse (DT) diam-
eters of the RBC stretched by optical tweezers, as a function
of the applied force, for cases 1 and 2. As the cell is more
andmore elongatedwhen increasing the stretching force, it is
seen that the axial diameter (DA) increases. The elongation

of the cell leads to its contraction in the orthogonal direction,
resulting in a decrease of the transverse diameter (DT).

When using pure Neumann loading conditions to simulate
the RBC stretching (Le et al. 2009; Farutin et al. 2014; Chen
and Boyle 2014; Fedosov et al. 2014; Sinha and Graham
2015), the rigidity of the beads used in the optical tweez-
ers experiment is not taken into account, which is known
to strongly influence the deformation of the stretched RBC,
especially the estimation of the axial diameter (DA) (Klöp-
pel and Wall 2011). The present results, however, show that
it is possible to mimic the beads rigidity using a customized
computational setup based on pure Neumann loading con-
ditions, which is seen to faithfully reproduce the numerical
results obtained by Mills et al. (2004), who explicitly solved
the contact between the beads and the RBC.

As pointed out by Mills et al. (2004), comparison of the
numerical results of case 1 with the experimental data shows
that the neo-Hookean law is not adapted to describe the
behavior of the RBCmembrane. Indeed, experimental trends
are well captured over the range of 0–88 pN. However, the
model deviates gradually for loadings higher than 88 pN,
showing a strain-softening behavior under large deformation
(Barthès-Biesel et al. 2002). Conversely, the Yeoh law pro-
vides accurate predictions of diameters over the entire range
of experimental data. The strain-hardening behavior of RBCs
under large deformation is thuswell transcribedby themodel.
Regarding the mechanical response of the stretched RBC in
terms of axial (DA) and transverse (DT) diameters, the mem-
brane modeling corresponding to case 2, using the Yeoh law,
provides a good description of the membrane mechanical
behavior.

In order to investigate the influence of the mesh resolu-
tion, two meshes were constructed from the mesh used in
Fig. 2: A coarse mesh whose resolution is twice coarser than
the reference mesh resolution and a fine mesh whose resolu-
tion is twice finer than the reference mesh resolution. Axial
(DA) and transverse (DT) diameters obtained from these
three meshes are compared in Table3 with the diameters
obtained from numerical simulations of Mills et al. (2004)
for the largest loading F = 193 pN. The mesh resolution has
almost no influence on the prediction of the axial diameter
(DA), and only small influence on the prediction of the trans-
verse diameter (DT). This indicates that the reference mesh
is sufficiently refined, and can thus be used in the remainder
of this study.

Figure3 shows the deformation of the RBC for different
values of the stretching force F , which ranges from 0 to 193
pN. A detailed analysis of the shape of the RBC shows that as
the cell is elongated when increasing the force, a large fold is
appearing, as also observed in the numerical simulations of
Mills et al. (2004). Occurence of such a folding is, however,
not investigated in the experiment.
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Table 3 Influence of the mesh resolution for case 2, at the maximum
imposed force of 193 pN

DA (µm) DT (µm)

Mills simulation 16.14 4.90

Coarse mesh 15.92 4.94

Reference mesh 15.93 4.81

Fine mesh 15.93 4.72

0 pN

67 pN

130 pN

193 pN

Case 1 Case 2

Fig. 3 Visualization of the red blood cell deformation over the entire
range of stretching force, for both cases 1 and 2. Only half of the cell is
displayed

4 Influence of the membrane modeling

The present computational setup is now used to investigate
different continuummodels of the RBCmembrane. With the
present numerical method, the different mechanical proper-
ties of the RBCmembrane can be modeled by a combination
of strain, area conservation and bending energies. Four new
cases are summarized in Table4.

Note that the bending stiffness of the lipid bilayer was
neglected in cases 1 and 2, but is accounted for in the others.
Using the Yeoh law (Eq. 2) to describe the local in-plane
elasticity of the RBC membrane was seen to provide a good
agreementwith the optical tweezers experiment (see Fig. 2b).
Case 3 thus appears to be a first obvious candidate to model
the mechanics of the RBC membrane. As stated by Dim-
itrakopoulos (2012), the RBC membrane should rather be
modeled by the Skalak law instead of the Yeoh law. Cases
4 and 5 are thus introduced, with two different values of the
ratio C (low value in case 4, and high value in case 5). Note,
however, that when using the Skalak law to model the local
in-plane elasticity of the RBC membrane, a high value of
C should be considered to restrain the area variations of the
RBC membrane, thus modeling the quasi-incompressibility

of the lipid bilayer. Consequently, case 4 does not constitute a
potential candidate tomodel themechanics of theRBCmem-
brane, but is only introduced to investigate the influence of
the ratioC on the mechanical response of the RBC subjected
to optical stretching. Finally, case 6 proposes a hybridmodel-
ing of the RBCmembrane, dissociating the cytoskeleton and
the lipid bilayer: The Skalak law with low ratio C is used to
model the local in-plane elasticity of the cytoskeleton, allow-
ing local area changes of the cytoskeleton; on top of this, the
global area conservation energy is used to model the reor-
ganisation of the quasi-incompressible lipid bilayer, sliding
along the cytoskeleton. It is noticed that a twice smaller shear
modulus Es is considered when using the Skalak law in cases
4, 5 and 6, as compared to case 3. This factor of 2 is explained
in the work of Dimitrakopoulos (2012) by the fact that the
Yeoh and Skalak laws behave differently at moderate and
high deformation. It is thus required to multiply the shear
modulus Es by 2 when considering the Yeoh law as com-
pared to the Skalak law, in order to have a good comparison
with the optical tweezers experiment in the large deformation
range. Note that this results in an underestimation of the cell
deformation for low stretching forces with the Yeoh law, as
illustrated in the next section.

4.1 Comparison of axial and transverse diameters

Figure4 shows the numerical predictions of the axial (DA)
and transverse (DT) diameters for the different modeling
cases introduced in Table4. All cases provide a good com-
parison with the experimental results of Mills et al. (2004).
Cases 5 and6 are in a slightly better agreementwith the exper-
iment, especially regarding the transverse diameter (DT) in
the higher range of imposed stretching force. However, dif-
ferences between all the modeling cases are contained within
the experimental error bars.

It is interesting to note that increasing the resistance to area
dilatation of the RBC membrane between case 4 and case 5
(by increasing the ratio C) has only a marginal influence on
the predictions of the axial (DA) and transverse (DT) diam-
eters, which was also observed in previous works (Sigüenza
et al. 2014; Sinha and Graham 2015). In addition, restrain-
ing the area variation of the RBC membrane either locally
(in case 5) or globally (in case 6) leads to almost identical
predictions of the axial (DA) and transverse (DT) diameters.

4.2 Characterization of the RBC shape

The deformation of the stretched RBC at different stretch-
ing forces is displayed in Fig. 5. First, it is seen that the
shapes obtained in case 3 differ from the ones obtained in
case 2 (see Fig. 3), which also uses the Yeoh law to model
the local in-plane elasticity of the RBCmembrane. The large
fold which appears during the RBC stretching in case 2 is
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Table 4 Summary of different continuum models of the RBC membrane investigated by means of optical tweezers simulations (see Table 2 for
cases 1 and 2)

W ES Eb

Case 3 YE:
Es = 7.3 μN/m

X κb = 2.0× 10−19 N.m
C3 = Es/30

Case 4 SK:
Es = 3.65 μN/m

X κb = 2.0× 10−19 N.m
C = 0.5

Case 5 SK:
Es = 3.65 μN/m

X κb = 2.0× 10−19 N.m
C = 100

Case 6 SK:
Es = 3.65 μN/m

κS = 1.0× 103 μN/m κb = 2.0× 10−19 N.m
C = 0.5
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Fig. 4 Comparison of the axial (DA) and transverse (DT) diameters of
the RBC stretched by optical tweezers for the different modeling cases
introduced in Table 4

restrained in case 3 by the bending stiffness of the lipid
bilayer, modeled by the bending energy (neglected in case 2).
The fold is, however, still visible during the stretching, but
much smoother. In case 4, when switching the hyperelastic
model to the Skalak law, the RBC tends to lose its biconcave
shape with increasing stretching. This phenomenon is even
more pronounced and faster in case 5, when the area dilata-
tion resistance is increased, leading to a more rounded shape
at maximum stretching. Finally, case 6 exhibits a very similar
behavior of case 5, with a faster transition from the biconcave
to the rounded shape (see shapes at F = 67 pN in Fig. 5),
and a more circular shape at maximum stretching. Note that
simulations have also been performed combining the Yeoh
law with the global area conservation energy, showing the
same transition from the biconcave to the rounded shape (not
shown). This indicates that thismechanical behavior does not
come from the use of the Skalak law itself, but from the area
variation restriction of the RBC membrane, achieved either
using the Skalak law or the global area conservation energy.

Fig. 5 Visualization of the red
blood cell deformation over the
entire range of stretching force,
for the different modeling cases
introduced in Table4. Only half
of the cell is displayed
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Fig. 6 Evolution of the in-plane (LP) and folding (LF) lengths for the
different modeling cases introduced in Table4

In the light of these observations, it appears relevant to
introduce two additional lengths measured on the deformed
RBC: The in-plane length LP, defined as being the height
in the direction perpendicular to the plane of the RBC (see
Fig. 5); the folding length LF, also aligned with the direc-
tion perpendicular to the plane of the RBC, but evaluated
at the fold location (see Fig. 5). As shown in Fig. 6, the dis-
crimination between the different modeling cases is more
obvious when analyzing the evolution of the in-plane (LP)
and folding (LF) lengths than the classical analysis made
on the axial (DA) and transverse (DT) diameters (in Fig. 4).
Previous observations of Fig. 5 can be highlighted: In case
3, the in-plane (LP) and folding (LF) lengths show parallel
evolutions, meaning that the RBC keeps its biconcave shape
for the whole range of stretching force; in case 4, lengths
get closer with increasing stretching force, showing that the
RBC progressively loses its biconcave shape when subjected
to stretching; in cases 5 and 6, a transition from a biconcave
folded shape to a rounded shape occurs when the two lengths
become identical (for F = 109 pN in case 5, and F = 88 pN
in case 6), and the shape of the RBC becomes more andmore
circular as the lengths increase with the stretching force.

4.3 Area variation

The ability of the quasi-incompressible lipid bilayer to
restrain area variations during the RBC deformation is
an important mechanical feature of the RBC membrane
(Mohandas and Gallagher 2008). Figure7 shows the evo-
lution of the global area variation of the RBC membrane
during stretching for the different modeling cases introduced
in Table4. In case 3, the area increase reaches 28%, since
the Yeoh law is not designed to restrain area variations of
the RBC membrane. Using the Skalak law in case 4 enables
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Fig. 7 Global area variation of the RBC membrane for the different
modeling cases introduced in Table4

Case 5
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Local area variation (%)

Local area variation (%)
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−39 64

Fig. 8 Comparison of the local area variations of the red blood cell
membrane at the maximum stretching force F = 193 pN, for the mod-
eling approaches of cases 5 and 6

to restrain the area variation to a maximum value of 12%.
Area variations are evenmore restrained when increasing the
resistance to area dilatation in cases 5 (0.3%) and 6 (0.4%).

Figure8 shows the local area variation of the RBC mem-
brane for modeling cases 5 and 6. In case 5, the use
of the Skalak law with high ratio C allows very small
local area variations of the RBC membrane. In case 6, the
quasi-incompressibility of the lipid bilayer is independently
modeled using the global area conservation energy, whereas
the Skalak law with lower ratio C is used to model the own
area dilatation resistance of the cytoskeleton. This results in
higher local area variations, which correspond to the defor-
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Fig. 9 Influence of the stress-free shape of the RBCs on the evolution
of the axial (DA) and transverse (DT) diameters, for the modeling case
6

mation of the cytoskeleton. In both cases, themaximum local
area variations are obtained at the extremities of the cell,
near to the bead/RBC contact areas. These regions of high
stretching may thus be the locations where the RBC is the
most prone to lysis. Note that variation of cytoskeleton area
wasmeasured by Discher et al. (1994) in a micropipette aspi-
ration experiment, but the authors are not aware of similar
measurements in optical tweezers experiment.

4.4 RBC stress-free shape

Recent studies suggest that RBCs have a quasi-spherical
stress-free shape (Lim et al. 2002; Khairy and Howard 2011;
Cordasco et al. 2014; Peng et al. 2014, 2015; Dupire et al.
2015), meaning that the well-known biconcave shape of the
RBCs (Eq. 11) is pre-stressed. This initial pre-stress has
not been taken into account so far in the present study, but
could eventually play a significant role. Klöppel and Wall
(2011) recently investigated the influence of an initial pre-
stressed biconcave shape of a RBC subjected to stretching
deformation, and almost no influence of this initial pre-stress
was observed. They concluded that when investigating static
deformation of RBCs, the biconcave initial shape of the
RBCs can be assumed as being stress-free.

In this section, the influence of the quasi-spherical stress-
free shape of the RBCs is investigated. Figure9 compares
previous simulations of the modeling case 6, assuming a
biconcave stress-free shape of the RBC, with simulations
where the stress-free shape of the RBC is a quasi-spherical
shape having a reduced volume V/V0 = 0.98 (with V0 the
volume of a sphere having the same surface area). As usually
done when modifying the stress-free shape (Cordasco et al.
2014; Peng et al. 2014), the spontaneous curvature c0 (Eq. 7)
is adjusted so that the equilibrium shape is similar to the para-

0 50 100 150 200
0

1

2

3

4

LF

LP

F (pN)

L
en

gt
h
(µ

m
)

Biconcave stress-free shape
Quasi-spherical stress-free shape

Fig. 10 Influence of the stress-free shape of the RBCs on the evolution
of the in-plane (LP) and folding (LF) lengths, for the modeling case 6

metric biconcave shape described by Eq. (11). In the present
case, the spontaneous curvature is set to c0 = 4.6 × 106

m−1. Consistent with the conclusions made by Klöppel and
Wall (2011), it is seen that there is no significant effect of the
stress-free shape regarding the evolution of the axial (DA)
and transverse (DT) diameters. Regarding the latter quantity,
a slightly better agreement with the experiment is nonethe-
less observed when considering a quasi-spherical stress-free
shape.

The evolution of the in-plane (LP) and folding (LF)
lengths is displayed in Fig. 10, showing a more significant
effect of stress-free shape. Indeed, it is seen that the in-plane
length (LP) is higher for the quasi-spherical stress-free shape
before the transition from the biconcave to the rounded shape
occurs.

5 Discussion

In the present paper, the optical tweezers experiment byMills
et al. (2004) is simulated using a numerical method dedi-
cated to the simulation of the dynamics of RBCs under flow.
A computational setup for simulating the RBC stretching is
presented, which is seen to perfectly reproduce the numerical
results obtained by Mills et al. (2004). Influence of the RBC
membrane modeling is then investigated, introducing differ-
ent continuum models to describe the membrane mechanics.

Comparison of the numerical results with the force-
extension data provided by the experiment (i.e., the axial
(DA) and transverse (DT) diameters of the stretched RBC)
shows that all the consideredmodeling approaches are able to
reproduce the mechanical response of the RBC subjected to
optical stretching (see Fig. 4). An adjustment of the shear
modulus Es is, however, required depending if the RBC
membrane is described using the Yeoh law or the Skalak
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law (Es is twice smaller when using the Skalak law). It is
also seen that some of these models allow non-physiological
area variations of the RBC membrane during stretching (see
Fig. 7), especially the Yeoh lawwhich was considered in pre-
viousworks as a suitablemodel of the RBCmembrane (Mills
et al. 2004; Suresh et al. 2005). Consistent with the findings
of Dimitrakopoulos (2012), this indicates that the Yeoh law
should not be used to describe themechanical behavior of the
RBCmembrane. This also indicates that the single analysis of
the axial (DA) and transverse (DT) diameters of the stretched
RBC is not sufficient for characterizing the mechanics of the
RBCmembrane, and cannot be used alone to validate numer-
ical models of the RBC membrane.

Detailed analysis of the shape of the stretched RBC
reveal different behaviors among the investigated models
(see Fig. 5). A transition of the RBC shape from a biconcave
folded shape to a rounded shape is observedwhen restraining
the area variations of the RBC membrane, either locally or
globally. This observationmay be due to the fact that theRBC
tends to lose its biconcave shape when subjected to optical
stretching, to prevent area variations of the RBC membrane.
Note that such ellipsoidal shapes were also reported in pre-
vious numerical studies (Li et al. 2005; Klöppel and Wall
2011; Farutin et al. 2014; Sigüenza et al. 2014).

This transition from a biconcave folded shape to a rounded
shape can be characterized by introducing two additional
measurements in the direction perpendicular to the plane
of the RBC: The in-plane length LP and the folding length
LF (see Fig. 6). Experimental measurements of such lengths
could thus be of prime interest to make the optical tweezers
experimental setup more helpful to characterize the mechan-
ics of the RBC membrane. Indeed, these quantities reveal to
be more sensitive to the area variation restriction of the RBC
membrane than the usual force-extension data and could thus
enable to better investigate the mechanical behavior of the
membrane. Such data are also expected to be sensitive to the
bending stiffness of the RBC membrane. However, the lat-
ter is seen to mainly influence the shape of the fold of the
stretched RBC, but is not at the origin of the transition from
the biconcave to the rounded shape. Indeed, this transition
may occur even when the bending stiffness of the RBCmem-
brane is not considered (Sigüenza et al. 2014). The lengths LP

and LF are thus expected to be of interest to qualitatively chal-
lenge RBCmodeling, while quantitative comparisons should
account for the possible influence of the bending stiffness of
the RBC membrane.

More sophisticated measurements of the shape of the
stretched RBC must, however, be performed with reason-
able experimental uncertainties. One of the main sources
of uncertainty is expected to come from the contact areas
between the beads and the RBC, which may vary from one
experiment to the other. In the present computational setup,
these contact areas are defined by the contact size dc which
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Fig. 11 Influence of the bead/RBC contact areas on the axial (DA) and
transverse (DT) diameters, for the modeling case 6
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Fig. 12 Influence of the bead/RBC contact areas on the in-plane (LP)
and folding (LF) lengths, for the modeling case 6

is initially chosen to be dc = 2µm, as in the computations
of Mills et al. (2004). Figure11 shows the influence of this
contact size on the numerical predictions of the axial (DA)
and transverse (DT) diameters of the stretched RBC (using
the modeling case 6), when the contact size is successively
set to dc = 1µm, dc = 2µm and dc = 3µm. It is seen
that the contact size strongly influence the prediction of the
axial diameter (DA), showing a more rigid behavior with
increasing dc, but has no influence on the prediction of the
transverse diameter (DT). This may explain the large and
increasing error bars obtained by Mills et al. (2004) in the
experimental measurements of the axial diameter (DA), as
compared to the smaller and monotonous error bars obtained
for the transverse diameter (DT). This finding sheds doubt
on the meaningfulness of the use of the axial diameter (DA)
for the determination of the shear modulus Es. Indeed, the
choice of the contact size dc may strongly influence the
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determined value of the shearmodulus Es. Conversely, simu-
lations should rather be fitted to the transverse diameter (DT)
which is less sensitive to the choice of this contact size.

Figure12 shows that the contact size dc has only a lit-
tle influence on the predictions of the in-plane (LP) and
folding (LF) lengths, which means that comparison between
computed and measured values of these quantities would be
robust to the uncertainties related to the bead/RBC contact
areas. The authors hope that these findings will arouse an
interest for updated optical tweezers experiments.
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